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Abstract: The acquisition of a large-volume brainwave database is challenging because of the
stressful experiments that are required; however, data synthesis techniques can be used to address
this limitation. Covariance matrix decomposition (CMD), a widely used data synthesis approach,
generates artificial data using the correlation between features and random noise. However, previous
CMD methods constrain the stochastic characteristics of artificial datasets because the random noise
used follows a standard distribution. Therefore, this study has improved the performance of CMD by
releasing such constraints. Specifically, a generalized normal distribution (GND) was used as it can
alter the kurtosis and skewness of the random noise, affecting the distribution of the artificial data.
For the validation of GND performance, a motor imagery brainwave classification was conducted on
the artificial dataset generated by GND. The GND-based data synthesis increased the classification
accuracy obtained with the original data by approximately 8%.

Keywords: brainwave signal; data augmentation; covariance matrix; generalized normal distribution

1. Introduction

Brain–machine interface (BMI) technology is aimed at acquiring and analyzing brain-
wave signals for device control [1,2]. BMI technology is used in fields [3] such as medicine,
healthcare [4], education, and entertainment [5]. For example, patients can drive their
wheelchairs [6], operate prosthetic hands [7], and control computer keyboards using their
brainwave signals. Therefore, BMI can be used to address mobility inconveniences and
speech difficulties caused by disabilities.

The quantity and quality of the data available for classification are important factors
for the accurate estimation of a user’s intention [8]. However, most BMI systems suffer
from a lack of data because the acquisition of bio-signals requires stressful experiments.
Various data augmentation techniques have been developed to address this issue, including
noise addition methods, generative adversarial networks (GANs), and covariance matrix
decomposition (CMD) methods. Noise addition methods generate artificial datasets by
adding noise vectors to the original data [9–12]. For example, Salama et al. [11] added a
Gaussian noise signal (with zero mean and unit variance) to electroencephalogram (EEG)
signals to generate artificial EEG signals. However, this method adds simple noise without
considering the stochastic characteristics of the bio-signal of interest. Therefore, a quality
artificial dataset is not guaranteed when using this method.

GANs automatically learn the properties of the target bio-signal by using competitive
networks (i.e., generator and discriminator) [13–16]. Luo et al. [15] suggested a conditional
Wasserstein GAN for EEG data augmentation to improve the accuracy of emotion recogni-
tion. Zhang and Liu [16] used a conditional deep convolutional GAN method to generate
artificial EEG data. However, GANs require a long training time and a large number of
data samples [17]. Therefore, when only a small number of bio-signal samples are available,
a GAN cannot generate high-quality artificial data.
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CMD methods have been widely used to create stochastic signals because they con-
sider the correlation between features [18–21]. CMD does not require complicated train-
ing; thus, its calculation time is very short. Furthermore, CMD provides high-quality
data without an extremely large database. Owing to these advantages, CMD is an ad-
equate data augmentation technique for bio-signals. CMD-generated artificial datasets
increase the classification accuracy for brainwave, electromyography, and electrocardio-
graphy signals [21,22]. Therefore, in this study, CMD was used to generate artificial
brainwave signals.

Accordingly, this study aimed to develop a more flexible CMD model than previous
CMD models. CMD requires random noise to synthesize the artificial data. To preserve the
correlations observed in the original data, the mean of the random noise should be zero, and
its variance must be uniform. However, previous models impose another restriction on this
random noise; they use only a standard normal distribution, even though this restriction is
not related to correlation preservation. Thus, this study focused on releasing this restriction
to provide greater flexibility to the CMD. The proposed model modifies the skewness and
kurtosis of random noise by using a generalized normal distribution (GND). Then, the
effects of skewness and kurtosis on accuracy were investigated for brainwave signals.

The remainder of this paper is organized as follows. Section 2 describes the motor
imagery brainwave dataset used in this study and provides a detailed description of the
proposed CMD method. Section 3 describes the artificial brainwave signals generated by
the proposed method. The classification accuracies over different values of GND skewness
and kurtosis are also compared. Finally, Section 4 summarizes the study and concludes
this paper.

2. Materials and Methods
2.1. Data Description

A dataset used in BCI competition III (Dataset I) was used to investigate the effects of
data augmentation on classification [23]. The subject imagined the movement of a left small
finger (Class 1) and tongue (Class 2) for 3 s. The brainwave data (i.e., electrocorticography)
were measured at a 1000 Hz sampling frequency. From the original dataset, 160 samples
(80 samples for finger and tongue each) were used in the training dataset, and 100 samples
(50 samples per class) were used to obtain the test accuracy. Among the 64 channels in the
experiment, channel 30 was used in this study because it was located where brainwaves
related to motor imagery were measured.

2.2. Methods

This study focused on the effects of random noise, used in CMD, on data augmentation.
Thus, the GND for the random noise used in this study is introduced first. Subsequently,
the CMD procedure is described.

2.2.1. Random Noise

The stochastic nature of random noise, which is generated by a normal distribution, is
restricted because it only depends on its mean value and variance. To address this issue,
GND [24,25] was used as the random noise in this study because the distribution of the
original brainwave data was similar to that of GND. Specifically, the amplitudes of the
frequency components are widely used to classify motor imagery brainwaves. Thus, the
time series brainwave data were transferred to the frequency domain. Figure 1a,b show
that the distributions of some frequencies had a blunt shape. This distribution was created
using GNDv1. Additionally, the probability distributions (PDFs) of the amplitudes of
some frequencies are similar to a skewed normal distribution, as shown in Figure 1c,d.
This distribution was created using GNDv2. Considering these observations, GNDv1 and
GNDv2 were chosen to produce random noise in this study.
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Figure 1. Distribution of amplitudes for (a) 24 Hz, (b) 29.7 Hz, (c) 19.3 Hz, and (d) 27.7 Hz. The
amplitude was normalized by the signal power.

A random noise x following a specific PDF px can be generated using its cumulative
distribution function (CDF) cx [26] as follows. First, a random variable y is generated,
which is equally distributed between 0 and 1. Then, x can be calculated as x = c−1

x (y).
Thus, the inverse function of the CDF for the GND is required to generate random noise
following a GND.

The PDF of GNDv1 is defined as:

pv1(x) =
β

2αΓ(1/β)
exp(−

(
|x− µ|

α

)β

), (1)

where β is a shape parameter that changes the kurtosis of the PDF; µ is the mean; σ is

the standard deviation; α is a scale parameter defined as
√

Γ( 1
β )/Γ( 3

β )× |σ|, where Γ is
the gamma function. This distribution is the same as the normal distribution when β = 2,
as shown in Figure 2a. When β < 2, pv1 is sharper than the PDF of the normal distribution,
and vice versa.
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A function cv1, which is the CDF of GNDv1, can be obtained by integrating pv1
as follows:

cv1(x) =
1
2
+

sgn(x− µ)

2
× g(|x− µ|β,

1
β

, αβ), (2)

where g(h, a, b) is defined as 1
baΓ(a)

∫ h
0 sa−1 exp

(
− s

b
)
ds and sgn denotes the sign function.

Then, the inverse function of cv1 can be calculated as:

c−1
v1 (y) = µ + sgn(cv1(y)− 0.5){g−1

(
2|cv1(y)− 0.5|, 1

β
, αβ

)
}

1
β

. (3)

This inverse function is used to generate random noise following GNDv1.
The random noise following GNDv2 is determined using the shape parameter κ. Its

PDF is skewed to the right when κ is positive, and vice versa. Specifically, the PDF of
GNDv2 can be represented as:

pv2(x) =
1

σ
√

2π{α− κ(x− ξ)}
exp

(
−1

2

(
z(x)− µ

σ

)2
)

, (4)

where z is defined as − 1
κ log

(
1− κ(x−ξ)

α

)
when κ 6= 0 and as x−ξ

α when κ = 0.
Then, the CDF of GNDv2 can be calculated as:

cv2(x) =
1
2
[1 + erf(

z(x)− µ

σ
√

2
)], (5)

where erf(x) is the error function defined as 2√
π

∫ x
0 e−t2

dt.
As κ increases, the PDF peak shifts to the right, as shown in Figure 3. The inverse

function of cv2 can be calculated as:

c−1
v2 (y) = ξ +

α

κ
{1− exp(−κh(y) + µ)}, (6)

where α and ξ are defined as |σκ|√
e2κ2−eκ2

and α
κ eκ2

(eκ2 − 1), respectively, and h(y) is deter-

mined as σ
√

2erf−1(2y− 1). This inverse function is used to generate random noise for
the CMD.
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2.2.2. Covariance Matrix Decomposition

An artificial dataset, with a distribution similar to that of the original dataset, was
created using CMD. Let the original and artificial datasets be D ∈ Rk×N and Dc ∈ Rk×n,
respectively, where N is the number of original data points; n is the number of augmented



Appl. Sci. 2021, 11, 9388 5 of 13

data points; k is the number of features. The ith sample of the original dataset can be
expressed as d(i) = u + v(i), and the ith sample of the artificial dataset can be expressed
as d(i)a = u + v(i)a , where u is a vector composed of mean values of Y, and v(i) and v(i)c
are the stochastic components. Next, suppose that X is a matrix composed of random
noise vectors as X =

[
x(1) x(2) . . . x(n)

]
, where x(i) is a random noise vector with zero

mean and unit standard deviation. Cov[·] can be defined as an operator that calculates
the covariance matrix of the input vectors. If there exists a matrix L, which relates v(i)c

and random noise as v(i)c = Lx(i), the covariance matrix of Yc is equal to LLT (Proof:
Cov

[
LX·(LX)T

]
= Cov

[
LXXT LT] = L

(
Cov

[
XXT])LT = LILT = LLT , where I is the

identity matrix). It is worth noting that this relation can be derived because the mean and
standard deviation of the random noise are 0 and 1, respectively. To generate artificial data
similar to the original data, the covariance matrices of Y and Yc should be the same. Thus,
L can be obtained when LLT is the same as the covariance matrix of the original dataset.

Figure 4 briefly presents the data augmentation pipeline used in this study. The
artificial data generated by CMD and GND were combined with the original data in the
training stage. Then, both were used for training. In the test stage, only the original data
for testing were used to obtain the classification accuracy.
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Frequency domain features are widely used to classify motor imagery brainwaves;
therefore, the following pre-processing was applied in this study. Time series samples
were transferred to the frequency domain via a fast Fourier transform. Then, amplitudes
with frequencies between 8 and 16 Hz were collected, as this frequency range is closely
related to motor imagery brainwaves [27]. Next, the amplitude values were normalized by
integrating the amplitudes over the frequency.

2.2.3. Convolutional Neural Network

The convolutional neural network (CNN) structure used in a previous study [21] was
adopted. Specifically, a single CNN layer composed of 16 (1 × 10) convolution kernels
and 1 × 3 max pooling layers was used. The LeakyReLU activation function was applied
after the convolution operations, and softmax was applied to the output nodes. The Adam
optimizer was used for training, and the learning rate, decay rate for the first moment, and
decay rate for the second moment were set to 0.0002, 0.9, and 0.999, respectively. Training
was conducted for 10,000 epochs.
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Normalized amplitudes of frequencies between 8 and 16 Hz were used as the input to
the CNN. Since the trained model acted as a binary classifier, it could distinguish whether
the input test data signal belonged to Class 1 or Class 2.

3. Results and Discussion
3.1. Data Augmentation

The augmented data were affected by the PDF of the random noise, as shown in
Figures 5 and 6. The GNDv1 with a small β exhibited a high central density, as shown
in Figure 1a. Subsequently, most artificial data samples tended to be close to each other,
as shown in Figure 5b. Furthermore, the GNDv1 with a small β exhibited a higher prob-
ability density at its tail than that with a large β. Thus, few samples exhibited extreme
fluctuations, as shown in Figure 5b. When β was large, the samples were widely distributed,
as shown in Figure 5c,d. However, extremely fluctuating samples were not generated for a
large β.

The GNDv2 with a negative κ had a higher density on the negative side than on the
positive side. Thus, the generated samples tended to be skewed toward lower values, as
shown in Figure 6b. Additionally, a negative κ yielded a higher density, at larger positive
values, than a positive κ, resulting in occasional fluctuation to the positive side in a few
samples. Conversely, when κ was positive, most generated samples were skewed toward
higher values, as shown in Figure 6d; this was because the PDF of the random noise
was skewed toward the positive side. Some artificial samples of positive κ exhibited
negative amplitudes because the corresponding GNDv2 had a considerable probability
density for negative random noise, as shown in Figure 3a. Thus, negative amplitudes could
downgrade the classification accuracy because they were not observed in the original data.
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A cut-off on the PDF of the random noise can be used to prevent negative amplitudes
in the artificial data. Specifically, random noise values less than a threshold eth can be
excluded when augmenting the data, as shown in Figure 7. Figure 8 shows the augmented
data when κ = 0.5 and eth = −2, −1, and −0.5. When eth = −0.5 and −1, no negative
amplitudes were generated. Moreover, they exhibited a pattern similar to that of the
original data.
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To investigate the effects of this cut-off technique on classification accuracy, a CNN
classifier was trained with the augmented data. Then, the accuracy values in the ab-
sence/presence of the cut-off were obtained and compared, as presented in Table 1. When
the cut-off was applied, the augmented data presented greater similarity to the original
data; therefore, we expected the accuracy to increase over eth. However, the accuracy
decreased as more of the PDF was removed.

Table 1. Effects of data cut-off on classification accuracy. The GNDv2 with κ = 0.5 was used. The
numbers in parentheses represent the standard errors.

Number of
Augmented Data

Per Class

eth

No
Cut-Off −2 −1 −0.5

0
(Original)

71.2
(0.663)

80 74.12 (0.543) 72.48 (0.473) 71.2 (0.476) 70.04 (0.531)
160 76.52 (0.444) 74.48 (0.724) 71.84 (0.594) 70.80 (0.493)
480 79.72 (0.604) 75.08 (0.557) 71.68 (0.340) 70.40 (0.400)
800 78.08 (0.476) 76.68 (0.403) 71.64 (0.500) 69.00 (0.370)

This result was obtained because sample variation was important for accurate clas-
sification. The sample variation decreased significantly when the cut-off was applied to
the random noise, as shown in Figure 8. Additionally, the number of low-quality samples
(i.e., samples with negative amplitudes) is very small; thus, their effect on the classification
can be deemed negligible. Consequently, the cut-off technique was not used.

3.2. Accuracy Improvement

The accuracy was obtained for various shape parameters over different augmented
data samples; the shape parameter β of GNDv1 was varied from 0.2 to 3.5, while the
parameter κ of GNDv2 was varied from −2 to 2. A total of 80, 160, 480, and 800 artificial
samples were generated per class. Then, the artificial and original datasets were used for
training the CNN classifier.

For a reliable comparison, the effects of the initial weight of the CNN classifier and the
augmentation randomness on accuracy need to be minimized. To this end, the accuracies
for various initial weights and several augmentation trials were obtained. The final accuracy
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value was determined by averaging these accuracies. For example, to obtain the averaged
accuracy for artificial samples with β = 0.2 and 80, five datasets with 80 artificial samples
were created with β = 0.2. Then, five CNN classifiers (with the same structure and different
initial weights) were trained using the first artificial dataset and the original dataset. Next,
the five CNN classifiers were trained using the second artificial dataset and the original
dataset. As this training process was conducted using all artificial datasets, a total of
25 accuracy values were obtained. Then, the average and standard error of the accuracy for
artificial samples with β = 0.2 and 80 can be calculated. Figures 9 and 10 show the average
and standard error of the accuracy obtained via the described method for GNDv1 and
GNDv2, respectively.
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When the augmented dataset was added to the training dataset, the accuracy signif-
icantly increased in most cases compared to when the original dataset was used alone.
In the case of the dataset generated using GNDv1 (Figure 9), the accuracy increases as
β increases for β < 1. This suggests that a smoother distribution is more effective for
generating high-quality brainwave data. For β > 1, the effects of β on accuracy were
negligible because the changes in the PDF were not considerable, as shown in Figure 2a.
Furthermore, the accuracy increased as the number of samples with the artificial dataset
increased. For example, for a large β, the accuracy improvement was approximately 2%
when 80 samples were augmented. The improvement was approximately 7% when 800
samples were added.

When artificial data were created using GNDv2, high accuracy was achieved for
0 < κ < 1, as shown in Figure 10. This suggests that high-quality brainwave signals can be
generated when the PDF of the random noise is slightly skewed toward the positive side.
The accuracy also improved as the number of artificial samples increased. However, when
κ > 0.3, a higher level of accuracy was achieved with 480 samples than with 800 samples.
We speculate that this counterintuitive result was obtained because the effect of negative
amplitudes was considerable only when the number of artificial samples was very large.
Specifically, when κ was positive, negative amplitudes were generated, which were not
observed in the original dataset. However, negative amplitudes would be rare if the
number of samples was not sufficiently large (i.e., less than 480). Thus, the effect of negative
amplitudes was small. Therefore, if a sufficiently large number of samples is created, the
training dataset is likely to contain a considerable number of negative amplitudes, leading
to accuracy degradation. Thus, a lower accuracy was achieved with 800 artificial samples
than with 480 samples.

To verify that the accuracy could be improved by the flexible CMD in other bio-
signals, the model was applied to an electromyography (EMG) signal. Specifically, EMG
signals corresponding to three holding motions, namely holding a glass of water, water
bottle, and pen, in the public EMG dataset [28] were used in this study. The data prepro-
cessing and data augmentation techniques used for brainwave signals were also applied
to the EMG signals. Figures 11 and 12 show the accuracies obtained via GND v1 and
GNDv2, respectively.
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The augmented dataset significantly increased the accuracy of EMG signals. When
800 samples were used, the maximum accuracy was approximately 71.1%, which was very
high considering that the accuracy for a normal distribution was approximately 63.5%.
When 80 and 160 samples were augmented with GNDv1, the accuracy increased over β
and saturated when β was approximately 1. Meanwhile, when 480 or 800 samples were
augmented with GNDv1, the maximum accuracy was obtained when β was 0.4. This
difference can be attributed to an insufficient number of random noises. When the number
of generated random noises is small, the actual distribution of the generated random noise
can be different from the expected distribution (i.e., GNDv1). Thus, the effects of β on the
accuracy are different for small and large samples.

When artificial EMG data were created using GNDv2, a high accuracy was also
obtained, as shown in Figure 12. When 800 samples were used, the maximum accuracy
was approximately 72.6%, which was significantly higher than the value obtained with the
normal distribution. Moreover, the accuracy tends to be high for negative κ, suggesting
that high-quality EMG signals can be artificially generated when random noise distribution
is slightly skewed to the left. The value of κ, corresponding to the maximum accuracy, is
different for small (i.e., 80 and 160) and large (i.e., 480 and 800) samples. This difference
can also be explained by the actual distribution of generated random noise.

4. Conclusions

In previous studies, normally distributed random noise was used for CMD. Therefore,
in this study, an artificial dataset was created using other types of random noise distribu-
tions. To predict the type of motor imagery brainwave more accurately, a CNN classifier
was trained with the dataset augmented via CMD based on GNDv1 and GNDv2. The
PDF parameters of the random noise were varied, and their effects were investigated. The
accuracy improved for larger β in GNDv1 and for small positive κ in GNDv2. In addition,
the classification accuracy tended to increase when more artificial data were generated.

It is worth noting that the optimal parameter values for β and κ can be changed
if the proposed method is applied to other bio-signals. Thus, to determine the optimal
parameters for random noise, the accuracy of the validation dataset needs to be obtained
and compared with various parameter values.
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This study has proposed a generic method to release the constraints of classical CMD
using GND. This method can be used to generate other types of bio-signals. However,
GND might not be an optimal PDF for random noise for certain target signals. Other types
of PDFs, such as multimodal distributions or Student’s t-distributions, can be used for data
augmentation in future work. Furthermore, a more general PDF for random noise, which
is defined by many parameters, can provide higher-quality artificial data, the parameters
of which can be trained to generate artificial data such that their distribution is similar to
that of the original data.
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