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Abstract: Chinese rural construction is currently booming, but faces considerable challenges in
terms of energy performance. The objective of this research was to analyze the energy performance
of tubular houses, which are a unique type of rural house in southern China, with a particular
architectural form and environmental adaptations. Previous field measurements showed that there
was much room for improvement, with both winter and summer cases requiring particular attention.
Numerical simulations of the annual energy consumption were conducted using Open-Studio.
The results show that various levels of reduction in energy consumption (varying from 1.6% to 30.5%)
were achieved by combining different renovations. Among them, using solar energy with a sunroom
was found to be the most effective approach, with an energy-saving rate of 28%, followed by the
approach of attaching insulation to the walls and roof, with an energy-saving rate ranging from 13.2%
to 30.5%. The integrated optimization measures had an energy-saving rate of 47.4% with a total
renovation cost of CNY 41,143.1, and the payback period of investment was within five years. If a
tubular house with improved thermal insulation can be inherited as a component in the process of
urbanization, it will aid in energy conservation and natural ecosystem protection for southern China.

Keywords: tubular house; sustainability; energy performance; passive energy-saving technology;
Open-Studio; integrated optimization

1. Introduction

Globally, the construction industry today consumes 40% of the total energy produc-
tion, generates between 30% and 40% of all solid waste, and emits 35–40% of total CO2
emissions [1,2]. As the current situation is not satisfactory, a number of policies have been
adopted worldwide. Examples include the Kyoto Protocol [3], Buildings Directive Energy
Performance [4,5], and the Japanese low-carbon society plan [6], all of which have worked
successfully as solutions for minimizing the environmental influence of buildings in order
to make them sustainable [7].

However, China is a large country with a large agricultural sector, and the rural
population accounts for 43.9% of the total population [8]. In China, the energy consumption
of the construction industry accounts for 30% of the total energy production, with rural
areas accounting for 37% of that value [9,10]. Numerous investigations of rural residences
have shown that the poor thermal insulation properties of building envelopes, as a function
of nonstandard traditional construction materials and methods, results in substantial
energy consumption [11–14]. In addition, there is an increasing trend in annual energy
consumption due to the generally improving living conditions in rural areas.
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In view of the national situation, some attention has been given to this issue. In 2012,
the “design standard for energy efficiency of rural residential buildings” was implemented
by the Ministry of Housing and Urban–Rural Development, which provided a general
national standard to address the issues of rural construction [15]. In an existing study,
Hu and He researched a Trombe wall with Venetian blinds, which could increase the
average indoor temperature by 5 ◦C during winter [16]. Zwanzig researched a transparent
phase-change material to improve the utilization of solar radiation and promote heat
storage and release ability [17]. Nayak had analyzed the state of solar cell devices based on
performance and device stability in both organic and inorganic photovoltaics (PVs) [18].
Meysam had optimized the solar cell device integration of ultra-thin poly films via a single-
step all-dry process [19]. All of these studies focused on the use of a single technology
with a high economic cost. However, rural residents cannot afford this kind of investment
because of their low income levels. In rural regions, integrated passive energy-saving
technologies in combination with minimal input are most appropriate for improving the
thermal performance of residences. The processes involved in this approach require a
constant consideration of the building performance, including the building envelope,
orientation, shading, and natural ventilation, together with the use of energy-efficient
systems [20]. Currently, existing research is far from achieving this goal.

In addition, thermal performance research should be combined with local natural
climatic conditions and regional architectural forms, especially in rural areas [21–24].
Chinese researchers have been paying close attention to existing rural residential dwellings,
such as Yaodong dwellings located in the arid region of China [25] and Tibetan traditional
dwellings located in the cold rural area of Gannan [26]. The tubular house is a typical
form of traditional residential building that has a long history, as shown in Figure 1.
It is abundant in southern China, where the summer is hot and humid, in regions such
as Guangdong, Guangxi, Taiwan, and Zhejiang, and it is even widely found in India,
analogously called a “tube house”. Tubular houses, which are named for their narrow
and long forms, are a good example of a regional building adapted to the local climate.
The arrangement, involving a spatial structure connected by internal patios and long
corridors, provides a characteristic regional architectural form for research. Since almost all
the tubular houses are built in the form of townhouses, the shape factor can be decreased,
and the heat loss from the external surfaces can be reduced. Furthermore, two yards enable
a reduction in the heating load by introducing sunlight and a reduction in the cooling load
by providing ventilation. Thus, it has a positive effect on the energy conservation. If the
tubular house can be inherited as a component in the process of urbanization, it will aid in
energy conservation and natural ecosystem protection in southern China.
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Figure 1. (a,c) Appearance of the traditional tubular houses; (b) a base case in a group arrangement of tubular houses; 
(d,e) Google map of the tubular houses (2021). 
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[28] studied the relationship between ventilation, wind pressure, and thermal compres-
sion in tubular houses. Gao [29] proposed that increasing the height of the yard could 
increase the ventilation effect of tubular houses. Ling [30] studied the relationship be-
tween the yard area and the energy consumption of tubular houses in Fujian. The famous 
Indian architect Correa [31] indicated that tubular houses should improve the wind effect 
of the atrium in the yard to promote indoor ventilation. However, considering the re-
search methodology and technique strategy, numerous researchers have focused on the 
impact of architectural forms and ventilation. Unfortunately, the energy consumption of 
tubular houses has not been investigated in previous research, and there remains a lack 
of experimental validation and quantitative analysis. 

Our group from Zhejiang University has studied tubular houses in northern Zhejiang 
Province for more than 10 years [32]. Active heating or cooling systems are generally in 
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was much room for improvement with regard to thermal conditions in such dwellings, 
with both winter and summer cases requiring particular attention. Analyses of energy 
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In the past decade, extensive work has been carried out to reveal the thermal mecha-
nisms of tubular houses. A team from the South China Institute of Technology [27] studied
the basic principles of insulation and ventilation of tubular houses in Guangzhou. Lin [28]
studied the relationship between ventilation, wind pressure, and thermal compression in
tubular houses. Gao [29] proposed that increasing the height of the yard could increase the
ventilation effect of tubular houses. Ling [30] studied the relationship between the yard
area and the energy consumption of tubular houses in Fujian. The famous Indian architect
Correa [31] indicated that tubular houses should improve the wind effect of the atrium in
the yard to promote indoor ventilation. However, considering the research methodology
and technique strategy, numerous researchers have focused on the impact of architectural
forms and ventilation. Unfortunately, the energy consumption of tubular houses has not
been investigated in previous research, and there remains a lack of experimental validation
and quantitative analysis.

Our group from Zhejiang University has studied tubular houses in northern Zhejiang
Province for more than 10 years [32]. Active heating or cooling systems are generally in high
demand for buildings in the northern Zhejiang Province due to the “hot in summer and cool
in winter” climate of the region. Previous field measurements showed that there was much
room for improvement with regard to thermal conditions in such dwellings, with both
winter and summer cases requiring particular attention. Analyses of energy consumption
and energy-saving potential based on field measurements and computer simulations for
dwellings have been widely applied worldwide [25]. In this study, numerical simulations
of the annual energy consumption were conducted using the tubular house model in Open-
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Studio. Different energy efficiency measures were evaluated in terms of the decrease in the
annual energy consumption. Subsequently, the results show that various levels of reduction
in energy consumption (varying from 1.6% to 30.5%) were achieved by combining different
renovations. Furthermore, the relationship between energy consumption and insulation
material thickness was established using a highly fitting logarithmic curve. To facilitate the
understanding of the research method framework, it is presented in Figure 2.
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Figure 2. Research methods framework.

Step 1. Field Measurement: A series of experimental measurements were carried out,
focusing on the characteristics of the tubular house and the current situation of the thermal
comfort, to provide the basis for the study.

Step 2. Investigation: The field investigation about modeling parameters of tubular
house and a questionnaire survey about living schedule of 121 households were conducted.

Step 3. Models Built: A typical tubular house was built in Open-Studio as CASE-A
according to the parameters in steps 1 and 2.

Step 4. Simulation: Several energy consumption simulations were conducted through-
out the winter and summer by combining different renovations to solve the problems
found in steps 1 and 2.

Step 5. Analysis: Analyze all the simulation results, taking CASE-X as the integrated
optimization measure, with an energy-saving rate of 47.4%.

Step 6. Economic analysis: Take economic analysis of CASE-X with a total renovation
cost of CNY 41,143.1, and the payback period of investment within five years.

2. Materials and Methods
2.1. Research Object

The protection of traditional dwellings has received increasing attention. Energy
consumption and indoor comfort are very important factors for their sustainable devel-
opment [18]. The tubular houses located in Zhang Luwan village in northern Zhejiang
Province were chosen as the study buildings. The village has a long history. Further-
more, considering that almost all the tubular houses are built in the form of townhouses
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rather than separate single houses, the research object of this study was a typical two-
story tubular house located in the middle of a group of townhouses as Case-A, shown in
Figures 1b, 3 and 4a. It faces south, with 3.6 m from east to west and 28 m from north to
south, with proportions of 1:7.77, presenting a long and narrow form so as to meet the
construction demands of high density at lower layers. Moreover, it can also be divided into
three parts by internal yards: the front as the living room, the middle as the dining room,
and the back as the kitchen on the first floor, while the second floor features three bedrooms.
The height of both the floors is 3 m. The total building area is 154.08 m2. Figure 3 shows a
model diagram of a tubular house. This house was fit for a “hot in summer and cold in
winter” climate, where active heating or cooling systems are generally in high demand,
and it belongs to the highly focused residence group under a public social structure.
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2.2. Field Measurements

It is important to note that the thermal environment of a traditional tubular house
is not always optimal. There is much room for improvement in terms of the thermal
conditions in such dwellings, with both winter and summer cases requiring particular
attention. The thermal properties of the building envelopes are the main reason for the poor
thermal environment. A traditional tubular house is always covered by poor envelopes
such as a 120 mm reinforced concrete roof, a 240 mm clay brick external wall, and single
clear 6 mm windows, according to the field survey.

A series of experimental measurements were carried out, focusing on the characteris-
tics of the tubular house and local climate in 2019 during winter and summer. Auto-loggers
were used to simultaneously monitor the indoor and outdoor air temperatures and relative
humidity. These instruments were placed at a height of 1.5 m in the middle of eight zones.
There were no active systems in operation when the measurement was conducted. All the
field measurements were carried out without active system used, focusing on the charac-
teristics of the tubular house and the current situation of the thermal comfort to provide
the basis for the study.

A general summary of the measurements revealed that traditional tubular houses
have particular structural and thermal characteristics.

The results in Figure 5 show that the arrangement and spatial structure played im-
portant roles in making the indoor temperature lower than the outdoor temperature in
summer; however, the temperature in some zones was still too high. In winter, the indoor
temperature was higher than the outdoor temperature, reflecting the advantages of a
tubular house. However, the average indoor temperature was approximately 4–7 ◦C; thus,
inhabitants would feel cold without a heating method.

In summer, the indoor and courtyard temperatures of the tubular house increased
with height. The temperature difference between indoors and outdoors on the second
floor was 1.9 ◦C, while that on the first floor was 5–5.8 ◦C. In winter, the situation was the
opposite. The analysis suggested that in summer, the higher indoor temperature of the
second floor was due to insufficient heat insulation by the roof material. In winter, for the
zones of the first floor, the heat loss was low because there was no direct heat transfer in
the outdoor environment. The temperature of the front yard was slightly lower than that of
the back yard because of the higher ratio of width to height of the yard and more sunlight
in the former (the width of the front yard is 3600 mm and the back yard is 3000 mm, while
they share the same height of 6000 mm). Furthermore, the indoor relative humidity in
summer reached 70%. It can be clearly seen that there is much room for improvement in
terms of the thermal conditions in such dwellings, with both winter and summer cases
requiring particular attention. Thus, a search for feasible improvements is required.
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Figure 5. (a) Field measurement results of indoor and outdoor temperature in summer, and (b) field measurement results of
indoor and outdoor temperature in summer and winter.

2.3. Computer Simulation
2.3.1. Open-Studio

The current study addressed this problem via simulation using the energy simulation
program Open-Studio as the main analysis tool. Open-Studio is a cross-platform collection
of software tools to support whole-building energy modeling using Energy-Plus and ad-
vanced daylight analysis using Radiance. Open-Studio includes graphical interfaces and a
software development kit (SDK). Open-Studio features the same algorithms and data as
Energy-Plus, which is a complete building design and environmental analysis tool that
covers a broad range of simulation and analysis functions, covering thermal properties,
energy, lighting, shading, and resources. As described by many researchers [33–35] who
used this software to evaluate the required design configurations in their studies, it was
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chosen as the most suitable for the objectives of the current study because it is a highly
visual building simulation tool. Using simulation methods through the works of Ener-
gyPlus and Open-Studio for energy conservation purposes shows high applicability in
many studies [36–41]. Models of the tubular house were built for comparative analysis,
and energy consumption simulations were conducted throughout the winter and summer.

2.3.2. Simulation Parameters

The weather data file for Open-Studio was obtained from the EnergyPlus web page
(Hangzhou city.epw), and the building materials were either chosen from the Energy-Plus
library or created from the user library. Tables 1 and 2 display the zone and material
properties of the tubular house model, respectively.

Table 1. Material descriptions of the tubular house model.

Component Layers Thickness
(mm)

Thermal
Conductivity

(W/(m·K))

Density
(kg/m3)

Specific
Heat

(J/kg·K)

Heat Transfer
Coefficient
(W/(m2·K))

CASE-A roof Reinforced
concrete 120 1.74 2500 920

CASE-A external wall 240 clay brick 240 0.81 1800 1050

CASE-A internal wall 120 clay
brick 120 0.81 1800 1050

CASE-A floor Reinforced
concrete 100 1.74 2500 920

CASE-A windows Single clear 6 mm 6 6.4

CASE-C insulation roof XPS 10–100 0.03 27

CASE-C insulation wall XPS 10–100 0.03 27

CASE-E double
single-glazed windows 3.0

Table 2. Zone properties of the tubular house model.

Zone Properties Description

Zone number 6

The type of active or
passive system used

Electric heating coil system (in winter)
Natural ventilation (in summer, when 12 ◦C < T outdoor < T inside)

DX cooling coil system (in summer)

Comfort lower band 18 ◦C

Comfort upper band 26 ◦C

Occupants’ metabolic rate Sedentary activity: 70 W (6 persons)

2.3.3. Simulation Case Design: Winter Heating Case/Summer Mixed Cooling Case

Because the active system used for both cooling during summer and heating during
winter for the internal spaces is AC in southern China, the electricity from the power grid
was chosen as the energy supply pattern in the simulation throughout the year. The setting
parameters in the simulation need to be adjusted considering the air-conditioned conditions
and occupancy schedules for various rooms.

In this study, the energy performance of five buildings (CASE-A/CASE-B/CASE-
C/CASE-D/CASE-E) was investigated as a function of two operational cases. In the
winter heating case, the building was airtight, and air exchange between the inside and
outside occurred solely via infiltration. The inside air temperature was controlled using
a heating system (18 ◦C in this study). In the summer mixed cooling case, the buildings
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were operated in a mixed mode of active cooling and natural ventilation. More specifically,
if the outside air temperature was lower than the inside temperature and higher than the
natural ventilation set-point temperature (12 ◦C in this study), then natural ventilation
was introduced to chill the indoor air. If the cooling capacity of the natural ventilation
is insufficient, the active cooling system operates to maintain the indoor air set-point
temperature (26 ◦C in this study).

The energy consumed by the system was in the form of electricity, and the COP
of the cooling system was 1.67. The internal gains (including lighting and equipment)
were designed to be 4 and 5 W/m2. All interior spaces were heated or cooled, except for
the yards.

According to a questionnaire survey of 121 households, there were six members
in most families. Considering daily life and sleep habits, indoor occupancy reaches its
maximum during mealtimes, at 7:00–8:00 a.m., 1:00–2:00 p.m., and 5:00–6:00 p.m. Outside
of these times, an average low occupancy of two persons is typical. The sensible heat was
quantified at 70 W for each person with light activity.

2.4. Energy Saving Using Different Measures

Optimizing rural residences with low economic inputs to minimize energy consump-
tion is vital. Considering that the thermal properties of the building envelopes are the main
reason for the poor thermal environment, energy efficiency measures could be introduced
to address these aspects, such as decreasing the shape factor (CASE-A), using solar energy
with a sunroom (CASE-B), introducing a thermal insulation layer into the external wall and
roof (CASE-C), attaching a sloping roof with an air gap (CASE-D), and installing double
single-glazed windows (CASE-E), as shown in Figure 4.

3. Results and Discussion
3.1. Simulation Results of CASE-A

Most tubular houses are built in the form of townhouses rather than separate single
houses. Hence, the shape factor can be decreased, and the heat loss from the external
surfaces can be reduced.

CASE-A is a typical two-story tubular house located in the middle of a group of
townhouses with an area of 154.08 m2, while the modified building area was 115.20 m2.
According to the CASE-A analysis in Open-Studio, the annual energy consumption of the
tubular house was 21,603 kWh in total, and 187.53 kWh/m2 in the building area. The heat
load was 55.05 W/m2, while the cooling load was 54.04 kWh/m2.

As shown in Figures 6–8, it is evident that both the cooling and heating loads accounted
for approximately 27% of the total energy consumption. The energy-saving renovation of
the tubular house should focus on both winter and summer, especially in July (average
outdoor temperature of 27.6 ◦C), August (average outdoor temperature of 28.2 ◦C), January
(average outdoor temperature of 5.2 ◦C), and February (average outdoor temperature of
6.6 ◦C). On the other hand, April and October represent the most comfortable seasons,
with average outdoor temperatures of 16.2 ◦C and 19.2 ◦C, respectively, and the energy
consumption during these seasons is almost zero.

Figure 9 shows the peak loads for each space. This suggests that both the cooling
and heating peak loads of the second floor are much higher than those of the first floor
because of insufficient roof insulation. Furthermore, the peak loads of the rooms beside the
courtyard are lower than those of the other rooms, suggesting that the courtyard enables a
reduction in the heating load by introducing sunlight and a reduction in the cooling load
by providing ventilation. Thus, it has a positive effect on the energy conservation.
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Figure 9. Cooling peak load and heating peak load of each zone, along with the sizing factor (W).

3.2. Simulation Results of Using Solar Energy and Sunroom

CASE-B: Two yards were transformed into sunrooms with openable windows added
to the roof. These windows were closed in winter for indoor heat storage and opened in
summer to increase ventilation, thereby reducing energy consumption.

As shown in Figures 10 and 11, in CASE-B, the annual consumption decreased from
187.85 to 134.98 kWh/m2, with an energy-saving rate of 28%, providing the most effective
energy-saving measures.
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Figure 10. Energy-saving rates of different measures. CASE-A: a traditional tubular house built in
the form of townhouses; CASE-B: solar energy use with sunroom; CASE-C-ROOF-40: insulation roof
with 40 mm XPS; CASE-C-WALL-40: insulation wall with 40 mm XPS; CASE-D: sloping roof with air
gap; CASE-E: double single-glazed windows.
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Figure 11. Energy consumption of various equipment of the CASE-X.

The original tubular houses feature a narrow patio to extract wind and accelerate
indoor air circulation. After the renovation, as shown in Figure 12, in summer, the high
windows were opened, and the glass roof was heated by solar radiation, which enhanced
the effect of wind extraction and discharged the indoor heat. In winter, the windows were
closed to form a greenhouse effect, which helped to maintain indoor heat. In this way,
tubular houses can have a better energy-saving effect and become more economical.
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Figure 12. Working diagram of using solar energy and a sunroom in summer and winter.

3.3. Simulation Results of Insulation Roof and Wall

CASE-C: Thermal insulation in external walls and roofs has become a widespread
energy-saving measure for village buildings in China. Extruded polystyrene and expansion
polystyrene boards, commonly known as XPS and EPS boards, are generally used as
insulation materials. An extruded polystyrene board was selected as the insulation material
for the simulation because of its superior adhesive properties. Insulation materials (XPS)
with different thickness (10–100 mm) were added to the roof (CASE-C roof) or walls
(CASE-C wall) to assess their effect on annual energy consumption.

As shown in Figure 13, thickening the insulation materials of the roof from 0 to 100 mm
led to a decrease in winter energy requirements to 144.95 kWh/m2, with an energy-saving
rate of 23%. Accordingly, thickening the insulation materials of the walls from 0 to 100 mm
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could also decrease the winter energy requirement to 130.58 kWh/m2, for an energy-saving
rate of 30.5%. It is evident that the insulation material of the walls was more effective
because the exterior wall area was larger than that of the roof. More importantly, the energy-
saving rate decreased slowly when the thickness of the insulation materials was increased
beyond 30 mm, according to the trend shown in Figure 13. Considering the economic
factors, it is recommended to choose 30 mm XPS, which was found to be the most efficient.

By simulating the impact of different XPS thicknesses on the energy consumption of
tubular houses, a curve regression simulation was performed on the data. The relationship
between energy consumption and XPS material thickness was established using a highly
fitting logarithmic curve. The specific energy consumption (EIR) and thickness of the roof
insulation material XPS (N) were fitted to the following logarithmic function: EIR = 177.469
− 7.317 × ln(N), where N = 10, 20, 30, . . . , 90, 100 (see Equation (1) and Table 3), with a
fitting index R2 = 0.969 and a Pearson correlation coefficient p < 0.0001, much lower than
the limit of 0.01, indicating a high degree of fitness, as shown in Figure 14. The specific
energy consumption (EIW) and thickness of the wall insulation material XPS (N) were
fitted to the following logarithmic function: EIW = 194.114 − 14.173 × ln(N), where N = 10,
20, 30, . . . , 90, 100 (see Equation (2) and Table 4), with a fitting index R2 = 0.986 and a
Pearson correlation coefficient p < 0.0001, much lower than the limit of 0.01, indicating
a high degree of fitness, as shown in Figure 15. A highly fitting logarithmic curve may
rigorously guide the choice of insulation material thickness in the energy-saving renovation
of other tubular houses.

Table 3. Parameter Estimates of EIR and N.

Parameter Estimates of EIR and N

Unstandardized Coefficients Standardized Coefficients
t p

B Standard Error Beta

Constant 177.469 1.798 - 98.679 0.000 **

ln(N) −7.317 0.464 −0.984 −15.77 0.000 **

p < 0.05, ** p < 0.01.

Table 4. Parameter Estimates of EIW and N.

Parameter Estimates of EIW and N

Unstandardized Coefficients Standardized Coefficients
t p

B Standard Error Beta

Constant 194.114 2.152 - 90.21 0.000 **

In(N) −14.173 0.555 −0.994 −25.528 0.000 **

p < 0.05, ** p < 0.01.

3.4. Simulation Results of Attaching Sloping Roof with Air Gap

CASE-D: The traditional tubular house has a flat roof without any insulation measures.
CASE-D involved adding a sloping roof with an air gap to the top of the house, thereby
not only adapting to the architectural features of this area, but also contributing to roof
insulation (see Figure 4).

As shown in Figure 10, in CASE-D, the annual energy requirement decreased from
187.85 to 157.36 kWh/m2, with an energy-saving rate of 16.3%, thus exhibiting a signifi-
cant result.
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3.5. Simulation Results of Insulation Windows

CASE-E: The insulating level of windows in traditional tubular houses is also relatively
poor. All single clear windows with an aluminum window frame commonly used in
traditional tubular houses were replaced with double single-glazed windows.

As shown in Figure 10, in CASE-E, the annual energy requirement decreased from
187.85 to 184.88 kWh/m2, with an energy-saving rate of only 1.6%, thus providing little
reduction in energy consumption. This is because the external window area of tubular
houses is quite small, and simple double-glazing would not have much of an effect.
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Figure 13. Energy consumption for insulation materials (XPS) of different thickness (kWh/m2).

EIR = 177.469 − 7.317 × ln(N), N = 10, 20, 30, . . . , 90, 100; R2 = 0.969, (1)

where EIR is the energy consumption in the case of the insulation roof (kWh/m2) and N is
the insulation thickness of XPS.

EIW = 194.114 − 14.173 × ln(N), N = 10, 20, 30, . . . , 90, 100; R2 = 0.986, (2)

where EIR is the energy consumption in the case of the insulation wall (kWh/m2) and N is
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3.6. Simulation Results of Integrated Optimization

Based on all the simulation results above, considering the economic factors, the best
integrated optimization measures for tubular houses in northern Zhejiang should be
conducted as follows: CASE-B + CASE-C (30 mm) + CASE-D = CASE-X. The optimal
measures were determined by all the simulation results of CASE-B to E. As shown in
Figure 10, CASE-B, CASE-C, and CASE-D all provided significant results in terms of energy
consumption, while CASE-E provided little reduction, with an energy-saving rate of only
1.6%. According to the CASE-X analysis in Open-Studio, the annual energy consumption
of the tubular house was 13,719 kWh in total, and 86.83 kWh/m2 in the building area, with
an energy-saving rate of 47.4% compared with CASE-A. The heat load was 14.52 kWh/m2,
while the cooling load was 20.66 kWh/m2, and the heat load was more optimized than the
cooling load.

According to the National Bureau of Statistics of China, the consumption of 1 kWh of
electrical power requires the burning of 0.404 kg of standard coal, which results in CO2
emissions of 0.872 kg. The CO2 emissions corresponding to CASE-A and CASE-X were
18,838.21 kg (21,603 kWh) and 11,962.9 kg (13,719 kWh), respectively, with a total difference
of 6875 kg.

3.7. Economic Analysis of Renovation

Economic efficiency is an important factor restricting building renovations. Among in-
sulation materials [8], the expansion of polystyrene board (EPS) and extruded polystyrene
board (XPS) insulation are widely used. The XPS boards were chosen as exterior wall
insulation and priced at 80 CNY/m2. Subjected to geographical and technological limita-
tions, existing solar rooms mainly use aluminum–plastic materials with an average price of
120 CNY/m2.

According to the simulation results, the annual accumulated heat load of the building
was 7884 kW h before rebuilding. Converting the saved heat load of renovation measures
into electricity priced at CNY 1.1, the total energy-saving benefit is CNY 8672.4.

As shown in Table 5, the sunroom costs CNY 4752, accounting for only 11.5% of the
total cost of energy-saving renovation, with the most effective energy-saving rate of 28%.
Attaching a sloping roof accounted for 46.6% of the total cost, with the most effective
energy-saving rate of 16.3%. The total renovation cost is CNY 41,143.1, and the payback
period of investment is within 5 years (4.75).
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Table 5. Energy-saving renovation costs.

Component Energy-Saving
Materials Price (CNY/m2) Area (m2)

Labor Cost
(CNY/per) Total Cost (CNY)

Insulation roof 30-XPS 80 77.04 80 12,326.4

Insulation wall 30-XPS 80 30.56 80 4889.6

Sunroom Aluminum frame
window 120 23.76 80 4752

Sloping roof Reinforced concrete 150 83.376 80 19,175.1

Total cost 41,143.1

4. Conclusions

Tubular houses, named for their narrow and long forms, are common in southern
China. They are a good example of a regional building that is adapted to the local climate.
According to the results of field measurements, the thermal environment of traditional
tubular houses is not always optimal, whereby both the cooling and heating loads account
for approximately 27% of the total energy consumption. Thus, energy-saving renovations
of tubular houses should focus on both winter and summer, especially in the months of
July, August, January, and February. On the other hand, April and October are the most
comfortable seasons, with average outdoor temperatures of 16.2 ◦C and 19.2 ◦C; as such,
the energy consumption during these seasons is almost zero.

In the CASE-B to E simulation, different energy efficiency measures were evaluated
in terms of their effects on annual energy consumption. The results show that various
levels of reduction in energy consumption (varying from 1.6% to 30.5%) were achieved
by combining different renovations. Among them, using solar energy with a sunroom
was found to be the most effective approach, with an energy-saving rate of 28%, followed
by the approach of attaching insulation to the walls and roof, with an energy-saving rate
ranging from 13.2% to 30.5%. Furthermore, it was found that the energy-saving rate
decreased slowly when the thickness of insulation materials was increased beyond 30 mm,
according to the trend of the logarithmic curve. Thus, considering the economic factors, it is
recommended to choose 30 mm XPS, which was found to be the most efficient. Additionally,
attaching a sloping roof with an air gap to the top of the house was also successful, with
an energy-saving rate of 16.3%; however, double single-glazed windows provided little
reduction in energy consumption, with an energy-saving rate of only 1.6%, owing to the
small external window area of tubular houses.

The relationship between energy consumption and XPS material thickness was also
established using a highly fitting logarithmic curve. The specific energy consumption
(EIR) and thickness of the roof insulation material XPS (N) were fitted to the following
logarithmic function: EIR = 177.469 − 7.317 × ln(N), with a fitting index R2 = 0.969 and
a Pearson correlation coefficient p < 0.0001. The specific energy consumption (EIW) and
thickness of the wall insulation material XPS (N) were fitted to the following logarithmic
function: EIW = 194.114 − 14.173 × ln(N), with a fitting index R2 = 0.986 and a Pearson
correlation coefficient p < 0.0001. This conclusion can effectively guide the choice of
insulation material thickness in the energy-saving renovation of tubular houses.

The best integrated optimization measures for tubular houses in northern Zhejiang
should be conducted as follows: CASE-B + CASE-C (30 mm) + CASE-D = CASE-X, with
an energy-saving rate of 47.4% compared with CASE-A. The total renovation cost is CNY
41,143.1, and the payback period of investment is within 5 years (4.75).

This study showed that the application of environmental adaptations to tubular
houses, along with improved thermal insulation, can drastically reduce energy consump-
tion. If this is inherited as a component in the process of urbanization, it will aid in energy
conservation and natural ecosystem protection in southern China.
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