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Abstract: Task scheduling is key to performance optimization and resource management in cloud
computing systems. Because of its complexity, it has been defined as an NP problem. We introduce an
online scheme to solve the problem of task scheduling under a dynamic load in the cloud environment.
After analyzing the process, we propose a server level agreement constraint adaptive online task
scheduling algorithm based on double deep Q-learning (SLA-DQTS) to reduce the makespan, cost,
and average overdue time under the constraints of virtual machine (VM) resources and deadlines.
In the algorithm, we prevent the change of the model input dimension with the number of VMs
by taking the Gaussian distribution of related parameters as a part of the state space. Through the
design of the reward function, the model can be optimized for different goals and task loads. We
evaluate the performance of the algorithm by comparing it with three heuristic algorithms (Min-Min,
random, and round robin) under different loads. The results show that the algorithm in this paper
can achieve similar or better results than the comparison algorithms at a lower cost.

Keywords: cloud computing; task scheduling; DDQN

1. Introduction

With the rapid development of computer technology and the internet economy, cloud
computing, as the cornerstone of big data and artificial intelligence (AI), is one of the
most promising and valuable research directions, and efficient task scheduling has always
been the goal and challenge of research in this field [1]. Considering that the services and
resources provided by cloud service providers have increased significantly in the past
ten years, and their workloads exhibit a high degree of dynamic change, how to adapt to
the online task scheduling environment with dynamic changes has become an important
issue [2].

AI is an emerging research topic, and it can be used to solve complex problems and
find optimized solutions in many applications and fields. Hence, it can potentially solve
the task scheduling problem in software as a service (SaaS). The benefits of AI in science,
medicine, technology, and the social sciences have been proven. With the popularity and
development of cloud computing, the process of task scheduling will generate a large
number of records, and these data can be used to establish a data-driven AI task scheduling
system. Training through the data continuously generated during scheduling helps in the
formation of strategies according to the current environment. Although AI technology
has made significant progress, its use in systems that require reliability, transparency, and
maintainability is still in its infancy.

Task scheduling and resource allocation in the cloud environment usually have the
optimization goals of reducing makespan, improving resource utilization, load balancing,
cost optimization, and reducing energy consumption [3]. Previous studies have proposed
a solution for scheduling optimization for one goal or even multiple goals [4]. Practical
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research must consider multiple cloud computing task scheduling objectives. Current
methods can be categorized as heuristic algorithms, meta-heuristic algorithms, and rein-
forcement learning (RL) [5]. Most schemes consider the scheduling of offline batch tasks,
and cannot be applied to dynamically changing workloads in online task scheduling [2].

We model the online task scheduling problem of cloud computing and propose server-
level agreement constraint adaptive online task scheduling algorithm based on double deep
Q-learning (SLA-DQTS), an algorithm based on deep reinforcement learning (DRL) [6]
under server level agreement (SLA) constraints. We consider the dynamic change of the
cloud computing environment and task load through the design of the state space and
reward function to adaptively learn the scheduling strategy between the task load and
number of VMs, and we use reinforcement learning to maximize the cumulative reward
to acquire a long-term decision-making strategy. The main contributions of this work are
summarized as follows:

• With the widespread application of DRL in task scheduling, we propose an intelligent
task scheduling framework using DDQN in cloud computing online task scheduling
to optimize the allocation decision of online tasks to virtual machines (VM). In the
makespan and cost optimization problems under the constraints of the SLA, the
corresponding scheduling strategy is learned according to the load situation.

• Considering the dynamics of the cloud environment, we design a state-action space
and reward function. As the environment load changes, the reward function switches
the main optimization goal. Using the Gaussian distribution of related features as
the state space, the input dimension of the model remains unchanged under different
numbers of VMs. The reward function allows the model to adapt to changes in the
task load. The fixed-dimensional state space makes it unnecessary to change the
model with the number of VMs.

The rest of this article is organized as follows. Related research is discussed in Section 2.
Section 3 introduces the key stages of online task scheduling and proposes a problem model.
Section 4 introduces the design of the algorithm, and Section 5 discusses our simulation
experiments to test its performance. Section 6 relates our conclusions and discusses our
future work.

2. Related Work

Since there is no effective polynomial algorithm, task scheduling is a well-known
NP problem [7]. For this reason, researchers have proposed many algorithms for related
problems to obtain suitable solutions, whose optimization goal is usually to minimize
the makespan and cost. With the development of AI technology, reinforcement learning
(RL) is being used to solve this problem. RL possesses general intelligence sufficient to
solve some complex problems, and has reached the human level in some chess, card, and
electronic games.

Heuristic methods prioritize generality and are easy to understand and implement,
but they are not self-adaptive and cannot adjust strategies according to the corresponding
environment to achieve ideal performance [8]. Min-Min and Max-Min are well-known
heuristic scheduling algorithms that assign smaller and larger tasks, respectively, to VMs
with fast processing speed [9]. Pan et al. [10] proposed a critical-path-duration-estimation-
based (CPDE) VM selection strategy to address the performance-variation-aware workflow
scheduling problem. Mboula et al. [11] proposed cost–time trade-off efficient workflow
scheduling (CTTWS) to minimize both user-defined budgets and deadlines in commercial
cloud environments. Zhao et al. [12] proposed dynamic workflow scheduling based
on autonomic fault-tolerant scheme selection in uncertain environments. Lin et al. [13]
proposed a hierarchical iterative application partition (HIAP) to partition an application
into a set of dependent tasks, cooperating with online scheduling algorithms to finish
workflows with a low average payment.

Particle swarm optimization (PSO), ant colony optimization (ACO), and genetic
algorithms (GAs) are commonly used in metaheuristics. Rodriguez et al. [14] proposed
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a PSO algorithm based on metaheuristic optimization to minimize the overall execution
cost of a workflow while meeting deadline constraints. Chen et al. [15] proposed soft
real-time task scheduling based on PSO for cloud computing to maximize profits while
meeting deadlines considering load balancing. Chen et al. [16] proposed PSO based on
an AC algorithm, which performed well in terms of cost, makespan, convergence, and
results. Hall et al. [17] proposed a dynamic task scheduling algorithm (IGATS) based
on an improved GA, considering the dynamic characteristics of the cloud computing
environment, and introduced the concept of load priority. Good performance was achieved
in terms of response and execution times. Al-Zoubi et al. [18] proposed a grasshopper
optimization algorithm (GOA) to reduce makespan. Reddy et al. [19] proposed a regressive
whale optimization (RWO) algorithm for workflow scheduling in a cloud computing
environment to reduce the time and cost of execution. Khodar et al. [20] proposed a PSO-
based multipurpose algorithm to optimize task-transfer and execution times at the least
expense. Zhou et al. [21] proposed a task scheduling optimization algorithm, modified
PSO (M-PSO), to handle the local optimum and slow convergence problem. Chen et al. [22]
proposed an exact formulation based on linear programming to produce optimal allocation
schemes for tasks, and a population-based approach to allocate tasks to resources to
minimize the total time cost.

RL is a process in which agents make action decisions through learning to maximize
cumulative reward. Barrett et al. [23] showed the initial architecture of a cloud workflow
scheduler and the preliminary results of combining RL technology to efficiently schedule
workflows in the cloud computing environment in the form of continuous state-action space
to minimize monetary costs under deadlines. Aiming at the precisely scaled cloud comput-
ing environment and efficient task scheduling under resource constraints, Peng et al. [24]
proposed a task scheduling scheme. They used RL to develop a cloud computing schedul-
ing model and optimize the response time under given cloud computing resources to
minimize problem. The experimental results show that the proposed task scheduling
scheme can optimize cloud resource utilization and load balancing to obtain the minimum
response time under resource constraints. Xiao et al. [25] aimed at hybrid cloud, which is
a joint service of multiple clouds. They modeled the problem of each scheduler as MDP,
proposed a hybrid cloud distributed scheduling algorithm, and used Q-learning to obtain a
suitable scheduling strategy. The result proves that compared with the five typical dynamic
scheduling algorithms (opportunistic load balancing, shortest execution time, shortest
completion time, handover algorithm, and k-percent best), the scheme has a short average
response time and high collaboration efficiency. Soualhia et al. [26] proposed a dynamic,
fault-aware framework that can be integrated into a Hadoop scheduler. The framework
relies on ML algorithms and a Markov decision process (MDP) to generate scheduling
strategies. The framework was deployed with ATLAS+, an adaptive fault-aware scheduler
for Hadoop. The performance of ATLAS+ was compared with that of the FIFO, Fair, and
Capacity Hadoop schedulers, and it was found to be better in terms of the number of failed
jobs, total execution time, and resource utilization. Riera et al. [27] describes TeNOR, a
micro-service-based network function virtualization orchestrator capable of effectively
addressing resource and network service mapping. One of the resource mapping strategies
uses reinforcement learning. Through iterative learning of the best strategy for resource
mapping, the acceptance rate of the RL method in large-scale NS has increased significantly
in experiments.

People have gradually turned their attention to DRL, with its potential for long-term
learning and decision making, and it has been applied to some scheduling problems in
cloud computing. Jayswal [28] proposed GA-ANN, a neural-network-based scheduling
algorithm providing better QoS. Kaur et al. [29] proposed the DQ-HEFT algorithm, com-
bining DRL and the heterogeneous earliest completion time algorithm, using DQL for task
sequencing and heterogeneous earliest finish time (HEFT) for task allocation. Cui et al. [30]
proposed a job scheduling scheme based on RL to optimize VM resources and deadlines
while minimizing the construction time and average waiting time (AWT). Tong et al. [31]
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proposed an AI algorithm, deep Q learning task scheduling (DQTS), to solve the task
scheduling problem of a directed acyclic graph (DAG). Li et al. [32] proposed a deep
job scheduling (DeepJS) algorithm based on deep reinforcement learning to minimize
makespan, and proved its convergence and generalization. Ran et al. [2] proposed a deep
deterministic gradient strategy (DDPG) to find the optimal allocation plan that meets
the requirements of the SLA and minimizes the average response time. It performed
well at reducing average response time and balancing loads. Dong et al. [33] proposed a
task scheduling algorithm based on a deep reinforcement learning architecture (RLTS) to
minimize the task execution time.

RL technology has been widely used in cloud computing, but the huge state space
and action space of the cloud computing system make the traditional RL technology
inapplicable [34]. Therefore, DRL technology has also begun to emerge in this area, and
has shown its ability to solve high-dimensional problems.

3. Proposed Online Task Scheduling Model
3.1. Deep Learning Technique

RL is a branch of ML, which learns continuously through the agent’s interaction with
the environment based on the rewards or punishments obtained, to better adapt to the
environment [35]. RL can learn without a priori knowledge of the environment and obtain
the decision-making ability of the corresponding environment through repeated interactive
learning. Figure 1 shows a classic RL model. In each step, the agent makes a decision based
on the strategy π through the state St obtained from the environment and takes action
a = π(s). The environment transfers accordingly from state St to state St+1. The agent
obtains Rt returned by this process. RL assumes the process has a Markov property, i.e., the
probability and reward of state transition only depend on St and At, and have nothing to
do with the state action before t− 1. Through interaction with the environment, the agent
can record these quantities for learning, so as to maximize the expected cumulative reward
Gt. Therefore, RL can obtain decision-making strategies through observation and learning
without prior knowledge of the environment.

Figure 1. Reinforcement learning paradigm.

The strategy used by the agent to make decisions in RL is defined by the probability
distribution π(a|s) of action a under state s. In the classic reinforcement learning algorithm
Q-learning, it is composed of state and action. Q-table is used for storage, and the s-
a mapping with the highest Q-value in state s is selected from the table when making
a decision.

In Q-learning, the optimal strategy is that arg maxa∈A(Q(a|St)) is the maximum
cumulative return of the selection action an in state St. If Q can predict the cumulative
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return of each action in the current state, the optimal decision can be made. The following
is the updated formula of Q:

Q(St, At) = Q(St, At) + α[Rt + λmaxaQ(St+1, a)−Q(St, At)] (1)

The Rt is the return of the action At in the state St. The λ is the discount factor, which
is used to calculate the cumulative return. Take the currently observed return Rt plus
λ multiplied by the maximum cumulative return of the next state St+1 as the current
maximum cumulative return. Make the difference between it and the expected return
of the current state St to obtain the loss, and multiply the loss by the learning factor
α to update the current prediction value. After repeated iterations, the more accurate
the prediction of Q, the smaller the loss value, and the more stable the value predicted
by Q until convergence. At the same time, to make the algorithm converge faster and
more stable, it needs suitable training samples, a suitable exploration strategy. The most
common strategy is the ε-greedy policy, which is a simple strategy. During exploration, it
is determined whether to randomly select an action or choose the action with the highest
return under Q prediction according to the probability ε. In the early stage of training, a
higher ε value is required to enhance the exploration to accelerate the convergence. In the
later stage, the ε value can be reduced to increase the convergence accuracy.

Actual problems have a large number of state actions. It is inappropriate to store the
probability distribution in the form of a table, and if a state has never appeared, Q-learning
cannot handle it. That is, it lacks generalization ability, so a function with a certain number
of parameters is generally used for fitting. As the amount of data and number of features
increase, the advantages of deep neural networks have become more obvious, and DRL,
which combines deep neural networks and RL, has achieved good results in many fields.
The algorithm prototype based on this article, the deep Q network (DQN) [6], combines
deep neural networks and Q-learning. Q-table is fitted through a deep neural network to
solve the problem of excessive state space.

3.2. System Model

Our task scheduling system considers a common cloud computing scenario, SaaS.
It includes users who submit tasks, service providers, and IaaS providers [36]. Service
providers build their resource pools from VM instances rented by IaaS providers, and
provide users with services through the network. Service providers receive various types of
tasks submitted by end-users through the network. An efficient and flexible task scheduler
that can take into account multiple goals is necessary to balance the profit of the service
provider against the user experience (e.g., response time and throughput).

In cloud computing, tasks submitted by users are allocated to cloud nodes based on a
set scheduling strategy. Hence, the choice of scheduling strategy is important to the task
completion time and cost. Figure 2 shows the online dynamic task scheduling model of a
typical cloud computing scenario. The user can submit a task at any time. After submission,
the scheduling center allocates a task to the task waiting queue of the VM according to
its demand and the scheduling strategy. We proposed SLA-DQTS for this process. It
uses the virtual machine and task information obtained by the scheduler to determine
the VM that executes the task. After the decision, the task is added to the task waiting
queue of the selected VM. We stipulate that each VM maintains its task waiting queue, and
processes tasks in a first-come-first-served manner and space share model according to the
queue. The VM processes the tasks in a first-come-first-served manner according to the
task queue. In this article, tasks whose number and resource requirements are unknown
are dynamically submitted to the scheduler. We take scheduling time, cost, and SLA as
optimization goals, and design a scheduling plan that can adapt to different loads.
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Figure 2. Task scheduling framework.

In our problem model, users can submit any number of tasks at the same time, which
do not require consistent resource requirements, and can be of multiple types. Therefore,
the submission time, number, and type are unpredictable. Application service providers
can change the numbers of VMs according to the load, so we consider the adaptation of
the model to a variable number of VMs.

The scheduling center can obtain the status information of all VMs, including tasks in
the queue. After a task arrives, the scheduling center reads its resource demand, calculation
amount, and expected completion time, and matches it to a VM. At the end of each batch
of tasks, the scheduling center records decisions and task execution-related results, such as
VMs assigned to tasks, starting and ending execution times, and costs.

3.3. Problem Formulation

Our simulation environment is somewhat simplified. We consider the task-related
attributes of million instructions per second (MIPS), bandwidth, amount of calculation,
bandwidth transmission, and expected completion time, and ignore failure situations
that may occur in the real environment. Tasks arrive at the data center in batches, and
their arrival times conform to a Poisson distribution. The number of tasks and resource
requirements in different batches of tasks are randomly generated within a certain range.
The scheduler assigns a task to the task cache queue of the appropriate machine.

Tasks are submitted online. The scheduler cannot predict resource requirements and
numbers of tasks. Based on this assumption, we define that a batch can contain multiple
tasks, expressed as CLU_T = {ti|i ∈ N+}, where |CLU_T| is the number of tasks in a
batch. Each task can be expressed as

ti =

{
tmips
i , tbw

i , tmips_l
i tbw_l

i , tdead
i

tload
i , t f inish

i tstart
i , tcost

i

}
, (2)

where i is the number of a task; tmips
i and tbw

i respectively represent the task’s requirements

for computing and bandwidth resources; tmips_l
i , tbw_l

i respectively indicate the lengths of

tasks corresponding to computing and bandwidth resources; tdead
i =

tmips_l
i

tmips
i

+
tbw_l
i
tbw
i

indicates

the task processing time expected by the user; tload
i , tstart

i , t f inish
i , and tcost

i are respectively
the time when a task is submitted, time the task is executed by the node, time the task is
completed, and execution cost. Prices differ according to the resources of VMs, so the cost
of a task is determined by the VM and the execution time.

After submission to the data center, a task is scheduled to the VM, which will be
occupied until the end of execution, with no preemption. The VM set in the cluster is
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defined as CLU_VM =
{

vmj
∣∣j ∈ N+

}
, where |CLU_VM| is the number of the VM. A VM

instance is defined as

vmj =
{

vmmips
j , vmbw

j , vmprice
j

}
, (3)

where j is the number of the VM, vmmips
j is the number of instructions per second executed

by the VM, vmbw
j is the bandwidth of the VM, and vmj can perform the task only when

tk
i ≤ vm

k
j ∀k ∈ [mips, bw], (4)

where vmprice
j is the price per hour of a VM. We refer to Alibaba cloud resource pricing to

determine pricing. Computing resources have linear pricing, bandwidth resources have
tiered pricing, and the price ratio (this article is set as 0.0003/MIPS, (0.063,0.248)/mb) is
calculated as

vmprice
mips = vmmips ∗mipsprice

vmprice
bw =


vmbw ∗ bwprice1

(
vmbw < bwbasic

)
bwbasic ∗ bwprice1 + (vmbw−bwbasic) ∗ bwprice2 (else)

vmprice = vmprice
mips + vmprice

bw

, (5)

where bwbasic is the critical point of bandwidth ladder pricing; bwprice1(0.063) and bwprice2(0.248)
are respectively the first- and second-stage prices of bandwidth; and mipsprice is the price
of computing resources.

The execution time if task ti is assigned to vmj is

ETij =
tmips−l
i

vmmips
j

+
tbw−l
i

vmbw
j

(tk
i ≤ vm

k
j ∀k ∈ [mips, bw]). (6)

The time from the completion of all of the tasks assigned to vmj calculated by the clock
at the current moment until the VM is idle is

vmbusytime
j =

i=1

∑
i∈vmT

j

ETij − clock + tstart
j1 , (7)

where vmT
j is the task queue at the current time of vmj; tj1 is the task being executed by

vmj; clock is the time when the decision is made; and tstart
j1 is the start time of the task.

We define OTij the ti overdue time calculation equation for task ti allocated to vmj at
the current moment, as

OTij = vmbusytime
j + ETij + clock− tload

i − tdead
i , (8)

where vmbusytime
j , ETij, and clock are mentioned above, and they are added to the expected

completion time of ti under vmj, and tload
i and tdead

i are respectively the time when the task
arrives at the scheduler and the expected execution time of the user of the task, so OTij is
defined as the overdue time if it is less than 0, which means it is completed before the user
expects it.

4. Algorithm Design

We propose SLA-DQTS, an intelligent decision algorithm based on double DQN
(DDQN) [6] to solve the multi-objective optimization online task scheduling problem
under SLA constraints. All of the Q values in DQN are obtained by the greedy rule,
i.e., during training, the max method is used to take the action and make the Q value
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corresponding to the action the largest. Although this can quickly bring the Q value closer
to the optimization goal, it can easily cause unequal sampling. Overestimation makes the
Q value greater than the actual value, and the model is more likely to oscillate and diverge.
DDQN uses two Q-value networks, for normal updates and independent delayed updates,
for action selection and calculation of Q values to reduce the impact of overestimation,
respectively, reducing the possibility of training shock divergence, and ensuring more
stability than DQN.

Aiming at the multi-objective optimization problem of online task scheduling, a
new model is designed through the state, action, and reward of the reinforcement learn-
ing model.

Most DRL schemes used in cloud computing scheduling use the approach shown
in Figure 3a [35]. The input vector is generally the feature of the task plus the feature of
each VM as the state space, so its input dimension changes with the environment. The
change, i.e., the dimension of the action space, generally equals the number of VMs, which
makes it necessary to readjust the model and retrain according to the environment when
the number of VMs changes. For this reason, we adopt the design plan of Figure 3b to
take the state and action as input, and use the feature engineering method in ML to use
the mean and standard deviation of the VM features as the state, which is the Gaussian
distribution of the relevant features. This can reflect the state of the environment in a fixed
dimension, the VM-related features to be allocated are taken as actions, and the output
is their matching score. The input and output dimensions of the model are fixed. As the
number of VMs changes, we do not need to modify the model structure to adapt to the
changes in the state space caused by the change in the number of VMs; we need to add the
same scheduling model when scheduling.

Figure 3. Q value mode (a) S−Q(s, an) mode, (b) S, a−Q(a) mode.

4.1. Input

We represent the environment state and action of the system as a 15-dimensional
vector. To realize a fixed input dimension, we represent the VM set state by the mean and
standard deviation calculations of some features, and represent the mean and standard
deviation of set X by M(X) and S(X), respectively. In the first four dimensions of the
vector, we use the mean and standard deviation of VM busy time and cost to represent
the load of the current cluster. In the last four dimensions, we use the characteristics
and expected results of tasks in a VM as the action space, and the remaining part uses
average and standard deviations of the expected result of the task performed on the VM
that satisfies Equation (4), so as to represent the overall environment information and
distributable VM information. We define the VM set of executable ti requirements as

ti_AVM=

{
vmj|vmj ∈ CLU_VM,

tk
i ≤ vmk

j ∀k ∈ [mips, bw]

}
. (9)
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For task ti, the state action set of input is Si = {sik|vmk ∈ ti_AVM}, and the sik input
is a 15-dimensional vector,

sik =



|CLU ∼ T|, M
({

vmbusytime
j

})
, S
({

vmbusytime
j

})
,

M
({

vmbusytime
j ∗ vmprice

j

})
, vmbusytime

k , ETik,

vmprice
k ∗ ETik, max(OTik,0), M({ETil}),

S({ETil}), M
({

vmprice
l

})
, S
({

vmprice
l

})
,

M({max(OTil ,0)}), S({max(OTil ,0)}), |ti_AVM|,


(vmj ∈ CLU_VM, vml ∈ ti_AVM)

, (10)

where vmj represents all VMs in the cluster, and its related parameters are the overall
characteristics of the environment. vml is a set of VMs that can be used to execute ti, and its
related parameters are the local features of available ti, which are used to measure related
features of vmk. The remaining parameters are all mentioned above; see Table 1.

Table 1. Main notation used in this paper.

Notation Description

ti Task instance i
tmips
i Computing resource requirements for task i

tbw
i Bandwidth resource requirements for task i

tmips_l
i Number of tasks corresponding to computing resources for task i

tbw_l
i Number of tasks corresponding to bandwidth resources for task i

tdead
i Task processing time expected by user for task i

tload
i Time when task i is submitted to task center

tstart
i Time when task i is executed by node

t f inish
i Time when task i is completed

tcost
i Execution cost for task i

vmj VM instance j
vmmips

j Number of instructions executed per second by VM
vmbw

j Bandwidth of VM

vmprice
j Price per second of VM

ETij Time to execute ti by vmj

vmbusytime
j Time from completion of all tasks assigned to vmj calculated by clock at

current moment until VM is idle
ti_AVM Machine set of executable ti requirements
CLU_VM VM set in cluster
OTij Overdue time calculation equation for task ti allocated to vmj at current

clock
r Reward function
r1 Average task processing speed of this batch
r2 Task cost performance of this batch
r3 Average task overdue time of batch
r1

rate Weight value of r1 in reward
r2

rate Weight value of r2 in reward
time f inish

start Time from submission until all batch tasks completed
tet
k Value by which task exceeds expected value; if not exceeded, it is zero, so

it is always greater than or equal to 0

4.2. Reward

We prioritize task overdue time to ensure it when the load changes. To this end, we
consider the two goals of makespan and task cost.
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However, these goals conflict. For example, a low-cost strategy will increase the uti-
lization rate of low processing power VM, which will increase the time spent. If makespan
is the main goal, the utilization rate of high processing power VM will increase. Therefore,
it is necessary to balance the importance of goals, and the dimensions between them must
be as close as possible. Our tasks arrive in batches, so we calculate the reward of a batch
and take the average value as the reward of each task in it.

In the reward function, we set the overdue time as the main factor to optimize the task
overdue time under high load, while under low load, we balance the cost and throughput
according to the set weight. Thus, we define the reward function as

r =
(

r1 ∗ r1
rate + r2

i ∗ r2
rate

)
∗max

(
1− r3, 0.1

)
− r3

Subject to (r1
rate + r2

rate = 1)
, (11)

where r1, r2, and r3 are related to makespan, task cost, and task overdue time, respectively.
When r3 is greater than 1, task overdue time becomes the main goal, and the proportions
of r1 and r2 are reduced to a very low level. When r3 returns to the low-load state, r3 is 0,
and the reward is only related to r1 and r2 to achieve the dynamic switching of scheduling
strategy between high and low loads.

We calculate r1, the average task processing speed of a batch, by dividing the task
workload of this batch by its difference of start and end times,

time f inish
start = max({t f inish

k })−min(
{

tstart
k

}
) (tk ∈ CLU_T)

r1
i =

∑tk∈CLU_T
k=1 (tmips−l

k + tbw−l
k ) ∗ α1

r

|CLU_T| ∗ time f inish
start

, (12)

where CLU_T is the task set of the current batch, |CLU_T| is the task load of the batch, the
numerator is the sum of the calculation and transmission amounts of all of the tasks in the
batch, and time f inish

start is the time from submission of batch tasks until all are completed.
r2 is the task cost performance of this batch, which is obtained by dividing the task

cost by the task amount,

r2
i =

∑tk∈CLU_T
k=1

(
tmips−l
k + tbw−l

k

)
|CLU_T| ∗∑tk∈CLU_T

k=1 tcost
k

∗ α2
r . (13)

In this paper, α1
r = 1/2000, α2

r = 1/125. This parameter is used to make the upper
limit of return of r1 and r2 similar, so that the weight setting between the two remains
meaningful. The r3 is the average task overdue time of the batch. It is obtained from the
average execution time exceeding the user’s expectation,

tet
k = max

(
t f inish
k − tload

k − tdead
k , 0

)
r3

i =
∑tk∈CLU_T

k=1 tet
k

|CLU_T|

, (14)

where tet
k is the amount by which the task exceeds the expected value, and is defined

as zero if it is not exceeded, so tet
k is always greater than or equal to 0. Table 1 lists the

above notation.

4.3. Model Training

We use a simple, fully connected neural network as the brain. Algorithm 1 presents
the decision-making process of a batch task. As mentioned above, the dimension of our
network input vector is fixed, and the number of task–VM pairs in the environment is
dynamic. Calculating the fitness scores of all of the task–VM pairs, the agent uses the value
of ε([0, 1]) as a probability to decide whether to randomly select an action for exploration or
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the task–VM with the highest adaptability as a scheduling decision. A number is randomly
selected from a Poisson distribution in units of batches, tasks generated in each batch are
denoted as task_list, and vms_with(t) represents the set of VMs that can execute task t in
the cluster. The relevant information of each decision is saved; r is calculated until all of
the tasks of a batch are completed.

Algorithm 1 Agent Scheduling Process

Input:
task_list: list of tasks waiting to be scheduled;
vm_list: list of VMs in cluster;
memory_list: store decision-making information at each step

1: for each t in task_list do
2: if random() < ε then
3: a = randomInt(len(vmswith(t)))
4: else
5: S = {Sik|vmk ∈ vms_with(t)}
6: a = argmaxQ(S)
7: end if
8: Schedule task t to VM with number a
9: Store transition (S, a, r, Snext, done) in memory_list

10: end
11: After task_list is executed, calculate reward r according to Equation (11)
12: return memory_list

Algorithm 2 is the process of model training, in which we randomly sample the
decision information record of memory_list according to the size of mini_batch to obtain
training samples. We then use Q and TQ to calculate the expected reward with states S and
Snext. We use smooth_L1 as the loss function to calculate the TD-error for back gradient
propagation, update the target Q network (TQ) after every C times of training, and perform
partial updates at a rate of 20%.

Algorithm 2 Training Algorithm

Input:
memory_list: Stored transition (S, a, r, Snext);
minibatch: number of samples used for training each time;
Q: Q value model;
TQ: Target Q value model;

1: (S, A, R, Snext): Random sampling mini− batch from memory_list
2: q_list = Q(S)
3: tq_list = TQ(Snext)
4: select q from q_list with A
5: select tq from tq_list with argmax( tq_list)
6: y = r + γ ∗ tq
7: L = smoothl1loss(q, y)
8: Perform a gradient descent step on L with respect to the Q network parameters;

calculate gradient by L and then update Q model
9: Every C steps reset TQ = 0.8 ∗ TQ + 0.2 ∗Q

5. Performance Evaluation

We carried out experimental simulations to analyze the performance of our proposed
scheme. We first introduce the design and evaluation objectives of the simulations. We
compare it with existing scheduling algorithms designed in similar environments.
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5.1. SETUP

To facilitate training and testing, based on the above modeling of the problem using
CloudSim [37], an open-source toolkit for cloud computing, we used the Python language
to build the simulation environment, assigning task scheduling to 54 VM instances.

The task was automatically generated by the program according to set parameters,
and arrived in a Poisson distribution according to the set arrival rate. We simulate different
loads by modifying the task reach speed in the simulation environment. Based on the
phenomenon that human behavior conforms to the normative Poisson distribution to a
certain extent, we use the Poisson distribution to calculate the user’s submission interval.
Parameters include the number of tasks in each batch, task durations, resource requirements
of tasks, and the lower limit and floating range. The relevant parameters of this experiment
can be seen in Table 2.

Table 2. Task generator parameters.

Parameter Range

number [2, 5)
mips [100, 5100)
bw [40, 290)
duration [5, 35)

The three comparison algorithms were random (scheduling tasks to random clusters),
round robin (scheduling tasks to different clusters by polling), and Min-Min (finding the
task with the least load every time, and scheduling it to the earliest completed computing
node). The performance indicators used in the evaluation are as follows.

1. Makespan: completion time of the last task;
2. Cost: the product of the execution time of each task and the price of the correspond-

ing VM;
3. Throughput: the sum of the task calculation and transmission amounts of each batch

of tasks divided by the difference between the start and end times of the batch;
4. Overdue time: the difference between the completion and loading times of each task

compared with the expected completion time of the task. If it is less than the expected
completion time, it is 0, and the difference if it is higher.

5.2. Experimental Results and Analysis

We compared the performance of the algorithm under three loads, taking the task
arrival rate, i.e., λ in the Poisson distribution, as the variable to control the load. The
overdue time performance of the comparison function was used as a measure of the load
level. Overdue times exceeding 1, in the range 0–1, and less than zero are regarded as high,
medium, and low environmental loads, respectively. We believe that the optimization goal
should depend on the load environment. In a high-load environment, user demand is high,
and should be met first, i.e., the task should be completed within the expected completion
time, and the timeout period should be minimized. In a medium-load environment, the
task load and resource supply are balanced, user needs and costs are the main optimization
goals, and the timeout period is allowed to fluctuate among values less than 1. In this
article, users are set to have an insignificant perception of timeout periods less than 1. In a
low-load environment, the resource supply far exceeds the task load, cost should be the
main optimization goal, and high-cost VM usage should be reduced to maximize benefits.

High load: By modifying the task arrival rate to 1, the average overdue time of the
comparison algorithm exceeds 1, indicating that the load is too high at this time, and
the performance of the algorithm is tested. Figure 4 shows the changes in the evaluation
indicators during training.
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Figure 4. Performance of SAL-DQTS algorithm and comparison algorithms under high-load environment.

The overdue time under high load is greater than 1. According to the reward
function (11), it can be seen that the reward is negative at this time. In the early stage, due
to the fluctuation of the weights of exploration and early learning, the rate of return of
the learning strategy decreases. With the increase in the number of learning samples, the
model tends to be stable, and returns gradually increase. After the model converges, it can
be seen that the algorithm in this paper has obvious advantages in cost and can minimize
the overdue time. Since the Min-Min algorithm transfers the task to the VM that can
complete it soonest, its throughput is dominant, and it can achieve excellent results in both
timeout period and makespan. However, due to the lack of utilization of low-performance
VMs, its cost is relatively high, and under high load, the timeout period and makespan
cannot be optimized. Under high load, it can be clearly seen that task assignment to VMs
has a greater impact on subsequent assignments, which reduces the fault tolerance rate.
Therefore, the simple distribution methods of random and round robin perform poorly
under high load.

Low load: By modifying the arrival rate to 0.05, the average overdue times of the
comparison algorithms, except for the random algorithm, are 0. At this time, according
to the reward function (11), the main source of reward is no longer overdue time, but
cost and throughput. Three weight ratios are set to verify the function of the weight and
performance of the algorithm under low load, with weights of 0.9–0.1, 0.5–0.5, and 0.1–0.9.
The experimental results are shown in Figure 5.
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Figure 5. Performance of SAL-DQTS algorithm with different weights and comparison algorithm in
a low-load environment.
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As shown in Figure 5, in a low-load environment, the overdue time can easily converge
to a target range of 0 or close to 0. According to the setting of the reward function, when
the overdue time is less than 1, the proportion of the return comes from throughput, cost
and overdue time, and the closer to 0, the larger the proportion of the first two items.
SAL-DQTS9-1 takes cost as the main reward, so the use of more low-performance machines
leads to low throughput and overdue tasks. Since the overdue time is close to zero, the
penalty value is too small. The return from cost reduction can offset the corresponding
penalty. The remaining two items tend to be balanced and have high throughput, so their
overdue time converges to 0. From the comparison of the target curves of SAL-DQTS9-1
and SAL-DQTS1-9, the weight obviously has a certain influence on the effects of different
indicators. A comparison with SAL-DQTS5-5 shows that in terms of cost, the convergence
trend tends to the middle, while the throughput performance is similar to that of SAL-
DQTS1-9. This is because the relationship between throughput and cost is not simple.
After all, the cost is also related to time. Due to marginal effects, when the throughput
is close to the maximum value, the throughput increase caused by the equal cost keeps
dropping. At this time, the setting of the weight can make the optimization direction biased
to the side with the higher weight. Moreover, the correction parameter α1

r , α2
r in the reward

functions (12) and (13) is set according to their respective maximum returns, so these two
parameters constitute the upper limit of the return values under a single target similar.
Moreover, the reward function curves of the two are not the same, so the weight cannot
strictly make the optimization result and the weight ratio consistent. However, it is possible
to modify the weight ratio to show the optimization tendency of a certain target. Through
comparison, it can be seen that more balanced performance can be obtained in all aspects
with a weight of 0.5–0.5. The advantage of the SAL-DQTS algorithm under low load is
not obvious except in cost optimization. Min-Min will still adopt the earliest completion
strategy under low load, so it will still tend to use high-performance VMs. Although the
expiration time, throughput, and makespan are optimized, the cost increases accordingly.
Under low load, there is no need to pursue such a high throughput rate and makespan.
The appropriate sacrifice of some performance can still meet the demand and decrease
the cost. Therefore, in the comparison function under low load, round robin has better
overall performance.

Medium load: We modify the arrival rate to 0.2. At this time, the task overdue
time under the comparison function scheduling is between 0 and 1, and the task load
intensity is medium. Since the overdue time is less than one, according to the reward
function (11), it can be seen that the return is affected by the trio of r1, r2, and r3, and as
the overdue gets closer to one the first two items become smaller. It can be seen from the
low-load experiment that the weights of r1 and r2 are set to 0.5 and 0.5, respectively, so it is
recommended to set this ratio in the medium-load experiment.

As shown in Figure 6, the overdue time of SAL-DQTS under moderate load and
makespan is close to the optimal comparison algorithm. Although it is not as successful
as Min-Min and round robin in throughput, it has obvious advantages in cost. Because
it is a medium load, Min-Min has consistent performance with RR on overdue time and
makespan, but because it prefers high-performance VMs to pursue higher throughput
rates, the cost is higher than with RR. Under medium load, we believe that the performance
supply is comparable to the task demand, and a small part of the response time and the
makespan’s lower cost of zone change can be sacrificed within a certain range to achieve
greater benefits. Based on this implementation, the comprehensive performance of RR is
better than that of Min-Min.
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Figure 6. Performance of SAL-DQTS and comparison algorithms under medium-load environment.

Through the above three experiments, it can be seen that the proposed algorithm can
dynamically adapt to changes of load in the environment and learn the corresponding
strategies, meet user requirements as much as possible in the dynamic cloud environment,
achieve excellent overdue time and makespan, and realize obvious advantages in task cost.

Complexity: Table 3 shows the relevant indicators of the complexity of the algorithm,
including the flops [38], memory, time complexity, and simulation execution time. Due
to the model structure, the calculation amount is proportional to the number of VMs,
which is N ∗ 247kFlops, where N is the number of VMs. This process is parallel, so the
calculation time is not linear with the number of VMs, and the time complexity is 247 k. The
Min-Min needs to select the smallest task and the earliest completed VM, so the complexity
is N ∗M, and M is the number of tasks. The Random and RR algorithms only use random
and polling methods, respectively, so their complexity is 1. The last column in the table
is the scheduling time of a single task of each comparison algorithm in the simulation
environment. It can be seen that SLA_DQTS is significantly higher than the comparison
algorithm. Although the training and decision making of the model can be asynchronous,
compared with the traditional heuristic algorithm, deep reinforcement learning requires
additional training costs and cannot be ignored.

Table 3. Algorithm complexity.

Algorithm Flops Memory Complexity Execution Time

SLA_DQTS N*247 k 124 k 247 k 0.01362
Min-Min - 1 N*M 0.00477
Random - 1 1 0.00296

RR - 1 1 0.00165

6. Conclusions

In tackling the online task scheduling problem with SLA constraints, an artificial intel-
ligence scheduling algorithm based on DDQN was proposed, using a Gaussian distribution
of relevant features as input to make the input vector dimension of the model fixed to
adapt to the change in the number of VMs. The reward function uses the throughput rate,
expense rate, and average overdue time as the main components of the return. Considering
the user experience, a reward function with average overdue time as the main optimization
objective was proposed to adapt to the change of load in the cloud environment. We
used the average overdue time as a standard to measure different loads and evaluate the
performance of the algorithm under different loads through simulations. Our method
involved shorter task overdue times and lower costs under SLA constraints, and could be
adapted to cloud computing in different load environments.

In a large-scale task scheduling problem, the complexity will inevitably increase
with the increase of the problem size, and it is extremely resource-intensive to train each



Appl. Sci. 2021, 11, 9360 16 of 17

model from zero. In the future, we plan to expand and improve our solutions in terms
of hierarchical scheduling and migration learning to cope with large-scale online task
scheduling in cloud computing, and to enable it to learn more quickly.
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