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Abstract: A double-layered pipe under the effect of static transverse loads is considered here. The
mechanical model, taken from the literature and constituted by a nonlinear beam-like structure, is
constituted by an underlying Timoshenko beam, enriched with further kinematic descriptors which
account for local effects, namely, ovalization of the cross-section, warping and possible relative sliding
of the layers under bending. The nonlinear equilibrium equations are addressed via a perturbation
method, with the aim of obtaining a closed-form solution. The perturbation scheme, tailored for the
specific load conditions, requires different scaling of the variables and proceeds up to the fourth order.
For two load cases, namely, distributed and tip forces, the solution is compared to that obtained via a
pure numeric approach and the finite element method.

Keywords: beam-like; double-layered pipe; perturbation method; nonlinear statics

1. Introduction

Beams are structural members which are massively used in several application fields.
Examples come from civil engineering, e.g., bridges and buildings, from aerospace en-
gineering, e.g., helicopters and aircrafts, from industrial engineering, e.g., turbines and
automotive constructions, and many other fields. The requirement for high structural
performance of such members led designers to optimize the choice of the constituting
materials and their ways of use. Historically, the advent of composite materials [1,2], for in-
stance, represented a turning point which brought a clear enhancement in the structural
efficiency of the members; concurrently, it required a redefinition of the classical beam
theories (see [3]), which, however, were mostly developed in linear field and for isotropic
materials. In this context, in [4], an in-depth treatment of beam theory is presented, with ar-
gumentation addressed to thin-walled beams and composite material applications. In [5],
the one-dimensional theory of composite thin-walled beams is consistently derived from a
three-dimensional continuum in the framework of elasticity theory.

Accounting for local distortion effects in beams—for example, changes in shapes of
the cross-sections, such as warping and ovalization—becomes crucial when dealing with
thin-walled members. For instance, the contribution of warping in non-uniform torsion is
explicitly addressed in Vlasov’s theory [6], whereas Brazier’s theory [7] explains softening
effects in bending of pipes as a consequence of ovalization of the cross-section, also in the
presence of a soft core [8]. The aforementioned aspects may be addressed in the framework
of the generalized beam theory (GBT; see, e.g., [9]) as well. It represents a compelling
instrument where, still dealing with one-dimensional continua, the local effects are a-
priori determined and described by assumed functions, amplified by parameters which
are evaluated through equilibrium conditions. In this context, the choice of the assumed
functions, as an outcome of the cross-section analysis, denotes a main step, as discussed
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in [10–12], where the use of free-dynamical modes of equivalent frames is proposed, and
in case of curvilinear cross-sections [13].

Beam-like structures are also conveniently used as homogeneous counterparts of
lattices, when the latter are made of periodic repetitions of a modular cell in one direction.
This is the case, for instance, for tall buildings where a shear-shear-torsional beam model
can be used for both static [14,15] and dynamic behavior analysis [16–18]. In these papers,
the kinematic and static (or dynamic) problems relevant to the beam model (referred to as
coarse model) are directly defined, while the response law for the homogeneous material,
as usual, is deduced through an identification procedure from a refined model.

In [19] a beam-like model is proposed to address nonlinear statics and dynamics of a
tubular beam; there, as an extension of the classical Euler–Bernoulli beam model, further
kinematic descriptors besides the classical ones are introduced in order to account for local
distortion, whereas the constitutive law is obtained from a consistent three-dimensional
fiber model. Along the same lines, in [20], nonlinear statics of double-layered pipes are
addressed using an underlying Timoshenko beam, combined to a local distortion model
which draws inspiration from GBT. In particular, the local distortion variables introduced
therein represent amplitudes of assumed functions, which describe changes in shape of
the annular cross-section, and the obtained coupled equilibrium equations in terms of the
kinematic descriptors are solved using numerical tools.

In this paper, starting from the model of a double-layered pipe developed in [20],
and with the aim of obtaining a closed-form description of the static behavior, the nonlinear
equilibrium equations in terms of kinematic descriptors are addressed through a specific
perturbation scheme. As an essential tool to get a clear insight of the possible occurring
phenomena, the closed-form solution is obtained for two case-studies, namely, for both
distributed and tip loads. A systematic comparison of the outcomes to pure numerical
approaches and finite element models is carried out, so as to validate the steps performed.

The paper is organized as follows: In Section 2 the beam-like model of a pipe is briefly
recalled and the equilibrium equations are shown; in Section 3 a perturbation scheme is
applied to get the closed form of the solution for two case-studies; in Section 4 numerical
results are shown; and finally, conclusions are drawn in Section 5.

2. Model Description

The object of this study is a double-layered beam with a thin annular cross-section
(see Figure 1). The beam length is l, the average radius of the annular cross-section is R
and the two plies have thicknesses hi and he, where the subscripts i and e stand for internal
and external, respectively (hi, he � R). A thinner inter-layer is present as well, constituted
by the adhesive, and its thickness is ha � hi, he.

A beam-like model is used here, with the aim of roughly describing the in-plane static
behavior of the aforementioned pipe, under the action of transversal forces. The model was
taken from the literature (see [20] for details), and it is briefly recalled here for the sake of
completeness. It is constituted by an initially straight axis-line, whose direction coincides
with the unitary vector āx, and which is spanned by the abscissa s ∈ [0, l]. Cross-sections
are initially transverse to the axis-line and are connected to it at their center of gravity.
With reference to Figure 2, they initially lie on the plane spanned by the unitary vectors
āy and āz, where (āx, āy, āz) is the canonical basis. The points of the axis-line perform
displacements u(s) = u(s)āx + v(s)āy, i.e., limited to the (āx, āy)-plane, and the cross-
sections perform independent rotations about axis āz of amplitude ϑ(s), as in a planar
Timoshenko beam.

Besides (u(s), v(s), ϑ(s)), further scalar kinematic descriptors are defined in the model,
in order to account for local distortions of the beam, i.e., changes in shape for the cross-
sections: indicated as (ap(s), aw(s), ag(s)), the physical interpretation of the distortion
variables is given in [20] and comes from the expression of the displacement of a generic
point of the beam, seen as a corresponding three-dimensional body and functionally intro-
duced for homogenization purposes. Specifically, as in the spirit of generalized beam theory
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(GBT—see, e.g., [9]), each of them represents the amplitude of a trial function, defined
in the cross-section domain and describes an elementary distortion, namely, ovalization
(ap(s)) and warping (aw(s)) of the cross-section itself, and longitudinal sliding of the plies
(ag(s)) due to local opposite bending, as shown in Figure 3.
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Figure 1. The double-layered beam with an annular cross-section: (a) complete view; (b) details of the cross-section.
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Figure 2. Initial configuration of the beam.
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āy

ap

āx
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Figure 3. Physical meaning of the distortion variables: (a) assumed trial function for ovalization and
amplitude ap; (b) assumed trial function for warping and amplitude aw; (c) assumed trial function
for longitudinal sliding of the layers under opposite bending and amplitude ag.
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The strain–displacement relationship is consistently introduced: classical strain com-
ponents for Timoshenko beam are defined, namely, longitudinal strain ε0, shear strain γ0
and bending curvature κ0, plus strain components relevant to each distortion variables,
namely, αj, which are equal to the distortion variable themselves, and β j, which are their
gradient (for j = p, w, g). The strain–displacement relationship follows:

ε0 :=(1 + u′) cos ϑ + v′ sin ϑ− 1

γ0 :=− (1 + u′) sin ϑ + v′ cos ϑ

κ0 :=ϑ′

αj :=aj

β j :=a′j
for j = p, w, g

(1)

where prime stands for s-derivative. Equation (1) is combined to geometrical boundary
conditions, evaluated at the restrained cross-section s̄ = 0 and/or s̄ = l.

u(s̄) =ŭs̄

v(s̄) =v̆s̄

ϑ(s̄) =ϑ̆s̄

aj(s̄) =ăjs̄ for j = p, w, g

(2)

where ŭs̄, v̆s̄, ϑ̆s̄, ăjs̄ are imposed displacements.
Time derivative (indicated with the dot) of Equation (1) provides the strain-rates:

ε̇0 = u̇′ cos ϑ + v̇′ sin ϑ + γ0ϑ̇

γ̇0 = −u̇′ cos ϑ + v̇′ sin ϑ− (1 + ε0)ϑ̇

κ̇0 = ϑ̇′

α̇j = ȧj

β̇ j = ȧ′j
for j = p, w, g

(3)

which are functional to define the internal virtual power, after introducing mechanical
quantities dual to each strain-rate component: normal force N, shear force T and bending
moment M, and distortion forces Dj and bi-forces Bj. Imposing the validity of the virtual
power theorem, i.e., equating the internal power to the external one, where imposed
external forces spend power in the velocity field, one gets:

l∫
0

(
Nε̇0 + Tγ̇0 + Mκ̇0 + ∑

j=p,g,w
(Dj α̇j + Bj β̇ j)

)
ds

=

l∫
0

(
pu u̇ + pv v̇ + cϑ̇ + ∑

j=p,g,w
qj ȧj

)
ds + ∑

s̄=0,l

(
Pus̄ u̇(s̄) + Pvs̄ v̇(s̄) + Cs̄ ϑ̇(s̄) + ∑

j=p,g,w
Qjs̄ ȧj(s̄)

) (4)

where pu, pv are external forces per unit length in direction āx, āy, respectively, c is external
bending moment per unit length, qj are external distortion forces per unit length whereas,
at cross-section s̄ = 0 and/or s̄ = l, Pus̄ , Pvs̄ are external tip forces in direction āx, āy,
respectively, Cs̄ is external tip bending moment, Qjs̄ are external tip distortion forces.

After localization of Equation (4), the following equilibrium equations are obtained:

(N′ − κ0T) cos ϑ− (T′ + κ0N) sin ϑ + pu = 0

(N′ − κ0T) sin ϑ + (T′ + κ0N) cos ϑ + pv = 0

M′ + (1 + ε0)T − γ0N + c = 0

B′j − Dj + qj = 0 for j = p, w, g

(5)
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together with the boundary conditions:

(Pus̄ ± [N cos ϑ− T sin ϑ]s̄)u̇(s̄) = 0

(Pvs̄ ± [N sin ϑ + T cos ϑ]s̄)v̇(s̄) = 0

(Cs̄ ±M(s̄))ϑ̇(s̄) = 0

(Qjs̄ ± Bh(s̄))ȧj(s̄) = 0 for j = p, w, g

(6)

It is worth noting that in both the strain–displacement equations, Equations (1) and (2),
and the equilibrium equations, Equations (5) and (6), the global variables (i.e., those
relevant to the Timoshenko beam model) are uncoupled to the local variables (i.e., those
relevant to the cross-section distortion).

The constitutive relationship is evaluated in case of hyperelastic materials and comes
from the definition of a strain potential, whose expression is identified after a homoge-
nization procedure from a suitable three-dimensional continuum (see [20]). It turns out to
describe a nonlinear elastic material (up to the third order), where coupling between global
and local variables actually occurs:

N =
∂φ

∂ε0
= c1ε0 + c2α2

w + c3α2
g

T =
∂φ

∂γ0
= c4γ0 + c5αg + c6κ0αw

M =
∂φ

∂κ
= c7κ0 + c8κ0α2

g + c9κ0αp + c10κ0α2
p + c11βg + c12αpβg

+ c13αgβp + c14αwαg + c15κ0α2
w + c16αpαwαg + c6αwγ0

Dp =
∂φ

∂αp
= c17αp + c10κ2

0αp + c16κ0αwαg + c12κ0βg + c18κ2
0

Dw =
∂φ

∂αw
= c26αw + c20βp + c16κ0αpαg + c15κ2

0αw + c14κ0αg + c6κ0γ0

+ c22αwα2
g + c28αwβw + c29αwε0 + c27α3

w + c3αgβg

Dg =
∂φ

∂αg
= c21αg + c5γ0 + c16κ0αpαw + c14κ0αw + c8κ2

0αg + c13κ0βp

+ c22α2
wαg + c3αwβg + c24αgε0 + c23α3

g

Bp =
∂φ

∂βp
= c19βp + c20αw + c13κ0αg

Bw =
∂φ

∂βw
= c30βw + c31α2

w

Bg =
∂φ

∂βg
= c25βg + c11κ0 + c12κ0αp + c3αwαg

(7)

Elastic coefficients cn, n = 1, . . . , 31 are defined in Appendix A. It is worth noting
that the coefficients cn depend on the longitudinal and transversal elastic moduli of both
internal and external plies, namely, Ei and Ee, Gi and Ge, and on their thickness hi, he;
furthermore, coefficients c17, c21 depend also on the transversal elastic modulus of the
adhesive Ga and its thickness ha.

Equations (1), (2), (5)–(7) define the elastic problem for the homogeneous beam. Substi-
tution of Equation (1) in (7), and then in (5), provides the following equilibrium equations
in terms of displacement (where only the linear part is made explicit due to the large
quantity of nonlinear terms):
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c1u′′ +F1(u, v, ϑ, ap, ag, aw) + pu = 0

c4(v′′ − ϑ′) + c5a′g +F2(u, v, ϑ, ap, ag, aw) + pv = 0

c7ϑ′′ + c4(v′ − ϑ) + c11a′′g + c5ag +F3(u, v, ϑ, ap, ag, aw) + c = 0

c19a′′p − c17ap + c20a′w +F4(u, v, ϑ, ap, ag, aw) + qp = 0

c30a′′w − c26aw − c20a′p +F5(u, v, ϑ, ap, ag, aw) + qw = 0

c25a′′g − c21ag + c5(ϑ− v′) + c11ϑ′′ +F6(u, v, ϑ, ap, ag, aw) + qg = 0

(8)

while the nonlinear terms, expanded up to the third order, are collected in the functions
Fn(u, v, ϑ, ap, ag, aw), n = 1, . . . , 6, whose expressions are shown in Appendix B.

A clamped-free beam is analyzed, leading to the following boundary conditions:

u(0) = 0

v(0) = 0

ϑ(0) = 0

ap(0) = 0

aw(0) = 0

ag(0) = 0

(9)

and

c1u′(l) + G1(u, v, ϑ, ap, ag, aw) = Pul

c4(v′(l)− ϑ(l)) + c5ag(l) + G2(u, v, ϑ, ap, ag, aw) = Pvl

c7ϑ′(l) + c11a′g(l) + G3(u, v, ϑ, ap, ag, aw) = Cl

c19a′p(l) + c20aw(l) + G4(u, v, ϑ, ap, ag, aw) = Qpl

c30a′w(l) + G5(u, v, ϑ, ap, ag, aw) = Qwl

c25a′g(l) + c11ϑ′(l) + G6(u, v, ϑ, ap, ag, aw) = Qgl

(10)

The functions Gn(u, v, ϑ, ap, ag, aw), n = 1, . . . 6, collect the nonlinear boundary terms
truncated up to the third order and are shown in Appendix B.

3. Perturbation Analysis

The nonlinear boundary value problem (8)–(10) is addressed via a perturbation
method, so as to get an asymptotic expression for the solution. The cases of applied
distributed transverse load pv and tip load Pv are considered, whereas the other loads are
assumed as null, i.e.,

pu = cϑ = qp = qg = qw = 0 and Pu = Cϑ = Qp = Qw = 0 (11)

Furthermore, similar but not equal geometric and mechanic features of the two plies
are assumed, i.e., Young modulus Ei ' Ee, transverse elastic modulus Gi ' Ge and
thickness hi ' he.

The dependent variables are series-expanded after introducing the small positive
parameter, ε� 1, as:
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u = ε2u2 + ε4u4,

v = εv1 + ε3v3,

ϑ = εϑ1 + ε3ϑ3,

ap = ε2ap,2 + ε4ap,4

aw = ε2aw,2 + ε4aw,4

ag = ε2ag,2 + ε4ag,4

(12)

where the odd and even natures of the dominant part of v, ϑ and of u, ap, aw are exploited,
respectively, in case of transverse load application; more specifically, the perturbation
scheme is based on the idea that the loads directly trigger the global bending problem
(variables v, ϑ), at the first step; then, in turn, at the second step, the bending problem
triggers the axial and local distortion problems (variables u and ap, aw, ag) by the nonlinear
coupling; finally, higher order corrections to the global bending and local distortion prob-
lems, respectively, are evaluated. Since the coefficients c5, c11, c12, c13, c14 tend to zero in
case of exactly equal internal and external plies (Ei = Ee, Gi = Ge, hi = he), then they are
scaled at order ε, as:

c5 = εc5, c11 = εc11, c12 = εc12, c13 = εc13, c14 = εc14 (13)

giving rise to vanishing linear coupling between the variables ag and v, ϑ, and suggesting
for the former to start at the second order (Equation (12)6). Moreover, the applied loads are
considered of order ε, so that they appear at the the leading order, i.e.,

pv → εpv, Pv → εPv (14)

Under the aforementioned assumptions, after substituting Equations (12)–(14) in
Equations (8)–(10) and letting to zero the terms at the same powers of ε, the following
perturbation equations and boundary conditions are obtained, at order ε:{

c4(v′′1 − ϑ′1) + pv = 0

c7ϑ′′1 + c4(v′1 − ϑ1) = 0
v1(0) = ϑ1(0) = 0

c4(v′1(l)− ϑ1(l)) = Pv

c7ϑ′1(l) = 0

(15)

at order ε2: 

c1u′′2 = (c1 − 2c4)ϑ1ϑ′1 + (c4 − c1)(v′1ϑ1)
′

c19a′′p,2 − c17ap,2 + c20a′w,2 = c18(ϑ
′
1)

2

c30a′′w,2 − c26aw,2 − c20a′p,2 = c6ϑ′1(v
′
1 − ϑ1)

c25a′′g,2 − c21ag,2 = −c5(v′1 − ϑ1)− c11ϑ′′1

u2(0) = ap,2(0) = aw,2(0) = ag,2(0) = 0

c1u′2(l) =
( c1

2
− c4

)
ϑ1(l)2 + (c4 − c1)v′1(l)ϑ1(l)

c19a′p,2(l) + c20aw,2(l) = 0

c30a′w,2(l) = 0

c25a′g,2(l) = −c11ϑ′1(l)

(16)
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at order ε3:

c4(v′′3 − ϑ′3) = −c5a′g,2 − c6(aw,2ϑ′1)
′ − (2c4 −

3
2

c1)ϑ
2
1ϑ′1 − (c1 − c4)(ϑ1u2 + ϑ2

1v′1)
′

c7ϑ′′3 + c4(v′3 − ϑ3) = −c11a′′g,2 − c5ag,2 − c9(ap,2ϑ′1)
′ + c6a′w,2(ϑ1 − v′1)

− c6aw,2v′1 −
(2

3
c4 +

1
2

c1
)
ϑ3

1 − (c1 − 2c4)ϑ1u′2 −
(2

3
c1 +

1
2

c4
)
ϑ2

1v′1

− (c1 − c4)u′2v′1 − (c4 − c1)ϑ1v′21

v3(0) = ϑ3(0) = 0

c4(v′3(l)− ϑ3(l)) = −c5ag,2(l)− c6aw,2(l)ϑ′1(l)

− (c1 − c4)(ϑ1(l)u′2(l) + ϑ1(l)2v′1(l))−
(1

2
c1 −

2
3

c4
)
ϑ1(l)3

c7ϑ′3(l) = −c11a′g,2(l)− c9ap,2(l)ϑ′1(l)− c6aw,2(l)(v′1(l)− ϑ1(l))

(17)

and at order ε4:

c1u′′4 = −2c2aw,2a′w,2 − 2c3ag,2a′g,2 + (c1 − c4)(ϑ
2
1u′2)

′ + [ϑ3((c1 − 2c4)ϑ1

+ (c4 − c1)v′1 + ϑ1(c5ag,2 + (c4 − c1)v′3) + c6(aw,2ϑ1ϑ′1)]
′

c19a′′p,4 − c17ap,4 + c20a′w,4 = (c12 − c13)a′g,2ϑ′1 + c10ap,2ϑ′21 + 2c18ϑ′1ϑ′3 − c13ag,2ϑ′′1

c30a′′w,4 − c26aw,4 − c20a′p,4 = c3ag,2a′g,2 + c14ag,2ϑ′1 + (c28 − 2c31)aw,2a′w,2 + c15aw,2ϑ′21

− c29

2
aw,2ϑ2

1 + c29aw,2u′2 + c29aw,2ϑ1v′1 − c6ϑ1u′2ϑ′1 + c6v′1ϑ′3 − c6v′3ϑ′1 − c6ϑ3ϑ′1 − c6ϑ1ϑ′3

c25a′′g,4 − c21ag,4 = c5(v′3 − ϑ3)− c11ϑ′′3 − c3ag,2a′w,2 + c8ag,2ϑ2
1 + c24ag,2u′2 + c24ag,2ϑ1v′1

+ c8ag,2ϑ′21 − c12a′p,2ϑ′1 − c12ap,2ϑ′′1 + c14aw,2ϑ′1 − c5ϑ1u′2 +
c5

6
ϑ3

1 −
c5

2
ϑ2

1v′1

u4(0) = ap,4(0) = ag,4(0) = aw,4(0) = 0

c1u′4(1) = −c3ag,2(l)2 + c6aw,2(l)ϑ1(l)ϑ′1(l) + c5ag,2(l)ϑ1(l)− c2aw,2(l)2 + (c4 − c1)ϑ3(l)v′1(l)

+ (c4 − c1)ϑ1(l)v′3(l) + (c1 − c4)ϑ1(l)2u′2(l) + (c1 − 2c4)ϑ1(l)ϑ3(l)

c19a′p,4(l) + c20aw,4(l) = −c13ag,2(l)ϑ′1(l)

c30a′w,4(l) = −c31aw,2(l)2

c25a′g,4(l) = −c3ag,2(l)aw,2(l)− c12ap,2(l)ϑ′1(l)− c11ϑ′3(l)

(18)

which can be chain-solved. It is worth noting how Equation (15) represents the bending
boundary value problem for a linear Timoshenko beam under the assigned load. Its solution
appears at the right-hand side of system (16), which rules the longitudinal displacement
and the local distortion, where the equations in ap,2, aw,2 are linearly coupled. Then,
Equation (17) provides corrections to the bending problem, as function of first order
bending, longitudinal displacement and local distortion. Finally, Equation (18) provides
the correction for the longitudinal displacement and local distortion variables.

In the following sections, solutions to systems (15)–(18) are separately evaluated for
the two load cases, namely, uniformly distributed load, i.e., pv(s) ≡ pv 6= 0, Pv ≡ 0, and tip
load, i.e., pv ≡ 0, Pv 6= 0.

3.1. Solution for the Distributed Load Case

In case of uniformly distributed vertical load, solution to problem (15) is:

v1 =
pv

24

(
12s(2l − s)

c4
+

s2(6l2 − 4ls + s2)

c7

)
,

ϑ1 =
pv

6c7

(
s3 − 3ls2 + 3l2s

)
.

(19)

As when solving classical Timoshenko beam problem, Equation (19) is obtained
pursuing the following steps: (1) integration of both the sides of Equation (15)1 to evaluate
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c4(v′1 − ϑ1) (one arbitrary constant is introduced); (2) substitution of that in Equation (15)2
and double integration of both the sides of it to obtain ϑ1 (two more arbitrary constants are
introduced); (3) substitution of the obtained ϑ1 in the integrated Equation (15)1 and one
more integration of both its sides, to evaluate v1 (one more arbitrary constant is introduced).
The four arbitrary constants are evaluated imposing the four boundary conditions (b.c.) in
Equation (15)3,4.

To continue the chain-solving procedure, Equation (19) is substituted to the right-hand
side of Equation (16). The solution for variable u2 is directly obtained with two steps of
integration of Equation (16)1 and use of its b.c.:

u2 =
p2

vs2

5040c2
7
(−5s(42l4 − 63l3s + 42l2s2 − 14ls3 + 2s4))

+
p2

vs2

60c1c4c7
(c1 − c4)(−15l3 + 20l2s− 10ls2 + 2s3)

(20)

and for variable ag,2, after double integration of Equation (16)4 and use of its b.c.:

ag,2 =
pv(c5c7 + c4c11)

c4c7c21

[
(s− l) + sech

(
l
√

c21

c25

)(
l cosh

(
(l − s)

√
c21

c25

)
−
√

c21

c25
sinh

(
s
√

c21

c25

))]
(21)

The solution to the coupled problem Equation (16)2,3 in the variables ap,2 and aw,2 is
written here in compact form, due to its large dimensions. In particular, its expression
is evaluated with the method of variation of the constants: a vector of state variables is
defined as y2 = (ap,2, aw,2, a′p,2, a′w,2)

T , where the superscript T indicates the transpose,
and Equations (16)2,3 are written in the state-space form as:

y′2(s) = Ay2(s) + f2(s) (22)

where:

A =


0 0 1 0
0 0 0 1

c17
c19

0 0 − c20
c19

0 c26
c30

c20
c30

0

, f2(s) =


0
0

p2
vc18

4c2
7c19

(l − s)4

p2
vc6

2c4c7c30
(l − s)3

 (23)

Then, its solution turns out to be:

y2(s) = VeΛsV−1α +
∫ s

0
VeΛ(s−ξ)V−1F2(ξ)dξ (24)

where:

Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 (25)

with λi eigenvalues of A, which are:

λi = ±

√
c26c30c2

19 + c30
(
c17c30 − c2

20
)
c19 ±

√
c2

19c2
30
(
c4

20 − 2(c19c26 + c17c30)c2
20 + (c19c26 − c17c30)2

)
√

2c19c30
(26)

with i = 1, . . . 4. V is the matrix of the corresponding right eigenvectors, so that AV = VΛ
(the expression for the components of the eigenvectors is given in Appendix C);
α = (α1, α2, α3, α4)

T are the column of the arbitrary constants, which are evaluated by
imposing the relevant boundary conditions (16)5,6, which are ap,2(0) = 0, aw,2(0) = 0,
a′p,2(l) +

c20
c19

aw,2(l) = 0, aw,2(l) = 0, and that can be written as:
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B0y2(0) + Bly2(l) = 0 (27)

where:

B0 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

, Bl =


0 0 0 0
0 0 0 0
0 c20

c19
1 0

0 1 0 0

 (28)

Substitution of Equation (24) in Equation (27) gives:

(B0 + BlVeΛlV−1)α +
∫ l

0
VeΛ(l−ξ)V−1F2(ξ)dξ = 0 (29)

which is an algebraic non-homogeneous system in the unknown α, with non-singular sys-
tem matrix. Equation (29) is solved to get α, and despite the large shape, full expression of
the solution (24) is easily obtained with the help of an algebraic manipulator software [21].

Solutions to Equations (17) and (18), i.e., at cubic and quartic perturbation orders, are
obtained with the same procedure as above, but they are not reported here for the sake
of brevity.

3.2. Solution for the Tip Load Case

Analogously to what done in the previous section, in case of tip vertical load, solution
to problem (15) is:

v1(s) =
1
6

Pvs
(

6
c4

+
(3l − s)s

c7

)
ϑ1(s) =

Pv(2l − s)s
2c7

(30)

After substituting Equation (30) into the right-hand side of Equation (16), the solutions
for variables u2 and ag,2 are easily evaluated, as:

u2(s) =
P2

v s2(c1c4s
(
−20l2 + 15ls− 3s2)+ 20(c1 − c4)c7(s− 3l)

)
120c1c4c2

7
(31)

and:

ag,2(s) =
(c5c7 + c4c11)Pv

(
sech

(√
c21l√
c25

)
cosh

(√
c21(l−s)√

c25

)
− 1
)

c4c7c21
(32)

However, to obtain expressions for ap,2 and aw,2, still Equations (24) and (29) are called
for, where the load vector is now:

f2(s) =


0
0

P2
v c18

c2
7c19

(l − s)2

P2
v c6

c4c7c30
(l − s)

 (33)

The solutions of the cubic and fourth order problem can be found in closed form as
well, but as for the distributed load case, they are not reported here.

4. Numerical Results

A case-study is considered to validate the perturbation procedure. The geometrical
and mechanical parameters adopted for the pipe are: length l = 2 m; average radius of
the cross-section R = 0.1 m; thicknesses of the outer and inner layers he = hi = 2.0 mm,
respectively. The Young’s modulus for the outer layer is Ee = 3.0× 108 Pa, and for the
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inner layer it is Ei = 3.0× 107 Pa; both materials are assumed to have a zero Poisson’s
ratio, so that related effects are neglected (anyway, the contribution of Poisson’s modulus
is known to produce quantitative modifications on the Brazier effect of order less than
10%, in case of common materials (see [7])). The thin adhesive layer, interposed between
the inner and outer ones, has a thickness of ha = 0.1 mm and a shear modulus equal to
Ga = 1.5× 106 Pa.

The uniformly distributed load is assumed pv = 174 N/m, whereas the tip load is
Pv = 143 N.

The obtained solution is superimposed on a numerical one, retrieved by applying a
finite difference scheme to the nonlinear boundary value problem (8)–(10), after having
divided the domain into n = 100 equally-spaced nodes, and using centered differences
in internal domains and backward differences in the final node, where natural boundary
conditions are assigned. Moreover, a further comparison of the solution to the outcomes
of a Finite Element model implemented on a commercial software [22] is given: in the
FEM-based approach, the pipe is modeled as an assembly of multi-layer shell elements
(quadratic serendipity type), assuming finite kinematics and making use of the equivalent
single layer theory (ESL) [1,2]; details are given in Appendix D.

4.1. Distributed Load

The outcomes for the first load case are shown as functions of s/l in Figure 4, where (1)
the perturbation solution is marked by the dark blue lines; (2) the numerical one obtained
via the finite difference method is marked by light blue lines; and (3) that provided by the
FEM model is marked by gray lines (note that variables ag and aw as given are not directly
observable by the FEM model).

(a) (b) (c)

(d) (e) (f)

Figure 4. Response in the case of the uniformly distributed vertical load: (a) longitudinal displacement u/l (×10−3); (b) v/l;
(c) transversal displacement ϑ (rad); (d) amplitude of ovalization ap/R; (e) amplitude of relative sliding ag/R; (f) amplitude
of warping aw/R. Blue lines: perturbation solution; light blue lines: finite difference method; gray lines: FEM.

As expected, the effect of the distributed vertical load is evident on the variables
v and ϑ (Figure 4b,c), which are directly activated at the linear order. However, due to
the nonlinear coupling, the longitudinal displacement u is activated as well (Figure 4a),
together with the local distortion variables (Figure 4d–f). In particular, the cross-section
ovalization amplitude ap attains its maximum approximately at s/l = 0.35, where the
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cross-section warping aw assumes zero value. Finally, the inter-layer sliding ag, whose
behavior is shown in Figure 4e, shows an almost linear behavior along the most part of the
domain and a boundary layer close to the clamp (at s = 0), where it suddenly goes to zero.
It is remarked that the perturbation solution, with higher order corrections, well captures
the response of the structure: marginal differences appear with the finite difference solution,
since the curves are overlapped in the entire domain. Satisfying agreement is found in the
comparison with the FEM solution, as well.

In Figure 5 the evolution of the displacement at the tip v(l)/l (in abscissa) is shown
when increasing the intensity of the load p̃ := pv l

πR(Gehe+Gihi)
(in ordinate): the softening

behavior due to the Brazier effect is well caught by the finite difference solution, and the
perturbation solution correctly catches most of the curve except nearby the limit point.
There, the agreement is less satisfying, perhaps due to the large distance of the limit point
from the origin, and hence to the necessity of higher order approximation. The FE solution
shows satisfying agreement as well, even if it is not very precise nearby the limit point, due
to the approaching numerical instability. The dashed line in Figure 5 indicates the load
condition corresponding to the previous Figure 4.

p̃

v(l)/l
Figure 5. Distributed force: evolution of the tip displacements while increasing the amplitude of
the load (p̃ := pv l

πR(Gehe+Gihi) ). Black dashed line: load condition of Figure 4; blue line: perturbation
solution; light blue line: finite difference method; gray line: FEM.

4.2. Concentrated Load

The response of the structure to the concentrated load Pv at s = l is now analyzed.
The results are illustrated in Figure 6 in terms of the same quantities discussed in the
previous case and the same color legend.

As observed before, the perturbation solution well approximates the one obtained via
the finite difference approach and it is also in good agreement with the FEM solution. The
applied load Pv activates directly the variables v and ϑ (Figure 6b,c), which in turn activate
the longitudinal displacement u (Figure 6a) and the local distortion variables (Figure 6d–f).
In particular, the inter-layer sliding ag exhibits an almost constant evolution, except for the
presence of the boundary layer at the clamp (Figure 6e); furthermore, for the same variable,
the finite difference solution reveals a low amplitude oscillation around a mean value that
is instead well captured by the perturbation solution.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Response in the case of the uniformly distributed vertical load: (a) longitudinal displacement u/l; (b) v/l; (c)
transversal displacement ϑ (rad); (d) amplitude of ovalization ap/R; (e) amplitude of relative sliding ag/R; (f) amplitude of
warping aw/R. Blue lines: perturbation solution; light blue lines: finite difference method; gray lines: FEM.

In analogy with the distributed load case, in Figure 7 the evolution of the displace-
ment at the tip v(l)/l (in abscissa) is shown when increasing the intensity of the tip load
P̃ := Pv

πR(Gehe+Gihi)
(in ordinate). The softening behavior is still more evident in the finite

difference solution, even if both the perturbation and FEM solutions are in good agree-
ment with it for most of the plot. The black dashed line still indicates the load condition
corresponding to the previous Figure 6.

P̃

v(l)/l
Figure 7. Tip force: evolution of the tip displacements while the increasing of the amplitude of the
load (P̃ := Pv

πR(Gehe+Gihi)
). Black dashed line: load condition of Figure 6; blue line: perturbation

solution; light blue line: finite difference method; gray line: FEM.
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5. Conclusions

Nonlinear statics of a double-layered pipe under the action of transverse forces is
addressed here through a perturbation method. The beam-like model, taken from the
literature, provides nonlinear equilibrium equations in terms of kinematic descriptors,
where those relevant to the classic Timoshenko beam are combined to further variables
and introduced to account for local distortion. The perturbation scheme, tailored for the
two loading conditions, which consist of distributed and tip forces, respectively, requires
different scaling for the involved variables, in order to exploit their even or odd nature.
The obtained closed-form solutions, evaluated up to the fourth perturbation order, guar-
antee very good agreement with those obtained via pure numeric tools, and concurrently,
represent a valid tool to discuss the nature of the response, and potentially to optimize the
choice of the relevant parameters.

In both the load conditions, the non-negligible contribution of the ovalization, which
is directly coupled to the warping amplitude, appears as correctly determined by the
asymptotic solution; the same happens for the small but significant effect of the longitudinal
sliding, which shows a boundary layer close to the clamped cross-section. Moreover, the
longitudinal displacement, which is triggered as a consequence of the nonlinear coupling,
is non-negligible as well.

It is worth noting that in both the analyzed cases, good agreement of the outcomes
provided by the perturbation method was obtained, even if the numerical values of
the parameters slightly violated the hypotheses under which the scaling was chosen,
being Ee = 10Ei. This aspect represents a typical strength of the perturbation methods.

Moreover, the perturbation method also guides one to an enriching mechanical inter-
pretation of the phenomena, as a consequence of the scaling proposed here, namely: (1) the
external loads directly trigger the bending problem; (2) bending in turn induces ovalization,
warping and axial displacement, as secondary and nonlinear effects; (3) the local distortion
in turn gives high-order corrections to the leading global bending; (4) high-order correction
to the local distortion is finally evaluated.
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Appendix A. Elastic Coefficients

The expressions of the elastic coefficients are:

c1 = 2πR(Eehe + Eihi), c2 = −3π(Eehe + Eihi)

R

c3 = −π(Eehe + Eihi)

4R
, c4 = πR(Gehe + Gihi)

c5 =
π

2
(Gihi − Gehe), c6 = −π

2
R(Gehe + Gihi),

c7 = πR3(Eehe + Eihi), c8 =
π

16
R(Gehe + Gihi)

c9 = −3
2

πR2(Eehe + Eihi), c10 =
5
8

πR(Eehe + Eihi)

c11 =
π

2
R2(Eihi − Eehe), c12 =

3
8

πR(Eehe − Eihi)

c13 =
π

8
R(Gihi − Gehe)

c14 =
π

4
(2Eehe + hi(Gi − 2Ei)− Gehe),

c15 =
π

2
R(Gehe + Gihi), c16 =

πEihi − πEehe

4R

c17 =
3π

4R3(Eehe + Eihi)

(
E2

e h4
e + 2EeEihehi(6h2

a

+ 6ha(he + hi) + 2h2
e + 3hehi + 2h2

i ) + E2
i h4

i

)
c18 = −3

4
πR2(Eehe + Eihi), c19 =

π

4
R(Gehe + Gihi)

c20 = π(Gehe + Gihi)

c21 =
π
(
4GaR2 + Gehahe + Gihahi

)
4haR

c22 =
5π(Eehe + Eihi)

4R3 , c23 =
π(Eehe + Eihi)

16R3

c24 = −π(Eehe + Eihi)

2R
, c25 =

π

4
R(Eehe + Eihi)

c26 =
4π(Gehe + Gihi)

R
, c27 =

55π(Eehe + Eihi)

4R3

c28 =
π(Eehe + Eihi)

2R
, c29 = −6π(Eehe + Eihi)

R

c30 = πR(Eehe + Eihi), c31 =
π(Eehe + Eihi)

4R

(A1)

Appendix B. Details about the Governing Equations

The expressions of the functions Fi with i = 1, . . . , 6, in Equation (8) are:

F1 = −c1u′′ϑ2 + c4u′′ϑ2 − c5a′gϑ− c1ϑ′ϑ + 2c4ϑ′ϑ

− c6a′wϑ′ϑ− 2c1u′ϑ′ϑ + 2c4u′ϑ′ϑ + c1v′′ϑ− c4v′′ϑ

− awc6ϑ′′ϑ− awc6ϑ′2 + 2awc2a′w + 2agc3a′g
− agc5ϑ′ + c1v′ϑ′ − c4v′ϑ′

(A2)
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F2 = c2ϑ′a2
w + 2c2ϑa′waw + c6ϑ′′aw −

1
2

c5ϑ2a′g

+ 2agc3ϑa′g −
3
2

c1ϑ2ϑ′ + 2c4ϑ2ϑ′ + a2
gc3ϑ′ − agc5ϑϑ′

+ c6a′wϑ′ + c1u′ϑ′ − c4u′ϑ′ + 2c1ϑv′ϑ′

− 2c4ϑv′ϑ′ + c1ϑu′′ − c4ϑu′′ + c1ϑ2v′′ − c4ϑ2v′′

(A3)

F3 = −1
2

c1ϑ3 +
2
3

c4ϑ3 − 1
2

agc5ϑ2 +
3
2

c1v′ϑ2

− 2c4v′ϑ2 + c1u′2ϑ− c4u′2ϑ− c1v′2ϑ

+ c4v′2ϑ + a2
wc2ϑ + a2

gc3ϑ− c6a′wϑ + c1u′ϑ

− 2c4u′ϑ− c6a′wu′ϑ + agc5v′ϑ

− awc6u′′ϑ + awagc16a′p + agc14a′w + apagc16a′w
+ awc14a′g + apawc16a′g + c12a′pa′g + c13a′pa′g + agc5u′

− a2
wc2v′ − a2

gc3v′ + c6a′wv′ − c1u′v′ + c4u′v′ + c9a′pϑ′

+ 2apc10a′pϑ′ + 2awc15a′wϑ′ + 2agc8a′gϑ′ + agc13a′′p
+ apc12a′′g + awc6v′′ + a2

gc8ϑ′′ + apc9ϑ′′

+ a2
pc10ϑ′′ + a2

wc15ϑ′′

(A4)

F4 = −apc10ϑ′2 − c18ϑ′2 − awagc16ϑ′ − c12a′gϑ′

+ c13a′gϑ′ + c13agϑ′′
(A5)

F5 = −c27a3
w +

1
2

c29ϑ2aw − c15ϑ′2aw − c22a2
gaw

− c28a′waw + 2c31a′waw − c29u′aw − c29ϑv′aw − c3aga′g
− agc14ϑ′ − apagc16ϑ′ + c6ϑϑ′ + c6ϑu′ϑ′ − c6v′ϑ′

(A6)

F6 = −c23a3
g +

1
2

c24ϑ2ag − c8ϑ′2ag − c22a2
wag + c3a′wag

− c24u′ag − c24ϑv′ag −
1
6

c5ϑ3 + c5ϑu′ +
1
2

c5ϑ2v′

− awc14ϑ′ − apawc16ϑ′ + c12a′pϑ′ − c13a′pϑ′ + apc12ϑ′′

(A7)

The expressions of the functions Gi with i = 1, . . . , 6, in Equation (10) are:

G1 = −c6awϑϑ′ + c2a2
w − c5agϑ + c3a2

g − c1ϑ2u′

+ c4ϑ2u′ + c1ϑv′ − c4ϑv′ − 1
2

c1ϑ2 + c4ϑ2
(A8)

G2 = c6awϑ′ + c2a2
wϑ− 1

2
c5agϑ2 + c3a2

gϑ + c1ϑu′

− c4ϑu′ + c1ϑ2v′ − c4ϑ2v′ − 1
2

c1ϑ3 +
2
3

c4ϑ3
(A9)

G3 = c13aga′p + c16apawag + c12apa′g + c10a2
pϑ′

+ c9apϑ′ + c14awag − c6awϑu′ + c6awv′

+ c15a2
wϑ′ − c6awϑ + c8a2

gϑ′ϑ3

(A10)

G4 = c13agϑ′ (A11)

G5 = c31a2
w (A12)

G6 = c12apϑ′ + c3awag (A13)
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where terms in Gi, with i = 1, . . . , 6, are evaluated in s = l.

Appendix C. Eigenvectors of the (ap, aw) Problem

The matrix V is composed by the eigenvectors ϕi, i = 1, . . . , 4, of the matrix A, namely,
Vi,j = [ϕi,j], where ϕi,j is the j-th component of ϕi, j = 1, . . . , 4:

ϕ1,1 =
2c19c20c2

30

c19c30
(
c2

20 − c19c26 + c17c30
)
+
√

c2
19c2

30
(
c4

20 − 2(c19c26 + c17c30)c2
20 + (c19c26 − c17c30)2

)
ϕ1,2 = −

√
2c19c30√

c19c30
(
−c2

20 + c19c26 + c17c30
)
−
√

c2
19c2

30
(
c4

20 − 2(c19c26 + c17c30)c2
20 + (c19c26 − c17c30)2

)

ϕ1,3 = −
c20c30

√
2c19c30

(
−c2

20 + c19c26 + c17c30
)
− 2
√

c2
19c2

30
(
c4

20 − 2(c19c26 + c17c30)c2
20 + (c19c26 − c17c30)2

)
c19c30

(
c2

20 − c19c26 + c17c30
)
+
√

c2
19c2

30
(
c4

20 − 2(c19c26 + c17c30)c2
20 + (c19c26 − c17c30)2

)
ϕ1,4 = 1

(A14)

ϕ2,1 =
2c19c20c2

30

c19c30
(
c2

20 − c19c26 + c17c30
)
+
√

c2
19c2

30
(
c4

20 − 2(c19c26 + c17c30)c2
20 + (c19c26 − c17c30)2

)
ϕ2,2 =

√
2c19c30√

c19c30
(
−c2

20 + c19c26 + c17c30
)
−
√

c2
19c2

30
(
c4

20 − 2(c19c26 + c17c30)c2
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Appendix D. Finite Element Model

The tubular structure is modeled in a FE software ([22]; see the sketch in Figure A1a),
which adopts the equivalent single layer (ESL) theory. It allows one to take in to account
the composite nature of structure and the actual configuration of the through-thickness
stacking sequence provided that the overall thickness is sufficiently small (∑n hn � R,
being n the number of plies).
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(a) (b)

x

y

z

Figure A1. FE model: (a) sketch of the tubular structure; (b) representation of the adopted mesh.

The structure is thus modeled as an assembly of shell elements (quadratic serendipity),
and a convergence sensitivity study has been conducted (results not shown here) to find a
suitable compromise between the solution accuracy and computational burden, leading to
a mesh of 5040 elements that is represented in Figure A1b.

Of course, the displacement measures descending from the FE model cannot be
directly compared to those of the proposed model, whose displacement parameters are
referred to the beam axis-line. However, a proper comparison can be conducted after a
post-processing of the FE model specific displacements. In particular, with reference to
Figure A1a, the load is applied in the −y direction, and exploiting the symmetry of the
problem about the (x, y)-plane:

• The longitudinal displacement u is equal to the x-displacement of the points along
the E,W generator lines;

• The transverse displacement v is equal to the y-displacement of the points along the
E,W generator lines;

• The section rotation ϑ is retrieved as the difference between the x-displacement of the
points along the N and S lines, divided by 2R;

• The ovalization amplitude ap is retrieved as the mid-difference between the y-
displacement of the points along the S and N lines.

Unfortunately, ag and aw cannot be straightforwardly extracted from the FE model, as
it is done for the other variables; however, for the purposes of the present work, the compar-
ison in terms of u, v, ϑ and ap is sufficient to evaluate the agreement between the proposed
solution and the FEM simulation.

References
1. Reddy, J. An evaluation of equivalent-single-layer and layerwise theories of composite laminates. Compos. Struct. 1993, 25, 21–35.

[CrossRef]
2. Carrera, E. Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng.

2002, 9, 87–140. [CrossRef]
3. Timoshenko, S. History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures;

Dover: New York, NY, USA, 1983.
4. Hodges, D. Nonlinear Composite Beam Theory; American Institute of Aeronautics and Astronautics, Inc.: Reston, VA, USA, 2006.
5. Librescu, L.; Song, O. Thin-Walled Composite Beams. Theory and Applications; Springer: Dordrecht, The Netherlands, 2006.
6. Vlasov, V. Thin-Walled Elastic Beams; National Science Foundation and Department of Commerce: Washington, DC, USA, 1961.
7. Brazier, L. On the Flexure of Thin Cylindrical Shells and Other ’Thin’ Sections. Proc. R. Soc. Lond. A 1927, 116, 104–114.
8. Luongo, A.; Zulli, D.; Scognamiglio, I. The Brazier effect for elastic pipe beams with foam cores. Thin Walled Struct. 2018,

124, 72–80. [CrossRef]
9. Silvestre, N.; Camotim, D. Nonlinear Generalized Beam Theory for Cold-Formed Steel Members. Int. J. Struct. Stab. Dyn. 2003,

3, 461–490. [CrossRef]
10. Ranzi, G.; Luongo, A. A new approach for thin-walled member analysis in the framework of GBT. Thin Walled Struct. 2011,

49, 1404–1414. [CrossRef]
11. Piccardo, G.; Ranzi, G.; Luongo, A. A direct approach for the evaluation of the conventional modes within the GBT formulation.

Thin Walled Struct. 2014, 74, 133–145. [CrossRef]

http://doi.org/10.1016/0263-8223(93)90147-I
http://dx.doi.org/10.1007/BF02736649
http://dx.doi.org/10.1016/j.tws.2017.11.053
http://dx.doi.org/10.1142/S0219455403001002
http://dx.doi.org/10.1016/j.tws.2011.06.008
http://dx.doi.org/10.1016/j.tws.2013.09.008


Appl. Sci. 2021, 11, 886 19 of 19

12. Piccardo, G.; Ranzi, G.; Luongo, A. A complete dynamic approach to the Generalized Beam Theory cross-section analysis
including extension and shear modes. Math. Mech. Solids 2014, 19, 900–924. [CrossRef]

13. Latalski, J.; Zulli, D. Generalized Beam Theory for thin-walled beams with curvilinear open cross-sections. Appl. Sci. 2020,
10, 7802. [CrossRef]

14. D’Annibale, F.; Ferretti, M.; Luongo, A. Shear-shear-torsional homogeneous beam models for nonlinear periodic beam-like
structures. Eng. Struct. 2019, 184, 115–133. [CrossRef]

15. Ferretti, M.; D’Annibale, F.; Luongo, A. Modeling beam-like planar structures by a one-dimensional continuum: An analytical-
numerical method. J. Appl. Comput. Mech. 2020. [CrossRef]

16. Luongo, A.; Zulli, D. Free and forced linear dynamics of a homogeneous model for beam-like structures. Meccanica 2020,
55, 907–925. [CrossRef]

17. Zulli, D.; Luongo, A. Nonlinear dynamics and stability of a homogeneous model of tall buildings under resonant action. J. Appl.
Comput. Mech. 2020. [CrossRef]

18. Di Nino, S.; Luongo, A. Nonlinear aeroelastic behavior of a base-isolated beam under steady wind flow. Int. J. Non Linear Mech.
2020, 119, 103340. [CrossRef]

19. Luongo, A.; Zulli, D. A non-linear one-dimensional model of cross-deformable tubular beam. Int. J. Non Linear Mech. 2014,
66, 33–42. [CrossRef]

20. Zulli, D. A one-dimensional beam-like model for double-layered pipes. Int. J. Non Linear Mech. 2019, 109, 50–62. [CrossRef]
21. Wolfram Research, I. Mathematica; Version 12.1; Wolfram Research, Inc.: Champaign, IL, USA, 2020.
22. COMSOL, I. COMSOL Multiphysics; COMSOL, Inc.: Stockholm, Sweden, 2015.

http://dx.doi.org/10.1177/1081286513493107
http://dx.doi.org/10.3390/app10217802
http://dx.doi.org/10.1016/j.engstruct.2019.01.039
http://dx.doi.org/10.22055/JACM.2020.33100.2150
http://dx.doi.org/10.1007/s11012-019-01070-8
http://dx.doi.org/10.22055/jacm.2020.34359.2391
http://dx.doi.org/10.1016/j.ijnonlinmec.2019.103340
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.03.008
http://dx.doi.org/10.1016/j.ijnonlinmec.2018.11.006

	Introduction
	Model Description
	Perturbation Analysis
	Solution for the Distributed Load Case
	Solution for the Tip Load Case

	Numerical Results
	Distributed Load
	Concentrated Load

	Conclusions
	Elastic Coefficients
	Details about the Governing Equations
	Eigenvectors of the (ap,aw) Problem
	Finite Element Model
	References

