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Abstract: Hot embossing has been widely used in fabricating microlens arrays because of its low cost,
high efficiency, and high quality. The process parameters such as molding temperature, molding
pressure, and holding temperature affect the microlens array’s replication quality. This work selected
the stainless steel S136H tool steel as the mold material to process an aspheric microlens array
structure through ultra-precision milling. Polymethyl methacrylate (PMMA) microlens arrays with
different surface replication were prepared by controlling the molding temperature, molding pressure,
and holding temperature. By analyzing the surface quality, contour replication, and optical imaging
of hot-embossed samples, the optimal molding temperature of PMMA for optimal replication of
aspheric lens arrays was determined as 130 ◦C. Besides, the internal elastic recovery of PMMA
affected the dimensional accuracy and optical performance of the lens. The results showed that,
at the molding pressure of 400 N and the holding temperature of 60 ◦C, the surface defects were
eliminated, and the aspheric lens array had perfect replication with a profile deviation of only 4 µm.
The aspheric microlens array with good quality was eventually achieved by these optimal process
parameters, which provides a foundation for producing aspheric microlens arrays in a low-cost and
high-efficiency way.

Keywords: hot embossing; aspherical micro lens array; optical imaging; process conditions

1. Introduction

The microlens array is an optical device with a micron-sized structure and unique op-
tical characteristics. With high-tech industry development, the microlens array has become
an essential element in the optical system owing to its excellent geometric characteristics
and optical performance. The microlens array, relying on its small structure, wide field
of view, and high resolution, plays an essential role in optical sensing, optical communi-
cation, fiber coupling, and non-imaging optics [1]. Microlens arrays can be divided into
flat microlens arrays and curved microlens arrays [2]. As a bionic compound eye lens
(micro-optical structure inspired by insect eyes), the microlens array plays a significant role
in multi-channel imaging and machine vision [3]. It can also be used to design compact
imaging systems in medical imaging, monitoring equipment, and other fields [4].

Many studies have focused on manufacturing high-precision, high-quality microlens
arrays through different methods, including grinding [5], ultra-precision diamond turn-
ing [6], and micro-milling [7]. Although these processing methods can achieve good
processing quality, their disadvantages are conspicuous—low efficiency and high process-
ing costs. Recently, new methods have been popular to fabricate microlens arrays such
as microinjection molding [8], electrochemical etching [9], local grayscale oxidation [10],
direct laser writing [11], photolithography [12], and laser catapulting [13]. Although these
new methods can process the microlens array with good surface quality and small element
size, they are still challenging for mass production. Some methods require complicated
manufacturing processes, such as etching or photolithography technology. Besides, there
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are some problems including complicated processing steps, high cost, and low processing
efficiency. Chen et al. [14] and Kirchberg et al. [15] used ultra-precision milling to process
silicon-based molds combined with injection molding to process high-quality microlenses,
but the processing cycle is too long. Chang et al. [16] realized non-contact rapid rolling
on the glass substrate based on the rolling technology and produced a microlens array
with high surface quality; however, it is difficult to control each microlens’ dimension
accuracy. Xie et al. [17] fabricated a polymer refractive microlens array using a stainless
steel mold through non-contact hot embossing technology. By contrast, hot embossing has
the advantages of low cost, high efficiency, mass production, and environmental friendli-
ness [18–20]. Therefore, hot embossing is considered to be one of the most effective and
promising methods for creating optical microlens arrays.

In recent years, many studies on microlens array hot embossing have focused on poly-
mer filling performance, morphology deviation, interface friction and stickiness, geometri-
cal morphology, hot embossing process parameters, birefringence deviation, replication
fidelity, and hot-embossing process simulation. Ong et al. [21] used the focused ion beam
technology to process microlens cavities on pure nickel, stainless steel, and silicon wafers.
Then, they replicated the micro-lens array structure on the polycarbonate surface by hot
embossing. The experimental results showed that the silicon wafer array structure pro-
cessed by the ion beam has an excellent optical surface, so that the lens array replicated by
the silicon mold has the optimal quality. Meanwhile, polymer viscosity and hot embossing
pressure were the most critical factors for high fidelity and good surface replication.

Zhou et al. [22] used micro-milling technology to process the micro-groove array
structure and thermo-forming technology to replicate high-precision polymer micro-arch
array lenses. Zhang et al. [23] used induction heating to achieve effective hot embossing
of polymer array structures on silicon-based molds. The experimental results showed
that rapid local-induction hot press forming technology can improve replication and
morphology replication. Wang et al. [24] studied the springback behavior of thermoplastic
polymers during hot embossing. Polymers above the glass transition temperature fill the
cavity more easily owing to enhanced flow characteristics. However, the polymer can
produce large springback deformation during the cooling stage, which distorts the profile
replication. Moreover, springback deformation can be avoided by increasing the processing
time or the hot embossing temperature.

Li et al. [25] studied the structure replication of Polymethyl methacrylate (PMMA)
microlens array during non-contact hot embossing. The surface tension during the forming
process affected the profile replication of the lens and could be achieved by controlling the
process conditions. The above research shows that, by adjusting the process parameters
above the transition temperature, the polymer can be hot-pressed to form optical structures
with high-quality and high-precision. However, many studies focus on the manufactur-
ing process and forming characteristics of the lens array instead of on the lens’s optical
performance after forming.

Therefore, the work analyzed the focusing and imaging of the manufactured aspheric
lens array. Firstly, the mold with an aspherical array structure was obtained by ultra-
precision milling. The hot embossing experiment was then performed on the precision
mold using the precision molding machine to prepare a series of microlens arrays with
different geometric characteristics by adjusting the process parameters. The replication
characteristics of the aspheric microlens array, including surface quality and surface profile
replication, were analyzed. Finally, the optical imaging platform was established for
optical experiments, thereby investigating the influence of process parameters on the lens’s
optical performance and summarizing the variation of microlens topography quality under
different process conditions.
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2. Materials and Methods
2.1. Materials

PMMA is a commonly used optical material with good optical properties, such as high
transparency, high transmittance, ideal refractive index, and low refractive index dispersion.
Moreover, its low cost and good mechanical processability make it more popular in optical
devices. The deformation temperature and glass transition temperature of PMMA are
90 and 104 ◦C, respectively. The melting temperature is 220 ◦C (much lower than that of
optical glass), suitable for precision processing and molding.

The work used PMMA as the micro-hot pressing material. Table 1 shows PMMA
materials’ properties, such as thermal expansion coefficient, specific heat, and refractive
index. Besides, PMMA was a glassy polymer at room temperatures, with PMMA balls
with a diameter of 6 mm used.

Table 1. Physical properties of PMMA and S136H die steel.

Property PMMA S136H

Young’s Modulus (GPa) 2.4 220
Poisson ratio 0.37 0.2

Density (kg/m3) 1185 7850
Thermal conductivity (W/m2·K) 0.2 16.5

Specific heat (J/kg·K) 1466 461
Thermal expansion(K−1) 4.4 × 10−4 11 × 10−6

Glass transition temperature (◦C) 105
Melting temperature (◦C) 220

In the hot embossing process, the mold material is critical to the final embossed optical
elements’ quality. The selected mold material must withstand a high temperature and
oxidation and hardly have any deformation during compression at high temperatures.
Besides, a suitable mold material should enable microstructures to be processed on its
surface. stainless steel S136H steel (wt%: Cr (13.6%), C (0.38%), P (<0.03%), S (<0.03%),
Mn (0.5%), Si (0.8%)) is a high-purity, mirror-finish material with good polishing per-
formance, excellent rust and acid resistance, and less heat treatment deformation. It is
suitable as a mold for making optical devices (high-finish surfaces) with Complementary
metal oxide semicond (PVC), Polypropylene (PP), Epoxide resin (EP), Polycarbonate (PC),
PMMA, and other materials. Meanwhile, it meets the production requirements of low cost
and high quality. Therefore, S136H mold steel was adopted in the experiment.

2.2. Mold Design and Processing

Compared with spherical elements, aspheric optical elements have a unique curvature
radius to achieve improved optical performance. They can correct spherical aberration,
improve imaging resolution, reduce lenses in lens modules, and miniaturize the lens. By
adjusting the surface constant and aspheric coefficients, the spherical aberration caused by
the spherical lens can be eliminated to the greatest extent. The profile of the aspheric lens
is expressed as

Z = cS2

1+
√

1−(K+1)cS2
+ AS4 + BS6 + CS8 + DS10 + ES12 + FS14 + GS16

c = 1/r, S2 = x2 + y2
(1)

The profile of a 10 × 10 aspheric microlens array mold is designed by MATLAB
software, along with the schematic diagram and parameter values (see Figure 1a). The
aspheric coefficients are as follows: K =−0.4133338, A = 0, B =−0.0121199, C =−0.39822027,
D = 1.0637157, E = −3.06126374, F = 4.7284994, G = −3.50416555, and the diameter of a
single lens is 0.84 mm.
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Figure 1. Aspheric microlens array mold design and processing. (a) Design of aspheric microlens
array with basic geometric parameters, (b) mold processing, and (c) characterization of microlens
array mold.

S136H tool steel was used as the mold material, and single-point precision turning
was prone to tool wear when carbon-based metals were machined. Therefore, we used
Toshiba ultra-precision processing machine UVM-450C (Tokyo, Japan) to micro-mill the
mold surface and process the microstructure on the mold surface. Then, the work em-
ployed optical mold polishing center with grinding and optical polishing technology to
machine the mold, thereby improving the mold end surface’s smoothness and reducing
the surface roughness.

Figure 1 shows the shape design, manufacturing, and characterization process of the
microlens array mold. The mold surface was characterized to verify the mold processing
accuracy (See Figure 1c). The overall three-dimensional surface captured by a laser confocal
microscope was used to measure multiple locations’ local surface quality under a white
light interferometer. Through the surface measurement of the white light interferometer,
the measurement results indicate that the surface average Sa was 5.62 nm.

2.3. Hot Embossing of the Microlens Array

The hot embossing process included presetting, heating, embossing, cooling, and
demolding (See Figure 2). We used SZU’s PGMM30 glass molding machine (Shenzhen,
China) (See Figure 3) to complete the molding process. It basically consists of five sub-
systems including the moulding machine, vacuum system, nitrogen system, cooling water,
and control system. First, the mold and sleeves were pre-fixed on the platform, and the
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dust-free PMMA ball was carefully placed at the center of the 10 × 10 array mold. Then,
the lower mold was manually servo-positioned upwards to leave a gap of 1–3 mm between
the upper mold and PMMA and moved upwards with a smaller torque force and speed
(100 N and 10 mm/s) through the torque positioning of the lower mold until its position
was no longer changing. Next, the PMMA ball was heated (SZU’s PGMM30 transfers heat
to the upper and lower molds through infrared induction heating. Then it is connected
to the control system through the temperature sensor to form a controllable closed loop
system to set the mold temperature.) and the lower mold was compressed by a constant
pressure between 300 and 500 N. When the PMMA ball was in a viscoelastic state, it could
deform easily so that the filling process could be achieved within time with the lower mold
in the proper position. After hot embossing, the PMMA was held at a holding pressure of
200 N, and the holding pressure was removed at 50–90 ◦C. Finally, demolding could be
performed at room temperature.

Figure 2. Process diagram of hot press forming and time history of force and temperature.

Figure 3. (a) Schematic diagram of molding machine system and (b) SZU’s PGMM30.

During the hot embossing process, process parameters such as compressing tempera-
ture, compressing pressure, holding temperature, holding pressure, and cooling rate greatly
influence the deformation behavior and replication quality of the hot-embossing microstruc-
ture. Thus, we designed an orthogonal experiment to investigate the effect of hot-pressing
temperature, hot-pressing pressure, and holding temperature on microstructures.

The temperature range in the work was set according to the flow behavior of PMMA
during the hot embossing process. At about 104 ◦C, PMMA changes from the glass state
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to the elastic rubber state, in which state plastic flow does not exist because the memory
effect of the thermoplastic polymer makes it challenging to maintain the formed shape.
Above 120 ◦C, PMMA is in a typical viscoelastic state, a plastic state, which exhibits
viscoelasticity and plastic flow. It is an appropriate state for hot embossing [26]. Therefore,
the temperature range was set as 110–150 ◦C. In the experiment, at the lowest molding
temperature of 110 ◦C, holding temperature of 80 ◦C, and hot-pressing pressure of 300 N,
the microlens structure with the basic replicated morphology could be processed. Table 2
shows the final range of process parameters.

Table 2. Molding test process parameters.

Levels
Factors

Embossing Temperature (◦C) Embossing Force (N) Holding Time (s)

1 110 300 50
2 130 400 70
3 150 500 90

3. Results and Discussion
3.1. Influence of Different Process Parameters on MLA
3.1.1. Molding Temperature

Molding temperature is one of the most critical parameters of the molding process.
The glass transition point temperature Tg of PMMA is 104 ◦C. When it is lower than the
Tg point, PMMA is glassy with extensive elastic recovery and weak deformability. The
temperature must be kept constant during the hot embossing because any temperature
change will affect the polymer substrate’s fluid resistance, resulting in pattern defects [27].

In the preliminary experiment, we fabricated the microlens when the hot embossing
temperature was lower than Tg. At the molding temperature of 100 ◦C, molding pressure
of 400 N, and holding temperature of 70 ◦C (See Figure 4a), PMMA could not be filled into
the mold, resulting in an incomplete structure of the copied microlens array. The contour
of the microlens array measured by the confocal laser microscope was used to analyze
contour replication.

Figure 4b shows a comparison between the microlens contour and the mold contour.
The contours of the lens and the mold are very different. When the temperature is lower
than the glass transition temperature, the deformation of PMMA is limited and the elastic
recovery is extensive, so it is difficult to obtain a designed aspheric lens below the transition
temperature. The minimum hot-embossing temperature needs to be higher than the
glass transition point temperature of PMMA (104 ◦C). When the molding temperature is
higher than the glass transition temperature Tg, PMMA is in a viscoelastic state with large
deformation and small elastic recovery.

Figure 4c shows the molded aspheric lens profile with the molding temperature of
110 ◦C, molding pressure of 400 N, and holding temperature of 70 ◦C. The contour of
the molded aspheric lens coincides with the contour of the mold. With the increased
temperature, the viscosity and flow deformation ability of PMMA gradually increase.
Therefore, under the same conditions, as the molding temperature increases, better fluidity
and higher profile replication will be achieved. When the molding temperature is 130 ◦C,
the maximum deviation between the lens profile and the molding profile is about 4 µm.

However, when the temperature is higher than a certain range threshold (see Figure 4e),
bubbles will be generated inside the PMMA. They will react quickly with the mold surface,
thereby affecting the surface quality of the microlens. When the temperature is too high, a
massive change in the cooling phase’s temperature will result in a low surface finish of the
replicated lens. At high molding temperatures, the PMMA surface adheres and falls off as
a result of the damaging effect, which affects the lens’s surface roughness. Therefore, ac-
cording to the above analysis, it is advantageous to have a temperature slightly higher than
Tg, because lower viscosity and higher fluidity facilitate the molding process. However, a
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too high temperature causes PMMA to stick to the mold, and massive cooling temperature
changes cause low surface finish and bubbles.

Figure 4. (a) Aspheric microlens array image at a molding temperature of 100 ◦C, (b) the comparison
of aspheric microlens profile and mold profile at a molding temperature of 100 ◦C, (c) aspheric
microlens array image when the temperature is 130 ◦C, (d) the comparison of the aspheric microlens
profile and mold profile when the molding temperature is 110 ◦C/130 ◦C, and (e) the surface of the
aspheric microlens array with bubbles when the molding temperature is 150 ◦C.

3.1.2. Holding Temperature

When the pressing process is over, it will immediately enter the holding pressure pro-
cess (applying a constant pressure of 200 N to hold the pressure until the mold temperature
drops to the specified holding pressure-temperature). The holding temperature is also one
of the main factors affecting the quality of the lens. The lower holding temperature means
the microlens array experiences a longer holding time. Therefore, the microlens array’s
return deformation reduces. With the molding temperature of 130 ◦C, molding pressure of
400 N, and holding temperature of 90 ◦C, PMMA is observed to have elastic recovery and
shrinkage after removing the holding pressure during cooling and demolding.

Figure 5a shows the lens forming profile at the holding temperature of 90 ◦C. As
the holding temperature decreases, the elastic recovery of PMMA is eliminated, with the
defects of the aspheric lens array reduced, which means the forming quality is improved.
Figure 5b shows the copied curve of the lens profile at the holding temperature of 70 and
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50 ◦C. When the holding temperature drops from 90 to 50 ◦C, the sample’s surface quality
is significantly improved. Simultaneously, by observing the aspheric microlens array with
magnification, at the holding temperature of 90 ◦C, the PMMA interface’s adhesion and
the elastic recovery deformation of the material affect the morphology and imaging effect
of the microlens. As the holding temperature decreases and the holding time increases, the
microlens’ surface morphology becomes better (See Figure 5c).

Figure 5. (a) Comparison of aspheric lens profile and mold profile when the holding temperature is
90 ◦C; (b) comparison of aspheric lens profile and mold profile when the holding temperature is 70 ◦C
and 50 ◦C; (c) the surface and imaging performance of aspheric microlens at holding temperatures
of 90 ◦C, 70 ◦C, and 50 ◦C; and (d) the heights and surface morphologies of the aspheric lens under
different molding pressures.

3.1.3. Molding Pressure

Molding pressure is one of the critical factors affecting the surface quality of the lens.
Figure 5d shows the height of the aspheric lens under different molding pressures at the
molding temperature of 130 ◦C and holding temperature of 70 ◦C. When the embossing
force is 300, 400, and 500 N, the thicknesses of the micro lens we measured are 1.05, 0.91,
and 0.83 mm, and the diameters are 12.05, 13.22, and 14.51 mm, respectively. Furthermore,
we can estimate that the average molding pressures on the sample surface are 2.7 × 106,
3.0 × 106, and 3.3 × 106 Pa. This is positively related to the applied embossing force. As
the molding pressure increases, the degree of replication of the lens increases; however,
when the pressure is greater than a specific value, the lens’s profile height hardly changes
because PMMA has filled the entire cavity. If the molding pressure is too small, the aspheric
lens cannot be filled, affecting image quality. However, if the molding pressure is too high,
it will cause the mold to be easily worn and indirectly affect the surface quality.

3.2. Characterization and Replication of Microlens Array

According to the optimal process parameters obtained above, a set of process pa-
rameters (hot embossing pressure of 400 N, hot embossing temperature of 130 ◦C, and
holding embossing temperature of 50 ◦C) were selected to compress PMMA balls. A local
3 × 3 MLA (microlens array) area of the lens array was characterized by the laser confocal
microscope equipment to show good surface quality.

Figure 6a,b show the surface morphologies of 3 × 3 MLA features on the mold end
face and MLA replicas, respectively. The copied MLA meets the requirements of shape
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accuracy and surface finish. However, the local microlens’ surface finish is not sound (for
example, insufficient filling and undulations were discovered on the top of the aspheric
surface) because of the low local surface quality of the mold or the surface defects caused by
the adhesion between mold and PMMA during demolding. Surface defects can be solved
by adding suitable coatings on the mold surface in subsequent research. Simultaneously,
the measurement error caused by external noise interference during the laser confocal
microscope measurement should be considered.

Figure 6. (a) 3 × 3 MLA characterization of the mold, (b) 3 × 3 MLA characterization of the sample,
(c) the original measurement surface, and (d) the profile and error of the two radial cross-section
surfaces.

Further shape characterization analysis is performed on a single local MLA, and the
surface profile data extracted from the two perpendicular cross-sections in Figure 6c are
compared in Figure 6d. The contours are in right consistency, proving that the MLA has
good axial symmetry.

3.3. Optical Imaging Experiment

An optical imaging experiment was designed to evaluate the focusing and imaging
of the microlens array. First, optical simulation software ZEMAX was used to design and
simulate a 10 × 10 microlens array’s light path. Figure 7a shows that a combination of
point light sources and single convex lenses is used to form a parallel light source. After
the parallel light passes through the microlenses, a 10 × 10 array of focused spots is formed
on the screen. Figure 7b,c show that the aspheric microlens array has excellent focusing
performance for parallel light. As the point light source obtains the parallel light, the
imaged light intensity on the screen will fluctuate owing the X coordinate axis change (See
Figure 7d).

Based on the mentioned ZEMAX optical simulation model, a platform for optical
imaging experiments was established. Figure 8a shows aspherical-array optical imaging,
including A (light source controller), B (parallel light source device), C (aspheric lens array),
D (magnifying lens), E (complementary metal oxide semicond (CMOS) camera), and F
(screen). The light source controller drives parallel light sources to achieve a constant
current control with a high pulse width modulation (PWM) frequency, suppressing the
light source flicker and ensuring stable light emission. Through the control software, the
light source can realize 256-level brightness adjustment and channel switching. Besides, the
parallel light source’s beam diameter is 30 mm, and the flatness is less than 0.1. The camera
is a CMOS camera with 25,921,944 pixels, a 15 fps frame rate, and black and white pigments.
The centering holder can adjust angles and positions. The imaging system includes a target
(a screen with a capital letter “A”) and a PMMA sample on a rotating table. During the
measurement, the black capital letter “A” is projected through the PMMA microlens array,
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and each microlens can form tiny and clear “A” images on the charge coupled device
(CCD) camera (See Figure 8b). The produced microlenses have good imaging performance.

Figure 7. Simulation of optical imaging. (a) Three-dimensional schematic diagram of optical sim-
ulation, (b) simulated light focusing points on the receiver, (c) planar ray tracing simulation, and
(d) light intensity distribution of the receiver x section.

Figure 8. (a) The schematic diagram of optical imaging platform, (b) focus imaging and intensity
data captured by CCD camera of PMMA microlens array, and (c) the capital letter “A” focused on
the aspheric lens array.

Moreover, the focusing function of the micro lens array was also tested. As shown in
Figure 8c, a parallel beam is projected onto the PMMA microlens array, and the focus image
is obtained by adjusting the distance. To evaluate the uniformity of light spots, a random
line with 10 spots was selected and the light intensity of each spot was calculated. It can be
seen that the manufactured PMMA compound eye lens has perfect focusing function and
uniform light spot intensity.
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4. Conclusions

The work used an ultra-precision milling process to machine a microlens array mold
with an aspheric structure, and then a PMMA aspheric lens array was produced by com-
pression molding technology. The profile replications and surface qualities of the lenses
under different process parameters were analyzed, and an optical imaging platform was
established to evaluate the imaging performance of the aspheric lens array.

(1) The molding temperature affected the final contour of the lens. When the temperature
was lower than the Tg point, the deformation resistance of PMMA was too large to
achieve sufficient deformation. Meanwhile, uneven internal-stress distribution af-
fected the optical performance. Experiments showed that, at the molding temperature
of 130 ◦C, the aspheric lens array could obtain better profile replication and surface
quality (compared with the microlens at 110 ◦C, the filling degree is increased by
40%) and the optimal optical imaging performance. However, when the temperature
exceeded 150 ◦C, obvious bubbles were generated inside the lens, which adversely
affected the lens formation and imaging properties.

(2) As the holding temperature decreased, the elastic recovery of PMMA became weaker.
When the holding temperature was close to the Tg point, elastic recovery occurred
inside the material at room temperatures, which affected the surface quality and
contour fidelity. At the holding temperature of 50 ◦C, the aspheric lens array could
achieve perfect profile replication with the molding defects, eliminating the optical
imaging performance.

(3) The molding pressure had the least significant effect on the lens profile’s fidelity. By
optimizing the molding pressure value, the filling degree was increased by 31%. When
the molding pressure was greater than a certain threshold, the lens profile replication
remained unchanged. The three process parameters—molding temperature, holding
temperature, and molding pressure—significantly affected the forming quality and
optical imaging.
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