
applied  
sciences

Article

Separation of Two-Dimensional Mixed Circular Fringe Patterns
Based on Spectral Projection Property in Fractional Fourier
Transform Domain

Hsuan-Ting Chang 1,* , Tzu-Yao Lin 1, Chih-Hao Chuang 2, Chien-Yu Chen 3, Chian C. Ho 1

and Chuan-Yu Chang 4

����������
�������

Citation: Chang, H.-T.; Lin, T.-Y.;

Chuang, C.-H.; Chen, C.-Y.; Ho, C.C.;

Chang, C.-Y. Separation of

Two-Dimensional Mixed Circular

Fringe Patterns Based on Spectral

Projection Property in Fractional

Fourier Transform Domain. Appl. Sci.

2021, 11, 859. https://doi.org/

10.3390/app11020859

Received: 15 December 2020

Accepted: 14 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, National Yunlin University of Science and Technology,
Douliu City 64002, Taiwan; htchang66@gmail.com (T.-Y.L.); futureho@yuntech.edu.tw (C.C.H.)

2 Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, Taiwan;
d05941010@ntu.edu.tw

3 Graduate Institute of Color and Illumination Technology, National Taiwan University of Science
and Technology, Taipei City 10617, Taiwan; chencyue@mail.ntust.edu.tw

4 Department of Computer Science and Information Engineering, National Yunlin University of Science
and Technology, Douliu City 64002, Taiwan; chuanyu@yuntech.edu.tw

* Correspondence: htchang@yuntech.edu.tw; Tel.: +886-5-5342601 (ext. 4263)

Abstract: In this paper, a method for automatically separating the mixed circular fringe patterns
based on the fractional Fourier transform (FrFT) analysis is proposed. Considering the mixed two-
dimensional (2-D) Gaussian-based circular fringe patterns, detected by using an image sensor, we
propose a method that can efficiently determine the number and parameters of each separated fringe
patterns by using the FrFT due to the observed higher sparsity in the frequency domain than that in
the spatial domain. First, we review the theory of FrFT and the properties of the 2-D circular fringe
patterns. By searching the spectral intensities of the various fractional orders in the FrFT projected
along both the frequency axes, the proposed method can automatically determine the total fringe
number, the central position, binary phase, and the maximum fringe width of each 2-D circular
fringe pattern. In the experimental results, both the computer-simulated and optically mixed fringe
patterns are used to verify the proposed method. In addition, the additive Gaussian noise effects
on the proposed method are investigated. The proposed method can still successfully separate the
mixed fringe pattern when the signal-to-noise ratio is higher than 7 dB.

Keywords: fractional Fourier transform; signal separation; 2-D Gaussian function; circular fringe
pattern; spectral projection

1. Introduction

In communication systems, when signals are disturbed by noise, we can use the
Fourier transform (FT) method to transfer the signals to the frequency domain for noise
filtering. However, in the case of mixed signals, their Fourier spectra may overlap, and
thus we cannot directly separate the noise from the signals by using direct filtering in
the frequency domain. In addition to the FT, the methods based on the fractional Fourier
transform (FrFT) [1], in which the fractional orders can be sought for the best separation
between the noise and signal spectra, have been found to be more advantageous than
the FT in solving the spectral overlapping problems [2–6]. Previous studies have mostly
focused on the separation of one-dimensional (time domain) mixed signals. Kutay and
Ozaktas dealt with the problem of image restoration by using the two-dimensional (2-D)
FrFT [7]. The FrFT of a 2-D signal f (x,y) can be defined as [8].

Fαxαy [ f (x, y)](u, v) =
s

Kαxαy(x, y; u, v) f (x, y)dxdy

=
s

Kαx (x, u)Kαy(y, v) f (x, y)dxdy,
(1)
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where the kernel function Kαx (x, u) is defined as

Kαx (x, u) =


e−j( πsgn(φx)

4 − φx
2 )√

|sin αx |
ejπ[(x2+u2) cot φx−2xu csc φx ], φx 6= nπ

δ(x− u), φx = 2nπ

δ(x + u), φx = (2n + 1)π

(2)

and φx = αxπ/2 denotes the angle corresponding to the fractional order αx in the x
direction. Note that the definition of Kαy(y, u) is similar to that of Kαx (x, u) and the range
of αx and αy values is within [0, 2].

Recently, optical technologies based on measuring the interference fringe patterns
have been dramatically developed, especially for optical metrology, because the results are
usually encoded as fringe patterns. In some cases, a single fringe pattern may contain mul-
tiple fringe sets. The fringe patterns are 2-D signals and are usually detected as 2-D images
by using the image sensors. Chang et al. firstly use the FrFT to automatically separate the
2-D mixed Gaussian chirp signals [9]. Qian used the 2-D windowed Fourier transform to
determine the phase and phase derivatives in fringe pattern analysis [10]. Trusiak et al.
proposed several algorithmic solutions based on the notion of Hilbert-Huang transform
for fringe pattern processing and analysis in optical interferometry [11]. Patorski [12] and
Lai [13] proposed the methods for the mixed 2-D signals composed of the overlapping
fringe patterns. Patorski’s method utilizes the 2-D continuous wavelet transform (CWT)
and is especially useful for separating the mixed Moiré patterns. However, improvement
is still required for the cases of symmetrical circular fringe patterns. In Lai’s method [13],
the original mixed fringe patterns are firstly transformed to the spatial-frequency domain
by using the 2-D FrFT. Then, the maxima projection method is proposed to search for the
fractional Fourier spectra under all the possible fractional orders. The circular fringes are of
the same width and their center positions can be determined according to the peak values
detected in the spectra. With the determined fractional order, fringe width, and the center
position, each of the separated circular fringes can be reconstructed.

This study deals with a more general case than the previous method for automatically
separating the 2-D mixed multiple fringe patterns by using the FrFT. The previous method
proposed by Lai [13] does not consider the condition of phase reversal phenomena among
the fringe patterns. Thus, they only consider the fringe patterns, which are all in phase,
and thus cannot reconstruct the mixed multiple fringe patterns, in which some are out
of phase. In the proposed method, we extend the previous method to be able to deal
with more general cases. A generalized formulation for 2-D circular fringe patterns is
presented. However, only the fringe patterns with 0 and 180 degrees of phase differences
are considered because, in some experimental cases, the fringe carrier is subject to contrast
reversals. We determine the correlation coefficients between the separated signals with
both cases and the original one. Therefore, the mixed 2-D fringe patterns with 0 and
180 degrees of phase differences can be successfully separated and reconstructed with
acceptable quality.

2. Circular Fringe Pattern and Their Applications

The general formula of a 2-D fringe pattern with a constant phase shift ϕ0 is shown as
follows

f (x, y) =
1
2
{I0 + I1 cos[ϕ(x, y) + ϕ0]} × g(x, y), (3)

where I0 denotes the background intensity, I1 is the modulation amplitude, g(x, y) is a 2-D
Gaussian distributed function and ϕ(x, y) denotes the phase function that can be used to
generate a fringe pattern whose center is located at the coordinates (x0, y0). Equations (4)
and (5) show the definitions of ϕ(x, y) and g(x, y), respectively.

ϕ(x, y) = a[(x− x0)
2 + (y− y0)

2] (4)
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g(x, y) =
1

σ
√

2π
exp[− (x− x0)

2 + (y− y0)
2

2σ2 ] (5)

Here, a is the maximum width of the fringe pattern and σ is the standard deviation of
the 2-D Gaussian function. Figure 1a,b show the two 2-D circular fringe patterns with 180◦

phase difference in between, i.e., ϕ0 = π.
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Figure 1. Gaussian-based circular fringe patterns: (a) a 2-D fringe pattern; (b) the fringe pattern with 180◦ phase difference
from (a) at a different location; (c) the fringe pattern which is the mixture of (a,b).

The optimal fractional order αopt for a given Gaussian fringe pattern of size N by N
can be determined as [10]

αopt = −
2
π

tan−1
(

1
2a

)
, (6)

for continuous-time cases and

αopt = −
2
π

tan−1
(

f 2
s /N
2a

)
, (7)

for discrete-time cases, where fs is the sampling frequency in the 2-D spatial domain.
Figure 1a demonstrates the case of ϕ0 = 0 in Equation (3), showing that the center of the
fringe pattern is bright. On the other hand, Figure 1b demonstrates the case of ϕ0 = π
in Equation (3), the center of the fringe pattern is dark and located at a different position.
Figure 1c shows the mixed fringe pattern, which is the mixture of the ones shown in
Figure 1a,b. Note that the contrast of the mixed fringe pattern has been decreased. If more
circular fringe patterns are mixed, the number of fringes will not be easily recognizable.

There are various related works applying circular fringe patterns, especially in appli-
cations of the optical metrology. For low-quality fringe pattern enhancement and normal-
ization, Trusiak et al. proposed an automatic selective reconstruction method to decompose
a fringe pattern into a set of empirical modes using enhanced fast empirical mode decom-
position [14]. Lu et al. proposed a method to estimate the parameters of optical fringes
with a quadratic phase using the FrFT [15]. Sciammarella and Lamberti evaluated the basic
assumptions of the standard methods utilized in fringe pattern analysis and presented the
mathematical models to determine the displacement information encoded in fringe pat-
terns [16]. Wu et al. proposed a method that combines the advantages of the FrFT with the
least-squared fitting method in analyzing the fringe patterns [17]. Better parameter estima-
tion can be achieved compared with the conventional FrFT method. To retrieve the phase
information from a single-shot spatial carrier fringe pattern, Dong and Chen proposed an
advanced FT analysis method [18], which can mitigate the problems in the traditional FT
analysis method. To measure the whole-field out-of-plane deformation of targets, Ratnam
et al. proposed a new class of circular fringe projection methods that employ circular
fringes for three-dimensional shape measurement [19]. Consider the optical elements
with full-field or circular pupils, and that the phase presents a quadratic behavior such as
astigmatic, elliptical, or circular fringes. Muñoz-Maciel presented an FT-based method for
phase recovery from a single interferogram with closed fringes [20]. Sciammarella et al.
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proposed a new method to extract the displacement information from fringe pattern in
2-D fields based on the property of FT or Hilbert transforms [21]. A method using the
Simulated Annealing technique to determine the phase term from a single fringe pattern
was proposed by Moré et al. [22]. In this method, the authors automatically partition the
interferogram using a recursive method that stores in a quad tree data structure with a
limit of fringes in each partition. Finally, Guo and Yang proposed a chirp FT-based method
to estimate the parameters of Newton’s rings [23]. In addition, the proposed method can
also be used to measure the curvature radius of a spherical surface.

Recently, the applications of the methods for separating complex fringe patterns have
been received a lot of attention. In addition to demodulating the phase of multiple fringe
sets superimposed in a single image [11], for example, Pokorski and Patorski proposed the
method based on the 2-D CWT to filter out parasitic fringes or to extract two separate super-
imposed fringe families with information encoded in their phase [24]. Trusiak and Patorski
proposed an enhanced method for two-shot fringe pattern phase-amplitude demodulation
using Gram–Schmidt orthonormalization with Hilbert–Huang transform by filtering out
the spurious noise and background illumination and performing fringe normalization [25].
Another application is the method for nondestructive material evaluation by using two
moiré interferometry fringe patterns with encoded orthogonal in-plane displacement in-
formation [26]. Therefore, aiming towards similar requirements, as shown in the above
studies, we propose a method for automatically separating complex fringe patterns.

3. Proposed Method

According to the definition shown in Equation (1), the fractional orders αx and αy in
the x and y directions, respectively, can be different. For simplicity, we assume that the
fractional orders of Gaussian fringe patterns are identical in the proposed method. That is,
αx = αy = αbest. Figure 2 shows the systematic block diagram of the proposed method.

The detailed procedures are listed as follows:

1. First, given an image of size N by N, which consists of mixed multiple 2-D fringe
patterns, we apply the 2-D FrFTs to the whole image with the fractional orders of the
range within [0.1] with the increment step 0.01 in either the x or y direction. When we
perform the FrFTs in the x-direction, the order in the y-direction is fixed as 1;

2. The orders with the maximum projection in the x-direction of the signal are calculated
and recorded;

3. Then, we perform the FrFTs in the y-direction and, similarly, the order in the x-
direction is fixed as 1;

4. The orders with the maximum projection in the y-direction of the signal are calculated
and recorded as well;

5. We calculate the orders of maximum projection, αx and αy, from the local maximum
values of fractional Fourier spectra through a differential operation. Then, the set
of best orders, αbest, and the number of the paired orders in the set, M, can be
determined by finding the intersections of the maximum projection orders αx,p and
αy,p. Equations (8) and (9) show the definitions of the maximal projection orders for
the x and y directions, respectively.

αx,p = argmax
αx

{
N−1

∑
y=0

F(αx ,1)[ f (x, y)]

}
(8)

αy,p = argmax
αy

{
N−1

∑
x=0

F(1,αy)[ f (x, y)]

}
(9)

Here, we have assumed that the fractional orders of αx and αy should be identical
in the FrFT. Therefore, the maximum width of for each fringe pattern, a, can be
determined based on the best order αbest by using Equation (6).
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6. By enumerating their absolute values and normalizing the transformed results Fr(u,v),
we deal with it by using a filter mask and searching the peak-value position in the
filtered results. The filter mask is of size 3 × 3 and its weighting coefficients are [−1
−1 −1; −1 8 −1; −1 −1 −1]. The filtered image result is denoted as G(u,v) and its
maximum gmax is then determined. Through setting up a threshold value T between
0 and 1, we can get a binary map gbw from the filtered transformed result by using
the criterion shown in Equation (10)

gbw =

{
0, if G(u, v) < gmax × T

1, ifG(u, v) ≥ gmax × T
. (10)

In this binary map, we consider the neighboring area near the pixel value 1 as the
same fringe pattern by searching the 8-connected positions.

7. The original signal is FrFTed with the best order, αbest, to calculate the center position
of a specific circular fringe pattern. If the positions (um, vm) of the kf maximal values in
the binary map derived from the filtered fractional Fourier spectra G(u,v) are detected,
it means that we can separate kf fringe patterns from the original mixture signal;

8. The center points (x0, y0) in each corresponding circular fringe pattern can be deter-
mined according to Equation (11)

um = x0 cos
αbestπ

2
, vm = y0 cos

αbestπ

2
. (11)

9. After calculating the center points and maximum widths of the kf fringe patterns, we
can reconstruct kf fringe patterns separately. For the cases of the fringe patterns with
only 180◦ phase difference, the reconstructed signals, sk1, and sk2 (from the signal sk1)
are generated by using Equation (3) with ϕ0 = 0o and ϕ0 = π, respectively;

10. The correlation coefficients (CCs) between the original and reconstructed signals, sk1,
and sk2, are denoted as cork1 and cork2 for all the kf reconstructed fringe patterns,
respectively. The CC value r between the two 2-D fringe patterns X(i, j) and Y(i, j)
of size N by N is defined in Equation (12), which is used to measure the similarity
between the reconstructed and original signals.

r =

N
∑

i=1

N
∑

j=1
[X(i, j)− X][Y(i, j)−Y]√

N
∑

i=1

N
∑

j=1
[X(i, j)− X]

2
√

N
∑

i=1

N
∑

j=1
[Y(i, j)−Y]2

(12)

Note that X and Y represent the average values of X(i, j) and Y(i, j), respectively.
11. By comparing the CC values of cork1 and cork2, we can determine the constant phase

shift ϕ0 denoted in Equation (3). That is, we select the reconstructed signal that has a
larger CC value than the other one;

12. Finally, all the kf separated fringe patterns can be solely reconstructed and the accuracy
of each reconstructed fringe pattern can be evaluated by using the CC values.
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4. Experimental Results

The experiments are performed with MATLAB R2013b and a PC with Intel Core 2
Quad Q8200 CPU, DDR3 2G RAM, and Windows 7 OS. For simplicity, both the background
intensity I0 and the modulation amplitude I1 in Equation (3) are set as unity. As shown in
Figure 2, only two cases of the constant phase shifts, ϕ0 = 0◦ and ϕ0 = 180◦ are considered.
Figure 3 shows the two mixed fringe patterns used in our experiments, which comprises
six and eight 2-D fringe patterns, respectively. The image is of size 512 × 512. According to
the block diagram shown in Figure 2, we apply the FrFTs on these pattern images with the
fractional orders α = [0.01, 1] with an increment step 0.01 at the x- and y-axis directions. The
orders with the maximum projections in the x- and y-direction of the signal are recorded as
αx,p and αy,p, respectively.

Consider the mixed fringe pattern shown in Figure 3a. Figure 4a–f shows part of
the projection results with the various fractional orders. Figure 4a–c shows the projection
results in the x-direction when the order is 1 in the y-direction, while Figure 4d–f shows the
results in the y-direction when the order is 1 in the x-direction. By applying the derivative
operations on the projection values shown in Figure 5, the fractional orders of the local
maxima in the x and y directions are αx = {0.14, 0.16, 0.18, 0.20, 0.22, 0.25, 0.37, 0.44, 0.51, 0.53,
0.73, 0.76, 0.79, 0.81} and αy = {0.73, 0.76, 0.79, 0.82}, respectively. We have assumed that the
fractional orders αx and αy are identical. Consider that there could be small errors in the
determined maximal orders in both the x and y directions. We determine the intersections
between the two sets of the fractional orders {αx−0.01, αx, αx+0.01} and αy. Finally, we obtain
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the results of best orders αbest = {0.73, 0.76, 0.79, 0.82}, which are then used to determine
the corresponding fringe widths a = {45.39, 39.80, 34.42, 29.21}, respectively.
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To find out how many possible fringe patterns are contained in the mixed one, we
determine the fractional Fourier spectra (i.e., intensities of the FrFT) of the signals with the
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determined best orders and corresponding fringe widths. By applying a peak detection
filter, we find six peaks gmax and the corresponding positions of fringe patterns, gbw in the
four spectra. The six separated fringe patters can thus be reconstructed. Figure 6a,c,e,g
show the normalized fractional Fourier spectra G(u,v) for the determined best fractional
orders αbest = {0.73, 0.76, 0.79, 0.82} and the filtered results are shown in Figure 6b,d,f,h.
There are six peak values observed in the filter results, which correspond to six single fringe
patterns in the mixed one. By using Equations (9) and (10), we can determine the maxima in
the filter results and then the center positions. With the maximum widths of fringe patterns,
a, the six separated circular fringe patterns can be reconstructed and shown in Figure 7a–f.
Figure 8a–h shows the eight separated circular fringe patterns from a more complicated
mixed signal shown in Figure 3b, based on the similar process shown in Figures 4–6.

Finally, the results are shown in Tables 1–3. Figure 7a–f shows the separated fringe
patterns, which are reconstructed by using the determined parameters shown in Tables 1–3.
In Table 3, we can find that the CC values for most reconstructed signals are higher than
0.746. However, the CC value r of the reconstructed signal in Figure 7f is only 0.431,
which is much lower than the others and could be caused by the higher variability on the
determined position and width. Tables 4 and 5 show the center positions and the maximal
widths, respectively, of the eight circular fringe patterns separated from Figure 3b. As
shown in Table 4, the differences between the original and determined center positions are
small and the range is similar to that shown in Table 2. Regarding the difference of the
maximal width of the circular fringe patterns shown in Table 5, the error percentages are
all less than 3%. The CC values between the eight reconstructed and the original circular
fringe patterns are also shown in Table 5, which are, on average, lower than that shown
in Table 3. The possible reasons for this are the increased number of mixed circular fringe
patterns and the partial overlapping among these patterns.

Table 1. The determined best orders αbest and width a of fringe patterns.

Parameter Result

αx (0.14, 0.16, 0.18, 0.20, 0.22, 0.25, 0.37, 0.44, 0.51, 0.53, 0.73, 0.76, 0.76, 0.81)

αy (0.73, 0.76, 0.79, 0.82)

αbest (0.73, 0.76, 0.79, 0.82)

a (45.39, 39.80, 34.42, 29.21)

Table 2. Center positions (x0, y0) of the fringe patterns separated from Figure 3a.

Signal Position of Original
Signals

Position of Reconstructed
Signals Difference

(a) (0.1, −0.2) (0.095, −0.209) (0.005, 0.009)

(b) (1.6, −0.2) (1.595, −0.209) (0.005, 0.009)

(c) (0.6, −1.6) (0.594, −1.613) (0.006, 0.013)

(d) (1.2,1.2) (1.206, 1.206) (0.006, 0.006)

(e) (−1.5, −0.8) (−1.512, −0.812) (0.012, 0.012)

(f) (−1.3,1.0) (−1.344, 1.008) (0.044, 0.008)
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Figure 9a shows a multiple-fringe pattern, which is the recorded intensity of light
field diffracted from three pinholes illuminated by a plane wave in an optical experiment.
The wavelength of blue laser illumination is 473 nm. Figure 9b shows the grayscale image
of Figure 9a. By using the proposed method, three fringe patterns can be separated from
the mixed signal. Figure 10a–c shows the separated circular fringes by using the proposed
method, while Figure 10d shows the mixed fringe pattern reconstructed by combining the
three separated ones. This example shows that the proposed method can be applied to the
separation problem for the real fringe patterns.
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Table 3. Maximum widths a and CC values of six separated 2-D circular fringe patterns from
Figure 3a.

Signal Width of Original
Signals

Width of
Reconstructed Signals Difference/Percentage CC Value

(a) 45 45.392 0.392/0.87% 0.746

(b) 45 45.392 0.392/0.87% 0.828

(c) 40 39.803 0.197/0.49% 0.849

(d) 35 34.419 0.581/1.66% 0.910

(e) 30 29.207 0.793/2.64% 0.813

(f) 30 29.207 0.793/2.64% 0.431

Table 4. Center positions (x0, y0) of the eight separated fringe patterns from Figure 3b.

Signal Position of Original
Signals

Position of Reconstructed
Signals Difference

(a) (−0.7, −0.5) (−0.710, −0.515) (0.010, 0.015)

(b) (0.1, −0.2) (0.095, −0.209) (0.005, 0.009)

(c) (1.6, −0.2) (1.595, −0.209) (0.005, 0.006)

(d) (−0.3, 1.5) (−0.297, 1.486) (0.003, 0.014)

(e) (0.6, −1.6) (0.594, −1.613) (0.006, 0.013)

(f) (1.2, 1.2) (1.206, 1.206) (0.006, 0.006)

(g) (−1.5, −0.8) (−1.540, −0.812) (0.040, 0.012)

(h) (−1.3, 1.0) (−1.344, 1.008) (0.044, 0.008)

Table 5. Maximum widths a of the eight separated fringe patterns from Figure 3b.

Signal Width of Original
Signals

Width of
Reconstructed Signals Difference/Percentage CC Value

(a) 50 49.250 0.750/1.50% 0.497

(b) 45 45.392 0.392/0.87% 0.746

(c) 45 45.392 0.392/0.87% 0.828

(d) 40 39.803 0.197/0.49% 0.705

(e) 40 39.803 0.197/0.49% 0.849

(f) 35 34.419 0.581/1.66% 0.910

(g) 30 29.207 0.793/2.64% 0.571

(h) 30 29.207 0.793/2.64% 0.431

The noise effects on the mixed fringe patterns in the proposed method are also investi-
gated. Here we consider the additive Gaussian noise with various power. Let the signal to
noise ratio (SNR) be defined as

SNR (in dB) = 10 log10

(
Ps

Pn

)
(13)

where Ps and Pn denote the signal power and noise power, respectively. Figure 11a–d show
the noisy fringe patterns, which are the original fringe pattern in Figure 3a with additive
Gaussian noise of SNR values 1, 3, 5, and 7 dB, respectively. Then, we test the proposed
method with noisy fringe patterns of the SNR values from 1 to 10 dB.
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Figure 11. The original fringe patterns in Figure 3a with additive Gaussian noise under different SNR values: (a) 1 dB;
(b) 3 dB; (c) 5 dB; and (d) 7 dB.

Table 6 shows the detected numbers of separated fringes and the corresponding CC
values between the original and reconstructed fringe patterns under different SNR values
of the noisy mixed fringe patterns. As shown in Table 6, the number of detected fringe
patterns varies when the SNR values are within 1 and 7 dB. When the SNR values are 1, 2,
3, and 6 dB, some of the fringe patterns are not detected and are denoted as not available
(NA) in the tables. On the other hand, some extra fringe pattern can be detected when the
SNR value is 4 dB. When the SNR value is 5 dB, the CC values the fringe patterns No. 4 and
No. 5 are −0.009 and 0.004, respectively, which means that these two fringe patterns are
not missing. Instead, two extra fringe patterns, at different locations, are detected. When
the SNR value is 7 dB, the fringe number and the CC values are identical to the noiseless
case. Note that the test results (both the fringe number and CC values) for SNR values
higher than 7 dB are the same.
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Table 6. The detected numbers of separated fringes and the corresponding CC values under different SNR values of the
noisy mixed fringe pattern. (NA: not available).

SNR
(dB)

Number of Detected
Fringe Patterns

CC Values of Separated Fringe Patterns

No. 1 No. 2 No. 3 No. 4 No. 5 No. 6

1 4 0.746 0.828 0.849 0.910 NA NA

2 3 0.746 0.828 0.849 NA NA NA

3 3 0.746 0.828 NA 0.910 NA NA

4 7 0.746 0.828 0.849 0.910 0.813 0.430

5 6 0.746 0.828 0.849 0.910 −0.009 0.004

6 5 0.746 0.828 0.849 0.910 NA 0.430

7 6 0.746 0.828 0.849 0.910 0.813 0.430

5. Conclusions

We propose an automatic signal separation method for separating the 2-D mixed cir-
cular fringe patterns and considering the possible phase reversal condition. The proposed
method utilizes the fractional Fourier transform to search for the best fractional orders so
that the peak values corresponding to the single circular fringe pattern can be observed in
the spectral domain. A filtering scheme is used to determine the precise center position of
each fringe pattern. Then, the separated fringe pattern can be reconstructed based on the
determined center position and maximum width. We have also demonstrated that both
the digital and optical mixed fringe patterns can be successfully separated and most of the
reconstructed signals have high correlation coefficients compared to the original ones. In
addition, the proposed method can successfully separate the mixed fringe patterns with
additive Gaussian noise when the SNR values is as high as 7 dB.

In our future work, the sampling rate effects, and the minimum detectable fringe size
of the proposed method, will be investigated. In addition, we will extend the capability of
proposed method, so that the fringe pattern with arbitrary constant phase shift ϕ0 other
than 180◦ can be detected as well.
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