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Abstract: As fully automated valet parking systems are being developed, there is a transition period
during which both human-operated vehicles (HVs) and autonomous vehicles (AVs) are present in
the same parking infrastructure. This paper addresses the problem of allocation of a parking space to
an AV without conflicting with the parking space chosen by the driver of a HV. A comprehensive
assessment of the key factors that affect the preference and choice of a driver for a parking space is
established by the fuzzy comprehensive method. The algorithm then generates a ranking order of
the available parking spaces to first predict the driver’s choice of parking space and then allocate a
space for the AV. The Floyd algorithm of shortest distance is used to determine the route for the AV to
reach its parking space. The proposed allocation and search algorithm is applied to the examples of a
parking lot with three designed scenarios. It is shown that parking space can be reasonably allocated
for AVs.

Keywords: automated parking system; fuzzy comprehension evaluation; Floyd algorithm; human-
operated vehicle; autonomous vehicle

1. Introduction

According to the International Parking Institute (IPI), the number of vehicles on
the road will reach 2.5 billion in 2050 [1]. With this projected increase in the volume of
vehicles, parking has become an emerging issue that affects not only drivers looking for
parking spaces, but also city governments in their planning, particularly in urban areas
where land resources are limited and constrained. It has been reported that about 30%
of traffic backup in a typical downtown area is caused by drivers searching for parking
spaces [2]. The expected increase in the number of vehicles likely implies more new
drivers and drivers who are unskilled in parking, thus leading to more road congestion
and increased waste of valuable manpower-hours and resources. In recent years, with
the continuous advancement and development in computer and control technologies,
automated parking has become feasible and various strategies have been proposed to help
alleviate the unskilled parking problem [3,4]. Advances in V2X technology have also led
related researchers to develop a more robust system of automated parking, namely the
Automated Valet Parking System [5].

Compared with the automated parking system, the concept of automated valet parking
system is based on V2X communication technology, which enables self-driving vehicles to
interact and collaborate with an intelligent parking infrastructure during the entire parking
space search process, from the entrance to the self-parking space [6]. Existing intelligent
parking administration systems can detect the status of the parking spaces in real time
through camera recognition, infrared sensing, and other technologies [7,8]. According to
SAE (Society of Automotive Engineers) classification for autonomous driving levels, the
automated valet parking system is classified as L4 autonomous driving, that is, under
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certain scenarios, an equipped vehicle can complete all the driving tasks autonomously
without the participation of a driver. Although self-driving cars are gaining popularity,
related research and testing are far from the level of completion required to bring automated
valet parking to fruition. Even if L4 level self-driving cars were to enter the market in the
short term, there is likely going to be a long transition period during which both human-
operated vehicles (HVs), i.e., with drivers, and autonomous vehicles (AVs), i.e., self-driving
or driverless, co-exist, and augmented search strategies need to be developed for the AVs.
Self-driving vehicles execute well-defined algorithms based on sensor information, while
drivers make cognitive decisions based on perception and surveying of the surrounding
environment. The objective of this paper is to investigate parking space allocation and
route selection (i.e., path planning to the allocated space) for self-driving vehicles during
such a transition period in which significant interactions between the two types of vehicles
are expected.

1.1. Motivation for Research

In this paper, as shown in Figure 1, we define an intelligent parking infrastructure
(which refers to either a parking lot or a parking structure) as one that is equipped with
a central command station that receives information from all sensors and interacts with
autonomous vehicles in real time. In an automated valet parking system, the central
command station is capable of determining the number of available parking spaces through
geomagnetic sensors and obtaining the locations of these parking spaces through a pre-
stored layout of the parking infrastructure. After an AV enters the parking infrastructure,
the central command station utilizes information from multiple cameras to provide a road
map to the allocated parking space, enabling the self-parking to be efficient. However, as
development and implementation of automated parking systems move forward, there will
be a transition period to fully automated valet parking unless the city government phases
out HVs and mandates purchase of AVs, which is very unlikely, or designates parking
spaces only for AVs. Thus, in an intelligent parking infrastructure, there will generally
be both self-driving and human-driving vehicles. Self-driving vehicles can interact with
the parking infrastructure in real time based on V2X communication. Human-driving
vehicles are limited by non-intelligent devices that disengage any interaction with the
central command station.
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Consider the scenario when both a HV and an AV are looking for parking spaces. In
order for the central command station not to allocate the same parking space for the AV as
the driver would choose, the station must be able to predict with high probability the choice
of parking space that the driver would make. Liang et al. proposed four preference factors
that could affect the choice of parking spaces for an individual driver [9]. Logit models,
based on fuzzy logic theory, were established to describe driver preference selection, which
were then used to improve parking experience and alleviate difficulties in parking [9,10].
Although fuzzy evaluation methods have been widely employed with proven success to
determine factors, which are otherwise difficult to quantify, and make optimal choices
incorporating expert opinions, there are only few published studies related to parking
choice preference. In this paper, by adopting the fuzzy evaluation method, a preference
ranking method of parking spaces in an intelligent parking infrastructure is established
based on four representative factors that would affect the parking space selection of drivers.

In an automated valet parking system, route selection is also a key enabling tech-
nology [11,12]. Since the AV might not know a priori the overall layout of the parking
infrastructure, it is necessary for the central command station to guide the self-driving
vehicle to the allocated parking space according to the current conditions of the intended
route. In general, in searching for a parking space, the shorter the path distance, the
better. There are several methods to find the shortest path, such as the Dijkstra and Floyd
algorithms [13,14]. Shi et al. [15] studied the shortest path planning problem of mobile
robots based on the Floyd algorithm, focusing on the node selection problem for mobile
robot path planning and determination of the weighting factor of each passable road. Ex-
periments have also illustrated that the Floyd algorithm has the advantage of providing the
shortest path selection for mobile robots [15]. Based on a known layout of the environment,
Dijkstra algorithm can also efficiently find the shortest path between two points. Although
the Floyd algorithm is slightly more time-consuming than the Dijkstra algorithm, it is
a dynamic programming algorithm aimed to solve the shortest path problem between
multiple source points. In a complex environment such as parking, the Floyd algorithm
appears to be more suitable for our current problem of interest.

1.2. Organization and Contributions of This Paper

In this paper, state-of-the-art research of automated parking space allocation and route
selection is reviewed in Section 2. Section 3 describes the four factors that affect the choice
of parking space for drivers. In Section 4, a fuzzy comprehensive evaluation method is
proposed to evaluate and score (i.e., rank) the available parking spaces in an intelligent
parking infrastructure [16]. The fuzzy algorithm is based on first predicting which space
the driver would select and then allocating one of the remaining spaces to the autonomous
vehicle. In Section 5, the Floyd algorithm is introduced to provide path navigation for
autonomous vehicles [14] according to the nodes of available parking spaces and road
information in the parking infrastructure. Section 6 provides three examples of a parking
lot on the campus of Jiangsu University to illustrate the step-by-step implementation of the
proposed algorithm via Python. Concluding remarks of this work are given in Section 7.

The contributions of this paper are listed as follows:

1. In this paper, a fuzzy comprehensive evaluation method is used to first predict the
parking preference of a driver based on four main factors that influence their choice
of parking spaces. This procedure prevents conflict of allocation of parking space to
the AV with that chosen by the HV.

2. Based on the node information in a parking infrastructure, the Floyd algorithm is
used to provide path navigation for the AVs.

3. The proposed methodology, combining fuzzy theory and the Floyd algorithm, pro-
vides a novel scheme for a central command station to assign parking spaces for AVs
in the presence of HVs. The merit of this work thus provides a foundation for future
work to investigate the problem of automated parking for multiple vehicles.
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2. Review of Related Work

In 2007, the DARPA (Defense Advanced Research Projects Agency) Urban Challenge
(DUC) initiated numerous research projects to address challenges of autonomous driving.
Since then, a great deal of research has been conducted in related topics. In addition to
highway and urban driving, automated valet parking is also of major interest to relieve
drivers from the stress of parking [17].

In 2012, a parking information acquisition and release system was designed by Dou
et al. based on the dynamic allocation algorithm of parking spaces in the parking lot [18].
The main idea is to optimize among the distribution of parking spaces arranged in a
tabulated format and driving paths/distances. However, the algorithm can obtain the
availability of parking spaces only after the human-operated vehicles have completed their
parking. Thus, if there are more than two vehicles, at least one HV and one AV, choosing
the same parking space and converging near that space, this scenario could lead to traffic
congestion and the wasting of time and fuel consumption.

In 2012, Audi Corporation developed a parking guidance system that could assist
and orchestrate the entire parking process [19]. The approach of the system includes three
steps: scanning, positioning, and arranging parking [20]. The distance to the obstacle
is detected by eight ultrasonic sensors installed in the bumper and the parking space is
detected by 10 ultrasonic sensors. This parking system can only be executed if the speed of
the vehicle is below 30 km/h. While this is an excellent demonstration of an automated
valet parking system, during the transition period to fully autonomous driving, HVs will
also be represent; the guidance system cannot allocate parking spaces to the HVs with no
communication devices equipped and hence cannot complete the space allocation task for
the AVs.

In 2016, Kotb et al. [21] proposed a system to reduce the time wasted in looking for
parking spaces by offering guaranteed parking reservations with the lowest possible cost
and searching time for drivers and the highest revenue and resource utilization for parking
managers. However, they did not include other important factors that influence how
drivers choose parking spaces, such as the safe locations of the parking spaces and the
distance to reach the parking space.

In 2018, Tcheumadjeu et al. [22] presented an architecture for Automated Valet Parking
(AVP) connected to cloud-based IoT services and mobile user interfaces. Autonomous
vehicles can share information and data via the phones of their occupants. Moreover, under
this communication architecture, some functions of the AVs, such as drop-off and pick-up,
can be activated by phones. However, the paper only considers the interactions between
users and AVs. In an actual scenario, many vehicles will be present at the same time,
making efficient planning of traffic flow in the parking lot not possible by just integrating
the shared information provided by the users.

In 2019, a new path planning system based on the Dijkstra algorithm was designed by
Yu et al. [23]. The road occupancy factor is calculated and added to the path weight of the
Dijkstra algorithm, and a shortest path is selected by comparing the weight of each path.
However, the traffic situation in the parking lot is complex, and each section of the path
may be occupied at any time. Hence, the optimal path planning in the parking lot requires
a dynamic planning.

In 2020, a parking guidance system based on the multi-objective point A* algorithm
was designed by Xiao et al. [24], which combines the distance factor between the entrance
and the parking spaces and path planning using a heuristic function of the A* algorithm to
quickly generate multiple driving paths and select the most efficient path. However, the
heuristic function of the A* algorithm cannot take into consideration traffic congestion. If
congestion happens, the time loss on queuing will reduce the efficiency of the system and
subsequently increase the fuel consumption.

Therefore, in an intelligent parking infrastructure with both HVs and AVs involved,
it is important to have a central command station to schedule the overall traffic flow and
interface with autonomous vehicles. Moreover, it is necessary to consider in detail the fac-
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tors that would affect parking space selection by the drivers and efficiently guide/allocate
potentially available parking spaces for the AVs.

3. Factors for Choosing Optimal Parking Spaces

In an automated valet parking system, AVs are assumed to be able to interface with
the central command station in an intelligent parking infrastructure. However, under
the scenario in which there are both HVs and AVs in a parking infrastructure, no matter
how intelligent the parking infrastructure is, the central command station cannot allocate
parking spaces for the HVs which are not equipped with any communication devices.
Based on this scenario, we consider the problem of a HV looking for a parking space in
an intelligent parking infrastructure when an AV enters at the same time. The central
command station, before allocating a parking space for the AV, must predict which parking
space that the driver of the HV would choose and then allocate one of the remaining
parking spaces to the autonomous vehicle. When a driver enters a parking infrastructure,
his choice of parking space is often affected by his perception of various factors in the
parking environment. Chen et al. [25] proposed six major factors that influence drivers
to choose parking spaces: the walking distance from the parking spaces to the exit of the
parking facility, the distance to the parking space from the entrance, the status of the path
to the parking spaces, the status of the available parking spaces, parking safety, and shade
under sunlight when parked outdoors. Since parking safety is somewhat implied in the
status of the path for the AVs and the test case considered in this paper (see Section 6) is an
outdoor parking lot with no shaded area, the last two factors will not be discussed in this
paper. Thus, this paper focuses on the following four factors.

• Walking distance

Walking distance is the distance between the parking space and the exit of the parking
infrastructure. For drivers, they likely prefer to arrive at their destination as quickly as
possible after parking. Therefore, the shorter the walking distance, the more likely the
parking space will be chosen.

• Distance to parking

Distance to parking is the distance between the entrance of the parking infrastructure
and the parking space. For drivers and occupants, they generally prefer to arrive at their
vehicles as quickly as possible, particularly when they forget something (e.g., phones,
wallets) or need to place something back in the vehicle. Therefore, the shorter this distance,
the more likely the parking space will be chosen.

• Status of the path to the parking spaces

Vehicles that break down (e.g., dead batteries) may block the path to some available
spaces. Generally, lanes in parking infrastructures are narrow and often only one vehicle
can pass through the lane. Lane occupancy increases traffic congestion and reduces traffic
efficiency in the parking infrastructure. Thus, drivers are concerned with the status of the
path leading to the available parking spaces and will likely choose those parking spaces
that have clear paths.

• Status of available parking spaces

Ma [26] hypothesized that, in general, particularly new drivers are more inclined to
choose available parking spaces with spaces on both sides unoccupied. The order of the
priority of choice is followed by those spaces with one adjacent space unoccupied, those
adjacent to the road, and finally those with spaces on both sides occupied.

Characteristics of parking spaces can be grouped into two main types: the cost type
and the benefit type. For the four factors mentioned above, walking distance and distance
to parking are cost types. Status of the path lane to parking spaces and status of available
parking spaces are benefit types. The lower the value of the cost type factor, the higher the
priority of the parking space would have. Contrarily, the higher the value of the benefit
type factor, the higher priority of the parking space. Walking distance and distance to
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parking can be described by measurable values based on the layout of the entire parking
infrastructure. Fuzzy factors such as the status of lanes and available parking spaces can
also be represented by quantitative values. Following [27], a value of three is assigned when
the lane is occupied; nine when the lane to the parking space is clear; eight to available
parking space whose both sides are unoccupied; seven to an available parking space with
one adjacent space unoccupied; six to an available parking space adjacent to the road; five
to an available parking space with spaces on both sides occupied. Note that these numbers
are relative and their absolute values are irrelevant.

4. Optimal Parking Space Selection Model

For a driver, parking space selection is a decision based on his perception and assess-
ment of the parking environment. As it is difficult to quantify these fuzzy concepts for
humans, fuzzy theory is introduced to solve these types of problems. The concept of fuzzy
theory was put forward by Professor Zadeh in 1965, aiming to quantify the uncertainty of
issues [28]. Based on the fuzzy theory, the four factors affecting driver’s choice of parking
space selection, discussed in Section 3, are quantified. In this section, we will introduce
how to assign and sort the weights of available parking spaces based on the Fuzzy Compre-
hensive Evaluation (FCE) method [28]. As a result, the order of parking space preference
will be displayed with different weights.

Procedure for Model Construction Based on FCE:

(1) Establish a factor vector U = (u1, u2, . . . , um) where ui is the i− th factor that affects
the parking selection. These factors usually have varying degrees of fuzziness. In
this paper, the factor vector for evaluating parking preference is U = (u1, u2, u3, u4),
where u1 represents “walking distance”, u2 “distance to parking”, u3 “status of lane
to the parking spaces” and u4 “status of available parking spaces”.

(2) Establish an evaluation matrix A whose i-th row, (ai1, ai2, . . . , aim), is the evaluation
vector for the i-th available parking space, and aij is the evaluation value for the
j−th factor in U. In this paper, the evaluation vector for evaluating each factor in the
vector U is (ai1, ai2, ai3, ai4) for the i-th parking space, where ai1, ai2 are defined as the
actual values of “walking distance” and “distance to parking” for evaluating u1 and
u2, respectively; ai3 and ai4 are the scores under the evaluation standard discussed in
Section 3 for evaluating the “status of lane to the parking spaces” u3 and “status of
available parking spaces” u4, respectively.

(3) Establish the fuzzy comprehensive evaluation matrix R =
(
rij
)

n×m by normalizing A,
where n is the total number of targeted parking spaces that need to be evaluated and
m is the number of factors.

R =


r11 r12 · · · r1m
r21 r21 . . . r2m
...

...
. . .

...
rn1 rn2 · · · rnm

 (1)

The purpose of this normalization is to eliminate the impact caused by the differences
in the orders of numbers of the physical measurements in the decision making process. For
example, distance of “walking distance” maybe several meters while there is no particular
unit for “status of parking spaces”; the orders of these numeric values are very different.
The normalizations are:

rij =
min

(
aij
)

aij
, i ∈ (1, 2, . . . , n), j ∈ I1 (2)

rij =
aij

max
(
aij
) , i ∈ (1, 2, . . . , n), j ∈ I2 (3)

where, I1 and I2 represent the cost type factors and benefit factors, respectively [25].
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(1) According to [29], to eliminate a potentially large number of combinatorial compar-
isons due to a large dimension of the factor vector, it is necessary to evaluate the
independent relationship between every two factors by the pair-wise comparison
matrix B =

(
bij
)

n×m which is defined by drivers with different driving experiences,
where bii = 0.5, bij + bji = 1, and bij ≥ 0. bij represent the value of factor i compared
to the preference to factor j, bii represents the value of a factor compared to the prefer-
ence to itself. In this paper, we have collected opinions from twenty drivers to form
the pair-wise comparison matrix. Our sample included five males and five females,
with ages varying from 20 to 55 years old and with driving experiences ranging from
less than one month to more than 35 years. This set of samples represents sufficiently
broad variability.

(2) Define the weight vector of the factors: w = (w1, w2, . . . , wn), where wi can be
calculated by the least variance method (LVM) for further ranking priority of the
factors based on the pair-wise comparison matrix. [30]:

wi =
1
n

(
n

∑
j=1

bij + 1− n
2

)
, i = (1, 2, . . . , n) (4)

(3) According to Equations (1)–(3) we established a priority vector zi(w), which can be
described as follows:

zi(w) = WAAw(ri1, ri2, . . . , rin) =
n

∑
j=1

Rn×mwi (5)

where, WAAw(ri1, ri2, . . . , rin) is the weighted arithmetic average operator. The
higher the weight value of a certain parking space in zi(w), the more likely it would
be selected by the driver [31].

5. Optimal Route Selection

Shortest path planning is very important in path navigation. Traffic efficiency can
be improved by planning the shortest path based on the distance information between
locations. Floyd algorithm is a classic dynamic programming algorithm that uses dynamic
programming to find the shortest path between multiple source points in a given weighted
graph. The algorithm aims to find the shortest path from one point to another [32].

Assume that the shortest path from a node i to another node j has no more than two
possibilities, one is directly from i to j, and the other is from i through node k to j. Hence,
the dynamic transfer function of this algorithm is: dis(i, j) = min

(
Di,j, Di,k + Dk,j

)
, where

dis(i, j) represents the shortest distance between node i and node j. The specifics of our
proposed algorithm is shown as follows:

(1) Number each parking location in the map as a node;
(2) Initialize an adjacent matrix Dp×q, where Di,j represents the distance between node i

and j; if i and j are not adjacent, Di,j will be assigned with ∞; if i = j, the value of
Di,j will be 0.

Dp×q =



0 D1,2 D1,3 · · · D1, q−1 D1,q
D2,1 0 D2,3 · · · D2,q−1 D2,q
D3,1 D3,2 0 · · · D3,q−1 D3,q

...
...

...
. . .

...
...

Dp−1,1 Dp−1,2 Dp−1,3 · · · 0 Dp−1,q
Dp,1 Dp,2 Dp,3 · · · Dp,q−1 0


(6)

(3) Update the transfer function. For example, consider three nodes i, j, and k in the
map, where k is an intermediate node of i and j, and i and j represents the start
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point and the end point, respectively. The transfer function dis(i, j) is updated by
dis(i, j) = min

(
Di,j, Di,k + Dk,j

)
to select the smaller of the two distances from i to j

and from i to k to j. The Floyd algorithm finds an intermediate node k to determine
whether there is a shorter distance through this node k.

6. Example: Results and Discussion

The example we consider is a single-entrance parking lot, see Figure 2. The layout of
the parking lot has been redesigned according to the Engineering Construction Industry
Standard JGJ100-98 and the layout of the example parking lot is shown in Figure 3. Since
the entrance is located in the lower right of the entire layout, we define the coordinate
system with the origin at the lower right corner, as shown in Figure 4.
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As shown in Figure 4, in order to design the route selection, we denote each parking
space and each turning intersection as a node (1–24) and a number (T1–T8). Additionally,
considering the differences in sizes of vehicles entering the parking lot, we define the
coordinates of each of the nodes and intersection numbers as the centered position of the
parking space and the central line of the route at the turning. The coordinates of all nodes
are listed in Table 1.

Table 1. Coordinates in metric units of all nodes in test graph

T1 (2.1, 17.0) 1 (9.7, 17.0) 9 (13.0, 17.0) 17 (8.0, 39.5)

T2 (2.1, 28.5) 2 (12.2, 17.0) 10 (15.5, 17.0) 18 (10.5, 39.5)

T3 (2.1, 39.5) 3 (14.7, 17.0) 11 (5.5, 28.5) 19 (13.0, 39.5)

T4 (2.1, 50.4) 4 (17.2, 17.0) 12 (8.0, 28.5) 20 (5.2, 50.5)

T5 (15.7, 50.4) 5 (19.7, 17.0) 13 (10.5, 28.5) 21 (7.8, 50.5)

T6 (19.7, 39.5) 6 (5.5, 17.0) 14 (13.0, 28.5) 22 (10.4, 50.5)

T7 (19.7, 28.5) 7 (8.0, 17.0) 15 (15.5, 28.5) 23 (13.1, 50.5)

T8 (19.7, 17.0) 8 (10.5, 17.0) 16 (5.5, 39.5) 24 (15.7, 50.5)

In this section, we have designed three specific parking scenarios to test our proposed
algorithm via Python. In the following, we will take scenario 1 as an example to explain
the application of our method in detail. As shown in Figure 5, red nodes represent the
parking spaces that are occupied, brown ones are those that are currently available, and
the light blue node (node 11) represents the parking space that is being parked by a vehicle.
A blue vehicle, which is an AV, is just entering into the intelligent parking lot and sending
a parking request to the central command station. Meanwhile, an orange vehicle, which is
a HV and cannot communicate with the central command station, is seeking an available
parking space. Under this situation, the problem is to allocate an available parking space
for the blue autonomous vehicle by the central command station.

In order to solve this problem, we need to first determine which parking space that the
driver of the orange vehicle would choose and offer the shortest path between the entrance
and the allocated parking space. The overview scheme is described as a flowchart (Figure 6).
The specific steps in the parking spaces selection and the shortest path planning are shown
as follows:
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Step 1: Set the properties table of all available parking spaces currently in the example
parking lot. As shown in Table 2.

Table 2. Properties of the available parking spaces in the parking lot of scenario 1.

Parking
Space

Walking
Distance (m)

Distance to
Parking (m)

Status of
Parking

Status of Available
Parking Spaces

5 51.0 36.7 clear adjacent to the road

9 44.3 30.0 clear both sides are occupied

12 27.8 36.5 occupied both sides are occupied

18 41.8 27.5 clear both sides are occupied

23 11.1 63.6 clear both sides are occupied

For the walking distance and distance to parking, distances in metric units are used in
evaluating the values in matrix A, as defined in Section 4. For the status of lane and status
of available parking spaces, fuzzy evaluation is assigned with values proposed in Section 3.
Based on the values from Table 2, the evaluation matrix A is:

A =


51.0 36.7 9.0 6.0
44.3 30.0 9.0 5.0
27.8 36.5 3.0 5.0
41.8 27.5 9.0 5.0
11.1 63.6 9.0 5.0


Step 2: Normalize the evaluation matrix A to form the fuzzy comprehensive evaluation

matrix R =
(
rij
)

n×m according to Equations (2) and (3):

R =


0.217 0.749 1.000 1.000
0.250 0.917 1.000 0.833
0.399 0.753 0.333 0.833
0.266 1.000 1.000 0.833
1.000 0.432 1.000 0.833


Step 3: Establish the pair-wise comparison matrix by the comparison method, based

on the opinions of our sample set of twenty drivers with a range of driving experiences, as
described in Section 4. The following shows the response from one of the drivers:

Bi =


0.5 0.8 0.9 0.4
0.2 0.5 0.1 0.4
0.1 0.9 0.5 0.9
0.6 0.6 0.1 0.5


where, i = 1, . . . , 10 for our data set. As shown in Bi, all diagonal values are 0.5 as each
factor complements itself. The values of b12 = 0.8 and b21 = 0.2 indicate that in the view
of this driver, the factor “walking distance” is more important than “distance to parking”.
“distance to parking” is still a factor that the driver would consider when choosing a
parking space, but it is just less important.

Step 4: Obtain the weight vector for the pair-wise comparison matrix in Step 3 accord-
ing to Equation (4):

wi = (0.40, 0.05, 0.35, 0.20)
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Applying Equation (4), the pair-wise comparison matrix from the twenty drivers is
converted into the following weight matrix:

w =



0.400 0.050 0.350 0.200
0.200 0.325 0.450 0.275
0.500 0.125 0.175 0.175
0.175 −0.050 0.625 0.750
0.150 0.375 0.250 0.225
0.225 0.125 0.250 0.400
0.125 0.550 0.350 0.350
0.375 0.100 0.350 0.175
0.125 0.225 0.375 0.250
0.225 0.200 0.400 0.225
0.250 0.075 0.475 0.200
0.425 0.075 0.475 0.200
0.425 0.075 0.325 0.175
0.125 0.125 0.425 0.325
0.050 0.275 0.225 0.450
0.175 0.250 0.275 0.300
0.300 0.125 0.250 0.325
0.325 0.175 0.100 0.425
0.300 0.000 0.450 0.250
0.150 0.150 0.425 0.325
0.100 0.300 0.325 0.275


To make the above matrix representative of the preference of most drivers, we remove

the largest and smallest values of each factor in the above matrix and average the remaining
values to obtain an average weight vector:

w̃ = (0.233, 0.170, 0.336, 0.286)

Step 5: With the average weight vector and Equation (5), the priority vector that
contains the weights of every available parking space in the given situation can be obtained:

zi(w) = (0.799, 0.788, 0.571, 0.806, 0.881)

Step 6: Ranking the priorities of the available parking spaces in this example parking
lot according to zi(w) gives: z23(w) > z18(w) > z5(w) > z9(w) > z12(w).

Based on step 6, parking space 23 has the highest priority for the driver of the orange
vehicle. Thus, parking space 18 will be allocated to the blue autonomous vehicle by the
central command station. By analyzing the preferences of the human driver, the algorithm
is able to provide the optimal parking space for the autonomous vehicle. Since an intelligent
parking lot system cannot influence the choice of the driver, a suboptimal parking space,
which is space 18, is allocated to autonomous vehicle in this situation.

Step 7: Establish the adjacent matrix with all the road intersection nodes and the
node of parking space 18 for route selection based on the adjacent matrix assignment rule
according to Equation (6) in Section 5:
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D =



0 11.5 ∞ ∞ ∞ ∞ ∞ 17.6 ∞
∞ 0 11.0 ∞ ∞ ∞ 17.6 ∞ ∞
∞ ∞ 0 10.9 ∞ 17.6 ∞ ∞ 8.4
∞ ∞ ∞ 0 13.6 ∞ ∞ ∞ ∞
∞ ∞ ∞ 13.6 0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 11.6 0 ∞ ∞ 9.2
∞ ∞ ∞ ∞ ∞ 11.0 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 11.5 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0


As shown in matrix D, there is only one passable path from T1 to parking space 18:

starting from T1, go through T2, subsequently arrive at T3, then turn right to parking
space 18, which is also the shortest path, with a total distance of 30.9 m. Through this
method, under the scenario of the presence of one HV and one AV in this example, we
simultaneously predict the parking space preference of the driver and allocate a parking
space to the AV through V2X communication based on the driver preferences. Moreover, a
parking lot may be constrained with traffic rules (e.g., one way road) and limited space, the
adjacent matrix D can, in addition to providing the shortest route navigation, also reflect
the constraints of the traffic rules and other conditions.

Using the same approach as used in scenario one, we can also solve the similar issues,
such as in the following two scenarios:

Scenario 2:
Step 1: Set the properties table of all available parking spaces currently in the example

parking scenario (Figure 7). As shown in Table 3.
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Table 3. Properties of the available parking spaces in the parking lot of scenario two.

Parking
Space

Walking
Distance (m)

Distance to
Parking (m)

Status of
Parking

Status of Available
Parking Spaces

2 43.5 29.2 clear both sides are occupied

9 44.3 30.0 clear both sides are occupied

12 27.8 36.5 clear both sides are occupied

19 21.8 42.5 clear adjacent to the road

20 3.2 55.7 clear adjacent to the road

23 11.1 63.6 clear both sides are occupied

Based on the values from Table 3 and assignment rule in Section 3, the evaluation
matrix A is:

A =



43.5 29.2 9.0 5.0
44.3 30.0 9.0 5.0
27.8 36.5 9.0 5.0
21.8 42.5 9.0 6.0
3.2 55.7 9.0 6.0

11.1 63.6 9.0 5.0


Step 2: Normalize the evaluation matrix A to form the fuzzy comprehensive evaluation

matrix R =
(
rij
)

n×m according to Equations (2) and (3):

R =



0.074 1.000 1.000 0.833
0.072 0.973 1.000 0.833
0.115 0.799 1.000 0.833
0.147 0.687 1.000 1.000
1.000 0.524 1.000 1.000
0.288 0.459 1.000 0.833


Step 3: With the average weight vector calculated in scenario one and Equation (5),

the priority vector that contains the weights of every available parking space in scenario
two can be obtained:

zi(w) = (0.761, 0.756, 0.737, 0.773, 0.944, 0.719)

Step 4: Ranking the priorities of the available parking spaces in this example parking
lot according to zi(w) gives: z20(w) > z19(w) > z2(w) > z9(w) > z12(w) > z23(w).

Based on Step 4, parking space 20 has the highest priority for the driver of the orange
vehicle based on scenario two. Thus, parking space 19 will be allocated to the blue
autonomous vehicle by the central command station.

Scenario 3:
Step 1: Set the properties table of all available parking spaces currently in the example

parking scenario (Figure 8). As shown in Table 4.
Based on the values from Table 4 and assignment rule in Section 3, the evaluation

matrix A is:

A =



51.0 36.7 9.0 6.0
41.8 27.5 9.0 5.0
25.3 34.0 9.0 6.0
27.8 36.5 9.0 7.0
21.8 42.5 9.0 6.0
3.2 55.7 9.0 6.0

11.1 63.6 9.0 5.0


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Table 4. Properties of the available parking spaces in the parking lot of scenario two.

Parking
Space

Walking
Distance (m)

Distance to
Parking (m)

Status of
Parking

Status of Available
Parking Spaces

5 51.0 36.7 clear adjacent to the road

8 41.8 27.5 clear both sides are occupied

11 25.3 34.0 clear adjacent to the road

12 27.8 36.5 clear one adjacent space
unoccupied

19 21.8 42.5 clear adjacent to the road

20 3.2 55.7 clear adjacent to the road

23 11.1 63.6 clear both sides are occupied

Step 2: Normalize the evaluation matrix A to form the fuzzy comprehensive evaluation
matrix R =

(
rij
)

n×m according to Equations (2) and (3):

R =



0.063 0.749 1.000 0.857
0.077 1.000 1.000 0.714
0.126 0.809 1.000 0.857
0.115 0.753 1.000 1.000
0.147 0.647 1.000 0.857
1.000 0.494 1.000 0.857
0.288 0.432 1.000 0.714


Step 3: With the average weight vector calculated in scenario one and Equation (5),

the priority vector that contains the weights of every available parking space in scenario
three can be obtained:

zi(w) = (0.723, 0.728, 0.748, 0.777, 0.725, 0.898, 0.681)
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Step 4: Ranking the priorities of the available parking spaces in this example parking
lot according to zi(w) gives: z20(w) > z12(w) > z11(w) > z8(w) > z19(w) > z5(w) >
z23(w).

Based on step 4, parking space 20 has the highest priority for the driver of the orange
vehicle based on scenario two. Thus, parking space 12 will be allocated to the blue
autonomous vehicle by the central command station.

As can be seen from the above three test examples, people are more inclined to choose
the available parking space near the exit of the parking lot.

In this paper, to validate of the proposed algorithm, we have collected opinions from
fifty drivers on their most preferred parking spaces to check against the data from the
twenty drivers mentioned in Step 3. Figure 9 shows that, in addition to the preferred choice
of space 23, 20 and 20 in designed scenarios one, two and three, respectively, there are only
four, six and four other choices among the fifty drivers who are surveyed. The accuracy of
the prediction of the proposed algorithm is thus, 92%, 88% and 92%, respec-tively, in the
three test cases.
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