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Featured Application: Thin-walled composite cylindrical shells, due to their light weight, high
stiffness and strength, can be applied to ultra-light weight rockets, fuselages of airplanes, satel-
lites, and spacecraft.

Abstract: A buckling test of composite cylindrical shells with a radius–thickness ratio (r/t) = 893
under axial compression was conducted to investigate the effects of the radius–thickness ratio (r/t).
It is known that the buckling load of cylinders shows large differences and scatter between theory
and experiment. The ratio of the experimental buckling load and theoretical buckling load is called
the knockdown factor (KDF). Many investigations have been conducted to find the cause of the
degradation and scatter in the KDF, but as yet, no cause has been found. In 1968, NASA’s buckling
design criterion, NASA SP-8007, gave an empirical KDF curve that decreased with the increasing r/t
(up to 2000) for metal cylinders. The same curve has been applied to composite cylinders. Recently,
Takano derived a flat lower-bound KDF in terms of A- and B-basis values (99% and 90% probability
with a 95% confidence level) through a statistical analysis of experimental buckling loads. The result,
however, based on experimental results up to r/t = 500 and, thus, the dependency on a large range
of r/t, is not clear. Thus, the authors focused on a larger range of r/t. Cylindrical shells made from
carbon fiber-reinforced plastic (CFRP) were tested. The nominal radius, thickness, and length were
r = 100.118 mm, t = 0.118 mm, and L = 200 mm and, thus, the r/t = 848 and length-to-radius ratio
(L/r) = 2.0. Shape imperfections were also measured by using in-house laser displacement equipment.
The buckling load was slightly affected by the r/t, but the reduction in the KDF was insignificant.

Keywords: buckling; shell; knockdown factor

1. Introduction

The scatter and deviation of the buckling load between theory and experiment have
been studied since the 1960s, but the cause of the scatter and deviation has yet to be re-
vealed. One potential cause is thought to be shape imperfection. Studies using a nonlinear
finite element analysis, including of the measured shape imperfection, have given 5–10%
larger results than the experimental buckling loads [1]. The method, however, cannot be
used for prediction, because it requires the manufacturing of a cylinder and measurement
of the shape imperfection. Regression analyses have further shown that various factors,
including layup overlaps or gaps, the radius-to-thickness ratio (r/t), the length-to-radius
ratio (L/r) [2], layup stiffness, and oval shape imperfection, are not statistically signifi-
cant [3]. The authors investigated the effect of axisymmetric shape imperfections on the
ratio of the experimental buckling load and theoretical buckling load, which is called the
knockdown factor (KDF), and found that it increases with the amplitude of drum-type
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shape imperfections [4]. The investigation was conducted on nine cylinders; however, they
were of the same radius r = 75 mm, and their r/t values were similar, i.e., from 460 to
670. On the other hand, many metal cylinders were investigated over a wide range of r/t
(the data summarized in Reference [5]), and it was found that the KDF decreased with the
increasing r/t [6], as shown in Figure 1.
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Composite cylinders, however, show a constant relation between the KDF and r/t in a
narrow range of r/t [7] (as shown later). Recently, several studies for the KDF of cylinders
have been published; however, there was no study for a composite cylinder with the range
of a r/t over 670 [8–14]. Wagner et al. [8] investigated the KDF of metal cylinders with
single boundary perturbation approach. Wagner and Hühne’s [9] discussion about that
led to new, improved knockdown factors for the design of cylindrical metal shells under
axial compression. Tobias and Dieter [10] investigated the relationship between geometric
imperfection and the KDF. Wagner et al. [11] presented a numerical design approach based
on the reduced stiffness method for the buckling of shell structures. Although a lot of effort
has gone into developing novel manufacturing and the production of composites [15–18],
there has been no investigation into the KDF of composite tubes. Thus, the aim of the
current study was to investigate the KDF over a large range of a r/t through buckling
tests with r = 100 mm, t = 0.112 mm, and r/t = 893. Moreover, the effect of the shape
imperfections was measured before and after the buckling tests, and the relationship
between the shape imperfections and the KDF was investigated.

2. Test Specimens
2.1. Materials and Properties

Two cylindrical specimens (No. 191 and No. 192) were made from carbon fiber-
reinforced plastic (CFRP) pre-preg HSX350C075S (Mitsubishi Chemical Co. Ltd., Hong
Kong, China). Table 1 shows the material properties, and Table 2 shows the configurations
of the specimens.

2.2. Manufacturing of Cylindrical Specimens

As shown in Figure 2, the cylinders were highly flexible and easily deformed by touch.
Thus, to apply a compression load and keep the cylindrical shape, aluminum alloy end
rings were bonded to the cylinders by using a bonding fixture, as shown in Figure 3. The
bonding fixture aligned the center axis of both end rings without inclination. First, a fixture
ring was set on the baseplate of the fixture, and then, the cylindrical specimen was set into
the 2-mm-wide slot of the end ring, as shown in Figure 4. The cylindrical specimen was
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fixed using the alignment ring, as shown in Figure 5, and then, adhesive (AW106/HY953)
was applied by syringe. To prevent thermal residual stress, the adhesive was cured at
room temperature. After curing, the specimen with the bonded ring was removed, and
the other end ring was set on the baseplate of the bonding fixture. Then, the other end of
the specimen was inserted into the slot of the ring on the baseplate, and the bonded ring
was fixed to the alignment plate, as shown in Figure 6. Adhesive was then applied to the
ring on the baseplate by syringe, and it was cured at room temperature. The cylindrical
specimen with both end rings is shown in Figure 7.

Table 1. Material properties of HSX350C075S carbon fiber-reinforced plastic (CFRP).

Property Value

Ply thickness (mm) 0.056
Young modulus of fiber direction EL (GPa) 257.4

Young modulus of transverse direction ET (GPa) 6.770
Shear modulus, GLT (MPa) 4.495

Poisson’s ratio νLT(–) 0.33

Table 2. Configuration of the cylindrical specimens. L/r: length-to-radius ratio and r/t: radius-to-
thickness ratio.

Property Value

Laminate sequence (−50/50)
Radius, r (mm) 100

Thickness, t (mm) 0.112
Length, L (mm) 200

L/r 2
r/t 893
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3. Shape Measurement Equipment

Figure 8 shows the shape measurement equipment; the major specifications are listed
in Table 3. The equipment consisted of a turntable and a vertical movement head with a
laser displacement sensor (LDS). The cylindrical specimen was turned on the turntable
and measured by the sensor at different vertical levels. The measurements and movements
were controlled by a personal computer. Measurements were taken at 61 points (one point
per 6◦) on ten vertical levels.
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Table 3. Major specifications.

Measurement range (vertical) 388 mm

Laser displacement equipment
Resolution 2 µm

Range ±10 mm

Stepper motor Vertical 0.201 mm/step

Rotational 0.02◦/step

4. Buckling Test

The buckling test was conducted on the universal testing instrument (Shimadzu AG-I
100 kN, load accuracy within ±1% for an indicated value). To achieve a uniform load, a
steel ball and adjustment fixture were used, and the load was applied via a steel plate, as
shown in Figure 9. The alignment between the center of the cylindrical specimen and the
crosshead of the universal testing instrument was conducted by the crosshead moving
down to alignment fixture 1 and checking the offset between the steel ball and the hole of
alignment fixture 1. To easily adjust the cylindrical specimen, fluororesin tape was applied
to the baseplate of the universal testing instrument. After adjustment, a 150-N compression
load, which is a sufficiently small buckling load, was applied and then removed. The load
and displacement curve were then checked, and readjustments were conducted when an
anomaly was observed. When an anomaly was not observed, the compression test for
buckling was conducted. A crosshead displacement was applied until it reached 1.1 times
the buckling displacement; after which, the load was removed. In total, seven buckling
load tests were conducted, one without offset (the first test); four with offset (0◦, 90◦, 180◦,
and 270◦); and two without offset (the last test twice for confirming reproducibility). Two
offset amplitudes, δ/t = 14.6 and δ/t = 7.3, were tested. The cylindrical specimens were
thin enough that they were undamaged after they buckled, which enabled the tests to be
repeated on them. For the test without an offset, the alignment fixture in Figure 10 was
used, while, for the test with an offset, the alignment fixture in Figure 11 was used. To
check that there was no anomaly in the inclination of the top of the cylindrical specimen,
the displacements of the four corners of the steel plate were measured by using laser
displacement sensors (LDSs), as shown in Figure 12. Figure 13 shows an overview of the
buckling test.
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5. Test Comparison between the Mathematical Model and the Test Results and Evaluation

Figures 14–17 plot buckling loads for the offset and no offset of the load center. The
locations of the offset angles 0◦, 90◦, 180◦, and 270◦ are shown in Figure 18. The origin of the
offset angle, 0◦ was decided arbitrarily. The theoretical buckling load was calculated by the
linear bifurcation theory, including layup anisotropy and transverse shear deformation [19].
The theory was for ideal composite cylinders without shape imperfection. A nonlinear
finite element analysis, including the measured shape imperfection [1], can evaluate the
effect of the shape imperfection; however, it cannot be used for the prediction of the design
use, because it requires the manufacture of a cylinder and measurement of the shape
imperfection. Thus, the theoretical method for an ideal cylinder [19] was chosen in this
study. The calculated theoretical buckling load was 936 N; thus, the KDFs were 0.43–0.52.
The offset affected the buckling load; however, it was not the main reason for the reduction
in the KDF. The buckling load in the cases without offset showed good reproducibility,
except for No. 192 with δ/t = 7.3 (Figure 17). The first test without offset showed a lower
load than in the second and third tests; thus, that was not caused by the degradation of
the specimen. Particular angles increased the buckling load: at 180◦ in the case of No. 191
with δ/t = 14.6 and δ/t = 7.3 (Figures 14 and 15) and at 0◦ and 270◦ in the case of No. 192
with δ/t = 14.6 (Figure 16). Figures 18–21 show the shape imperfections on each vertical
level of the cylinders before and after the buckling test. No significant changes can be
seen between before and after; this also indicates that no damage occurred during the test.
Figures 22–25 show the shape measurements after the offset buckling test together with
the corresponding buckling load. Figure 22 (for No. 191 with δ/t = 14.6) shows that the
minimum buckling load was obtained at 0◦, but Figure 23 (for No. 191 with δ/t = 7.3)
shows that it was obtained at 90◦. Similarly, Figure 24 (for No. 192 with δ/t = 14.6) shows
that the minimum buckling load was obtained at 180◦, but Figure 25 (for No. 192 with
δ/t = 7.3) shows it was obtained at 90◦. These results show that the buckling load was
affected not only by the offset direction and shape imperfection but, also, by the offset
amplitude. In addition, the minimum buckling load was not always obtained in the offset
direction in the case of a large-amplitude shape imperfection, as shown in Figure 25 for the
270◦ direction.

Figure 26 plots the KDF over a wide range of r/t. The yellow dots at the r/t = 156 and
r/t = 670 are the previous results [2,3]. The KDFs at the r/t = 893 are the present results,
and they are equal to or lower than the A-basis value obtained by Takano [7], assuming
that the KDF is independent from the r/t. The following linear regression was used to
evaluate the dependency of the KDF on the r/t by using an analysis of variance (ANOVA):

KDF = KFD0 + a
( r

t

)
, (1)
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r/t = 670 are the previous results [2,3]. The KDFs at the r/t = 893 are the present results, and 
they are equal to or lower than the A-basis value obtained by Takano [7], assuming that 
the KDF is independent from the r/t. The following linear regression was used to evaluate 
the dependency of the KDF on the r/t by using an analysis of variance (ANOVA): 
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Table 4 shows the results of the ANOVA. The coefficient of the r/t is −2.65 × 10−4. It 
seems small, but the p-value is 0.001%, which indicates a statistical significance, because 
it is much smaller than 1%. Usually, a p-value smaller than 1% indicates a high statistical 
significance. The linear regression is plotted in Figure 26. The line is higher than the KDFs 
at the r/t = 893; thus, it cannot be used as the design criterion. A statistically lower-bound 
curve with linear regression can be easily plotted, but a suitable regression form should 
reflect the physical reason behind the reduction. A reason could not be obtained in this 
study, because only two specimens were tested; thus, more tests will be required. 
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Table 4 shows the results of the ANOVA. The coefficient of the r/t is −2.65 × 10−4. It
seems small, but the p-value is 0.001%, which indicates a statistical significance, because
it is much smaller than 1%. Usually, a p-value smaller than 1% indicates a high statistical
significance. The linear regression is plotted in Figure 26. The line is higher than the KDFs
at the r/t = 893; thus, it cannot be used as the design criterion. A statistically lower-bound
curve with linear regression can be easily plotted, but a suitable regression form should
reflect the physical reason behind the reduction. A reason could not be obtained in this
study, because only two specimens were tested; thus, more tests will be required.

Table 4. Analysis of variance (ANOVA).

Term Coef. Std. Dev. p-Value

Intercept, KDF0 0.845 0.015729 0.000%
r/t, a −2.65 × 10−4 5.88 × 10−5 0.001%

6. Conclusions

Buckling tests were performed on composite cylindrical shells with large radius-to-
thickness ratios. The shape imperfections before and after the tests were measured, and
the buckling loads in the case of an offset load or no offset to the load were measured.
The KDFs ranged from 0.43 through 0.52 in the tests; however, the reduction in the KDF
by the offset was insignificant. In addition, the relationship between the offset amplitude
and offset direction was also insignificant. These results indicate that the major reason for
the reduction in the KDF was not load offset or local shape imperfection. The obtained
KDFs for the r/t = 893 indicated a dependency between the KDF and r/t. An ANOVA by
linear regression indicated that the KDF decreased with the increasing r/t. Thus, to obtain
a lower-bound curve of the KDF, the major reason for reduction in the KDF remains to
be revealed.
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