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Abstract: Seismic damage assessment is an extraordinary opportunity to evaluate the reliability of
vulnerability and risk methodologies applied to historic masonry buildings, giving the possibility
of enhancing and optimising mitigation and retrofit strategies. Vulnerability index methodologies
are flexible and powerful tools for assessing seismic vulnerability on the urban scale, providing
a first screening of the critical issues present in masonry buildings and a possible priority list for
the following retrofit operations. Such approaches account for the buildings’ different structural
characteristics, directly or indirectly influencing their seismic behaviour and measured through
different weights and classes finally providing a vulnerability index. In this paper, we show the
application of three well-known methodologies to Campi Alto di Norcia’s medieval city in Valnerina
(Italy) stroke by the earthquakes of 24 August and 30 October 2016. The methodologies’ reliability
is assessed, based on the observation of real seismic consequences and damages on the masonry
buildings, and an optimised methodology is then proposed for the considered case study.

Keywords: vulnerability index method; damage scenarios; masonry buildings; seismic assessment;
structural aggregates

1. Introduction

Heritage buildings are the result of an interaction process between people and the
surrounding area: the heterogeneous architecture of ancient city centres is the direct
expression of cultural modifications, natural transformations and anthropic events occurred
over the centuries. The masonry buildings constituting the urban environment are usually
organized within structural aggregates (SAs), not following a regular development and
therefore resulting in different construction typologies influenced by the materials available
in the territory, regional traditions and realization periods. SAs are typically made up
of buildings—recognized as “structural units” (SU)—connected in a variety of different
ways, leading to different geometric configurations. The structural performance of the
SAs is influenced by every single SU constituting it, which are often characterized by
heterogeneous structural features, materials and architectures [1].

The morphological variety of the resulting urban settings enriches the cultural heritage
of a place, but, in the meanwhile, increases local and global vulnerabilities towards static
and seismic actions, due to the lack of connections between structural elements of masonry
buildings. Recent earthquakes that stroke Italy during the last decades have [2] highlighted
failures of masonry aggregates caused by the activation of local mechanisms, not allowing
the development of global building behaviour [3–5], together with the negative impact
of past retrofit interventions that frequently increased vulnerabilities instead of reducing
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them [6]. The implementation of seismic prevention and retrofit strategies for historical city
centres requires the knowledge, on a territorial scale, of the risk to which existing SAs are
exposed [7], of the adopted materials, structural features, morphological evolution of the
aggregates and, above all, of the interaction between SUs and SA during the earthquake.

Being the seismic risk is the combination of structural vulnerability, exposure and
seismic hazard, the analysis of each of the three parameters mentioned above becomes a rel-
evant issue for the global understanding of the state-of-the-art of a historical construction or
SA. Several methods exist in the current scientific literature for the vulnerability assessment
of masonry aggregates in historical city centres, based on a multi-level approach charac-
terized by increasing knowledge and in-depth in-situ evaluations [8]. Among them, the
simplest approaches are known as statistical (or observational) methods; they can be used
for a quick and easy analysis of seismic risk at regional/urban scale by defining, for each
masonry construction, a vulnerability index (IV) accounting for different parameters whose
weight is assumed based on expert evaluations of the post-seismic damage conditions [9].
The statistical approach allows to summarize the observed damages and the results of in-
situ investigations through damage probability matrices (DPMs), analysing vulnerabilities
and estimating damage for different structural typologies [10,11]. Statistical methods are
powerful tools for providing a preliminary screening of constructions’ fragilities on the
territory, determining a sort of priority list for the execution of deeper investigations and
for the following planning of retrofit interventions. Their limit otherwise lies in the con-
structions’ scenario to which they can be applied: their reliability progressively decreases
when applied to structures considerably different respect to the ones used for the method’s
calibration [12]. In addition, the lack of information coming from a survey may overlook
critical epistemic uncertainties, influencing the results [13,14]. Since these methods are ap-
plied through external onsite inspections, the level of confidence concerning the geometric
composition, the material properties, the boundary conditions and loads involved among
the orthogonal walls of the construction analysed, depends on the available data and the
experience of the technician [13,15–18]. In this context, Cosenza et al. (2005b) [19] try to
solve this kind of uncertainties with similar procedures but regarding RC buildings, which
are more standardized.

A more detailed analysis’ possibility consists of adopting mechanical methods de-
scribing the SU’s structural performance and the resulting seismic vulnerability of the
SA through in-depth numerical modelling and assessment. Despite the accuracy of the
achieved results, sophisticated modelling tools are needed to simulate the nonlinear be-
haviour of masonry structures subjected to lateral loading [15,16] leading to a strong
computational and time effort and, besides, to difficulty in the interpretation of data. More-
over, detailed modelling guidelines for the evaluation of the connections between SAs are
missing [17], and the reliability of mechanical methods decreases for areas with varied
construction typologies, built with different materials [18,19]. Therefore, it is difficult to
use mechanical methods for a quick and easy analysis of seismic risk at regional/urban
scale, being their application more efficient for single buildings in aggregates [20].

The aim of the present research work was the development of an enhanced statistical
method for the seismic vulnerability assessment of masonry aggregates and, in general,
of historical city centres characterized by high cultural and historical value actually not
provided by adequate analysis’ tools for achieving large-scale reliable results. The proposed
methodology adopts a multi-step approach owning the advantage of being calibrated
basing on the damages observed in the post-earthquake event phase of Central Italy
(2016): this makes the proposed method reliable for a variety of construction typologies
widespread on the territory in Central Italy, reducing the error connected to the application
of traditional literature approaches. The calibration procedure was developed considering
the case study of Campi Alto di Norcia (Italy), hit by an earthquake with a specific intensity.
Then, mathematical methods allow extending the achieved results to seismic events of
other intensities, defining different possible damage scenarios. In addition, comparing with
other methods presented in the literature—some of them will be addressed herein [21–23],
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the proposed one accounts for the lack of information about specific parameters—by
introducing an Information Quality (IQ) index—and for the influence coming from the
experience of the technician performing the survey in evaluating the vulnerability index.

2. Research Methodology

The methodology adopted in the present research work can be summarized in the
following phases (Figure 1), described with more details in the following paragraphs.
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Figure 1. Methodological framework adopted in the present work.

• Phase 1: Seismic vulnerability assessment of the case study. Different statistical methods
were selected and applied to Campi Alto di Norcia (Italy) with the aim of determining
the corresponding IV and comparing their accuracy in predicting the damage scenarios.
Possible limitations of selected methods were highlighted, finally selecting the most
performing one for the considered case study. A database of information with data
coming from in-situ surveys was elaborated.

• Phase 2: Calibration of the IV method. Based on the achievements of Phase 1, the cali-
bration of the adopted vulnerability index method for the selected case study was
performed, by comparing the “observed” damages caused by the 2016 earthquake
with the “analytical” ones predicted through the previously selected method. The cali-
bration was carried out through a statistical analysis within the context of Bayesian
inference [24].

• Phase 3: Development of an enhanced approach with the IQ index. An additional IQ index
was introduced in the calibrated procedure (Phase 2) accounting for uncertainties
related to the lack of information due to limited access or inspections. The knowledge
uncertainty was quantified through a parameter measuring its influence in the final
vulnerability assessment; an iterative analysis involving the change of the uncertainty
range of the parameters based on the observed damages was adopted.

3. The October 2016 Seismic Crisis

The 2016 October seismic crisis involved a series of seismic events that affected a
large area of Italian territory located along the central Apennines, between the Region of
Lazio (L), Umbria (U), Marche (M) and Abruzzo (A), from August 2016 to January 2017.
The earthquake characteristics are expressed in terms of magnitude, in order to have an
overall measure of the energy released during the seismic crises.

The first strong earthquake occurred on 24 August (Mw = 6), with the epicentre
positioned in the Tronto Valley, between the historical centres of Arquata del Tronto (M)
and Accumoli (L) [25]. The village of Amatrice was utterly destroyed, causing hundreds
of casualties and people left injured and homeless. During the earthquake swarm, two
strong aftershocks took place: the first on 26 October (Mw = 5.9) with epicentre in the
Umbria–Marche borders, between the villages of the province of Macerata di Visso (M),
Ussita (M) and Castelsantangelo sul Nera (M), while a second on 30 October (Mw = 6.5)
with epicentre between the cities of Norcia (U) and Preci (U) [26]. This last event caused the
collapse of several buildings and above all churches in a wide area, such as the basilica of
San Benedetto in Norcia and San Salvatore’s church in Campi Basso. The events of 26 and
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30 October did not cause any casualties in Campi Alto di Norcia, because residents were
evacuated from the city immediately after the previous seismic events. Other aftershocks
took place in January 2017 with a lower magnitude. Table 1 shows the evolution of the
2016–2017 earthquake sequence, identifying the position of all the mainshocks and the
epicentre areas.

Table 1. Parameters of the main seismic events of the earthquake swarm.

Earthquake Date
(yyyy–mm–dd)

Origin Time
(UTC)

Magnitude
(Mw)

Epicentre
Area

Hypocentral
Depth (Km)

Latitude
(N◦)

Longitude
(E◦)

2016 08 24 01:36:32 6.0 Accumoli (L) 8.0 42.70 13.23
2016 08 24 02:33:28 5.4 Norcia (U) 7.5 42.79 13.15
2016 10 26 17:10:36 5.4 Visso (M) 8.7 42.88 13.13
2016 10 26 19:18:05 5.9 Visso (M) 8.0 42.91 13.13
2016 10 30 06:40:17 6.5 Norcia (U) 9.0 42.83 13.11
2017 01 18 10:14:09 5.5 Montereale (A) 10.0 42.53 13.28
2017 01 18 10:25:23 5.4 Montereale (A) 9.0 42.49 13.31

The main shocks, that occurred in Campi Alto between 26 and 31 October 2016, are ex-
trapolated from the earthquake’s strong ground motion and post-processed. Table 2 shows
the maximum peak ground acceleration (PGA) registered by the Campi station for the
different seismic events analysed. It is not correct to compare single PGAs with forecasted
shakings (PGA with 10% probability of exceedance in 50 years), since probabilistic models
cannot be validated (or rejected) on the basis of a single event, but this process is useful to
understand the consistency of the model suggested by the Italian Code [27]. In this sense,
the maximum PGA is much higher than the one generally used for the structural analysis
of the buildings located in this area and, therefore, provide important information about
the action to which the structures were subjected and the resulting damage.

Table 2. Max PGA (% g) recorded by the accelerogram of the Campi Station in the three main directions for different seismic
events. The minus signs of the last column highlight the upward seismic acceleration.

Earthquake Date
(yyyy–mm–dd)

Origin Time
(UTC)

Magnitude
(Mw)

East–West
(pga)

North–South
(pga)

Up–Down
(pga)

2016 10 26 17:10:36 5.4 0.713 0.341 −0.429
2016 10 26 19:18:06 5.9 0.644 0.308 0.489
2016 10 31 07:05:45 4.0 0.180 0.087 −0.083

4. Campi Alto di Norcia: Description of the Historical City Centre

The selected case study city centre is Campi Alto di Norcia’s medieval town in Valner-
ina (Umbria), Italy, stroke by the earthquakes of 24 August and 30 October 2016.

4.1. General Features and Structural Aggregates (SAs)

The building heritage of Campi Alto di Norcia covers an area of approximately 3.5 ha
with 32 masonry aggregates (SAs) resulting in a total of 75 structural units (SUs), including
three churches (i.e., Madonna della Piazza, Sant’Andrea and Santa Maria delle Grazie), fully
destroyed by the 2016 earthquake sequence (Figure 2). According to the site morphology,
SAs develop on three different levels, perpendicular to the slope of the hill on which the
settlement is located. The first level has the entrance in correspondence of the downstream
road and the top floor at the level of the upstream road.
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Figure 2. (a) View of Campi Alto di Norcia after the 2016 earthquakes; (b) identification of structural
units, highlighted in red and identified with different IDs, within Campi.

The different levels and SAs are then connected through an internal organized system
of staircases. The construction heritage of Campi Alto di Norcia is made up of both isolated
masonry buildings and SAs arranged in rows, following the topography of the land.
The gross building total volume and area are respectively about 15,000 m3 and 3065 m2.

The SAs differ in terms of number, shape and height of SUs constituting them. In vol-
ume, isolated buildings cover the 29% of the whole stock (resulting in a volume of about
4243 m3), while external (end position) and internal (in between) SUs cover, respectively,
the 44% and 27% of whole constructions (i.e., 6577 and 4035 m3). The number and height
of the floors, the maintenance conditions and the materials adopted (both for vertical and
horizontal structures) are different for each structural unit.

4.2. Structural Units: Main Features and Classification

The typical SU is organized on three storeys: the ground floor–partially underground
following the hill’s slope–and two additional upper floors. A barrel masonry vault carved
into the rock is usually present at the ground level, while the storeys of the other floors,
as well as the roof, show the typical wooden structure sometimes replaced by reinforced
concrete elements, such as concrete slabs or ring beams, in case of retrofit interventions
over the years (Figure 3).
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The average inter-storey height of the single SU is about 3.0 m. Masonry walls show
different thickness along the height, with average values around 120 cm at the ground floor
and reductions up to 70 cm in the upper levels. About the 16% of the buildings surveyed
are one-storey constructions, often representing the rest of medieval houses.

Two, three and four-storey buildings represent respectively about 7%, 66% and 11% of
the whole constructions (Figure 4). Normally, the organization of the SUs is the same, with
a barrel vault at the first level and wooden or concrete slabs in the upper ones.
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Figure 4. Histogram (a) and map (b) of the distribution of the floor number for each SU in Campi Alto di Norcia. Horizontal
storeys and roof typologies.

Two main categories of horizontal storey typologies can be recognized, i.e., rigid and
semi-rigid (or deformable) ones, in relation to the presence (or the lack) of concrete slabs
and crossed/single timber joints. Steel ties and concrete rings to connect timber floors to
walls and/or masonry opposite walls are frequently introduced (Figure 5a), providing
the difference between “bad” and “good” connection to the vertical bearing system: the
presence of these elements and their workmanship define a “good” connection, while
the absence or bad quality of the anchors identify a “bad” connection. Concerning the
roof system, buildings in Campi Alto di Norcia have typically a mono-pitched or gable
roof structure, being about 80% realized with steel/concrete beams and concrete slabs,
avoiding horizontal thrusts acting on the external walls; the remaining 20% shows wooden
structures, completed by a roof overhang placed on the perimeter of the aggregate. The roof
typologies are therefore divided in “Heavy” or “Light” if made of concrete/steel or wood,
and in “Thrust” or “No Thrust” when they span perpendicular or parallel to the main
façade (Figure 5b).
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4.2.1. Materials and Masonry Typologies

The classification of the masonry typologies of the SUs is performed looking at their
conservation condition (i.e., presence of deterioration phenomena, cracking patterns, etc.)
and at the disposition of resistant blocks; of course, if needed, to the specific masonry
typology can be then associated a conventional strength (i.e., mechanical properties) bas-
ing on indications provided by current standards and/or scientific literature database.
Four different masonry typologies, all belonging to the general irregular masonry typology,
have been recognized; only in a few cases, e.g., in the presence of new SUs or in retrofitted
portions, the inner face of the walls is composed by regular brick blocks, while the external
face consists of irregular masonry. More details are provided in Table 3.

Table 3. Masonry typologies identified in the different SUs of Campi Alto di Norcia.

Masonry Typology Description
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4.2.2. Retrofitting Systems

The historical development of masonry aggregates, which leads to superposition
of several structural elements, strongly influences their seismic vulnerability evaluation.
The reliability of empirical methods, which need to standardize the assessment methodol-
ogy, decreases and this aspect is even more relevant if poor information about the buildings
is available. For example, by comparing the year when the building was retrofitted with
the technical standards of that time, it is possible to have an idea of the restoration tech-
niques employed and, therefore, of the possible related vulnerabilities. An investigation
of the construction year of the buildings and of the eventual application of retrofitting
technique was performed, after gathering and analysing original documentation and draw-
ings. In general, masonry buildings constituting SAs were realized before 1900, with the
exception of SU1019, built after 2000, and SUs 95, 96, 120, 170 and 173, reconstructed in the
1980s (Figure 2b).

Retrofit operations detected in Campi Alto di Norcia can be divided into two main
categories in relation to their execution, i.e., before or after the Valnerina earthquake of the
1979 (old/modern retrofit). The most common operations, in the first case, were the addition
of masonry buttress to the external wall of the SU, the introduction of metal ties to connect
the opposite wall facades of the buildings, etc. Modern retrofit—performed even after
the 1997 Umbria–Marche seismic event—consisted in the replacement of timber roofs and
timber floors with concrete slabs, in the application of injections and steel stitching to fill
the voids in the masonry walls and to connect different masonry faces. Concrete plates to
connect the walls with the new floors and roofs are also common, as well as reinforced
cement-based plaster to reduce the irregularity of the masonry composition.

As a general remark, the fragilities detected in buildings are caused by the inconsisten-
cies between the reconstructed and preserved parts, as well as the inadequate connections
between the new and the original masonry. An example is the cement-based plaster em-
ployed for the reconstruction of the upper floors, just added for aesthetic reasons. Similarly,
the demolition and reconstruction of vertical and horizontal structural elements with
modern materials at the ground floor level result in local vulnerabilities [6].

4.3. Damage Survey and Assessment through EMS98 Procedure

The seismic event of August and October 2016 required the deep in-situ surveys of
the structural damages undergone by the buildings constituting the historical city centre of
Campi Alto di Norcia. Inspections were performed in the immediate post-emergency phase,
by expert technicians following the indications of the AEDES forms [28] for the detection of
the partial and local collapses, cracking scenarios, structural failures, resulting deficiencies,
etc. The European Macroseismic Scale (EMS)98 [29] was then adopted and applied to the
different constructions with the aim of assigning a ‘damage class’ to each SU of Campi
Alto di Norcia. The EMS98 scale provides graphical illustrations and descriptions of six
different increasing damage levels—DL (i.e., D0, D1, D2, D3, D4 and D5—corresponding,
respectively, to the lack of damage, negligible to slight, moderate, substantial to heavy and
very heavy damage, and full destruction). With the aim of reducing the variability related
to the personal expertise of the surveyor [28], three different independent judgements were
used, applying then the average to the performed estimations. Table 4 and Figure 6 show
the distribution of the damage level for SUs, in terms of percentage of buildings and
volume of construction. Most SUs shows a DL equal to D2–D3 and D4–D5, but most of
the volume turns out to be in the range D2–D3, since many SUs, used as storage areas
and cellars with a low volume, are nowadays fully collapsed. Storage areas and cellars
were not further considered in the assessment procedure, therefore reducing the number of
analysed SUs to (only) 67.

Figure 7 shows a comparison performed, in a GIS environment, between the DL of
the SUs and the retrofit interventions carried out after the seismic events of 1979 and 1997.
Most of the SUs, where the timber roofs and timber floors were replaced with concrete slabs
(“storey stiffening” intervention marked in red), show a damage level D4–D5. The SUs
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reinforced with injections and steel stitching (“masonry reinforcement” marked in yellow)
have an average DL around D3, while the SUs with the lowest DL are the ones characterized
by the presence of ties on the façade (marked in green).

Table 4. Damage distribution organized according to the volume and the number of buildings involved.

Damage Level (DL) and General Description N◦ of SUs % SUs m3 %

D0 No damages 0 0% 0 0%
D0–D1 No structural damage and slight non-structural damage 11 16% 2120 15%
D1–D2 No structural damage and roof tiles detachment 9 13% 1550 11%

D2–D3 Slight structural damage and partial collapse of chimney and
roof tiles’ detachment 25 39% 5260 38%

D3–D4 Large and extensive cracks in most walls and chimney fracture
at the roofline 9 13% 2030 15%

D4–D5 Partial structure failure of roof and floors 6 9% 1510 11%
D5 Total collapse of the building 7 10% 1400 10%

Total 67 100% 13870 100%
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5. Seismic Vulnerability Assessment of Campi Alto di Norcia
5.1. Application of Traditional Vulnerability Index (IV) Methodologies and Results

The statistical approach used for the seismic vulnerability assessment of masonry
buildings at urban scale is the vulnerability index method (IV method), originally devel-
oped by [30] and later revisited by [31–33]. The method is based on defining the seismic
vulnerability of an SU within an SA through the analysis of several parameters—selected
in relation to the structural typology—provided by a “weight” and finally defining a vul-
nerability index (1). Resulting values are usually normalized in the range 0 ÷ 100 [34] (2).
The IV evaluation is performed based on a comprehensive survey of the building, where the
relevance of each parameter, measured by its weight, is defined based on post-earthquake
damage observation. Having determined the hazard level of the territory resorting to an
intensity scale, it is possible to evaluate the expected damage scenarios of a specific area
using semi-empirical methods [35].

I∗V = ∑ pi·ci where
{

ci = vulnerability class “i”
pi = weight i

(1)

IV = I∗V normalized to 100% (2)

Current vulnerability index methodologies were developed and calibrated basing on
specific constructions’ typologies, being then provided by good reliability for buildings
belonging to those categories but decreasing their if relevant differences are present. In the
present research work, three traditional approaches were used: the GNTD method [21],
the Formisano method [22] and the Vicente approach [35], being more appropriate for the
considered context.

The GDNT method [21] adopts for the IV evaluation eleven parameters (namely P1
to P11) and four vulnerability classes (A to D, being A the best condition and D the worst
one); the method was developed for isolated buildings, taking into account their geometry,
structural and non-structural features, the floors and roof typologies, walls thickness and
maintenance conditions. The maximum value of the achievable non-normalized I*

V is
equal to 382.5.

With the aim of improving the [21] procedure by considering the SA effect and the
interaction among SUs, Formisano [22] introduced five additional parameters: the position
of the SU in the aggregate, the percentage of openings in the façade walls, the presence
of staggered slabs, the structural difference between adjoining SUs and the interaction of
neighbouring SUs with different heights. Compared to the GDNT method, this approach
disregarded, at least in an explicit manner, the qualitative resistance of the walls. Some of
the weights were also redefined. Negative values were assigned with the aim of reducing
the vulnerability. The maximum value of the achievable non-normalized I*

V is equal
to 515.25.

The Vicente method [35] introduced 4 macro-classes of parameters related to the
structural building system (P1 to P4), to the irregularities and interaction (P7 to P10),
to floor slabs and roof (P11 to P12), to conservation status and other elements (P13 to
P14); 3 new parameters (P4, P6 and P7) were also introduced. The maximum value of
the achievable non-normalized I*

V is equal to 650. Table 5 summarizes the parameters
adopted in the different methods, vulnerability classes and weights associated. As visible,
the three approaches have several common parameters even if the weight associated can
slightly vary.
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Table 5. Summary table of vulnerability parameters adopted by the different methods.

Vulnerability Parameters Short Description
Vulnerability

Class Weight

A B C D

G
N

D
T

(1
99

4)

P1 Organization of vertical
structures

Age of the construction and connection typology
between the walls 0 5 20 45 1

P2 Nature of vertical
structures Vertical element typology 0 5 25 45 0.25

P3 Qualitative resistance Walls’ shear strength assuming box behaviour 0 5 25 45 1.5

P4 Location of building and
type of foundation Slope and quality of the foundation soil 0 5 25 45 0.75

P5 Floor typology Quality of floor type considering stiffness and
connection with the walls 0 5 15 45 1

P6 Plan regularity Length/width ratio of the building plan 0 5 25 45 0.5

P7 Height regularity Mass variation in elevation and the presence of
arcades or towers 0 5 25 45 1

P8 Distribution of plan
resisting elements Spacing between walls 0 5 25 45 0.25

P9 Roof typology Weight and characteristics (thrust) of the roof 0 15 25 45 1

P10 Non-structural elements Presence, typology and connection to the
building 0 0 25 45 0.25

P11 Physical conditions Masonry quality and cracking scenario 0 5 25 45 1

Fo
rm

is
an

o
(2

01
4)

P1 Organization of vertical
structures

Age of the construction and connection typology
between the walls 0 5 20 45 1

P2 Nature of vertical
structures Vertical element typology 0 5 25 45 0.25

P3 Location of building and
type of foundation Slope and quality of the foundation soil 0 5 25 45 0.75

P4 Floor typology Quality of floor type considering stiffness and
connection with the walls 0 5 15 45 0.75

P5 Plan regularity Length/width ratio of the building plan 0 5 25 45 0.5

P6 Height regularity Mass variation in elevation and the presence of
arcades or towers 0 5 25 45 1

P7 Distribution of plan
resisting elements Spacing between walls 0 5 25 45 1.5

P8 Roof typology Weight and characteristics (thrust) of the roof 0 15 25 45 0.75

P9 Non-structural elements Presence, typology and connection to the
building 0 0 25 45 0.25

P10 Physical conditions Masonry quality and cracking scenario 0 5 25 45 1

P11 Misalignment of
openings SU % difference of openings in adjacent facades −20 0 25 45 1

P12 Masonry disconnections Effect of structural or typological heterogeneity
in adjacent SUs −15 −10 0 45 1.2

P1
Presence of adjacent

buildings with different
height

Location of the SU in the SA and height’s
variation −20 0 15 45 1

P14 Position of the SU in the
SA Number of sides next to other SUs −45 −25 −15 0 1.5

P15 Presence and n◦ of
staggered floors Number of staggered floors in the SA 0 15 25 45 0.5
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Table 5. Cont.

Vulnerability Parameters Short Description
Vulnerability

Class Weight

A B C D

V
ic

en
te

(2
01

0)

P1 Type of resisting system Construction age, quality of walls’ connection 0 5 20 50 0.75

P2 Quality of the resisting
system Vertical Element Typology 0 5 20 50 1

P3 Conventional strength Walls’ shear strength assuming box behaviour 0 5 20 50 1.5

P4 Maximum distance
between walls Spacing between walls 0 5 20 50 0.5

P5 Number of floors Number of floors in the building 0 5 20 50 1.5

P6 Location of building and
type of foundation Slope and quality of the foundation soil 0 5 20 50 0.75

P7 Aggregate position and
interaction Position of the SU in the SA 0 5 20 50 1.5

P8 Plan configuration Length/ width ratio of the building plan 0 5 20 50 0.75

P9 Height regularity Mass variation in elevation and the presence of
arcades or towers 0 5 20 50 0.75

P10 Wall façade openings
and alignments Influence of the misalignment 0 5 20 50 0.5

P11 Horizontal diaphragms Quality of floor type considering stiffness and
connection with the walls 0 5 20 50 1

P12 Roof typology Weight and the roof typology (thrust) 0 5 20 50 1

P13 Fragilities and
conservation state Masonry quality and cracking scenario 0 5 20 50 1

P14 Non-structural elements Type and characteristics of the non-structural
elements 0 5 20 50 0.5

Figure 8 shows the vulnerability classes and the influence that every single parameter
has in the overall seismic vulnerability assessment, considering the three different methods.
The topography of settlement (P4 for GDNT, P3 for Formisano and P6 for Vicente) strongly
penalizes the seismic vulnerability of the buildings, resulting in class D.

On the contrary, the small size of the buildings and the low spacing between walls
have a positive impact on their vulnerability (P8 for GDNT, P7 for Formisano and P4 for
Vicente), although relatively limited on the final IV.

The application of the GNDT method to Campi Alto di Norcia results in an average IV
equal to 47 with standard deviation (SD) of 14 (Figure 9). The values of the normalized
IV—evaluated according to [2]—are between 20 and 30 for the 6% of the SUs analysed
and between 30 and 40 for the 19% of the SUs. The remaining 43% shows IV within
the range 40–50, 9% in the range 50–60, 7% in the range 60–70 and, finally, 12% in the
range 70–80. The remaining SUs present a seismic vulnerability index value lower than
20. The Formisano method [22] was used to account for aggregate effects within SUs:
isolated buildings were then neglected, leading to the analysis of only 50 SUs. The achieved
normalized IV values [2] are between 0 and 10 for 13% of the SUs analysed and between 10
and 20, 20 and 30, respectively, for 44% and 35% of SUs. The remaining buildings show a
seismic vulnerability equally distributed in the ranges 30–40% and 40–50%. As a general
remark, the Formisano method [22] provides a lower vulnerability of SAs of Campi Alto di
Norcia, with an average IV value of 17 and a standard deviation (SD) equal to 9 (Figure 9).
For the sake of comparison, considering the same 50 SUs, the GNDT indicates an average
normalized IV value of 43 and an SD of 10. Finally, the adoption of the Vicente method
(2010) led to an average normalized IV equal to 41 and a standard deviation (SD) of 11; in
terms of distribution, 4% of the evaluated buildings shows an IV index between 10 and 20,
12% between 20 and 30, 30% between 30 and 40, and, finally, the remaining 35% between
40 and 50 (Figure 9). Again, for the sake of completeness, considering only the 50 SUs in
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SAs used in the Formisano method, the average IV value is 39 with an SD of 9. Figure 10
summarizes the IV distribution in the case study of Campi Alto di Norcia.
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Figure 10. Normalized IV distribution in the case study of Campi Alto di Norcia, according to (a) the GDNT method, (b) the
Formisano method and (c) the Vicente method.

Trying to summarize the achieved results in terms of normalized values, the GDNT
procedure is the method providing the highest IV, possible consequence of ignoring of the
aggregate effect’s influence. Regarding the trend of the data, the Formisano approach is
the one that focuses results around the average value; the Vicente method, considering
different vulnerability indexes for multiple buildings, shows the highest SD.

The results well reflect the influence of the weights and the vulnerability scores in
the seismic vulnerability assessment, e.g., the low vulnerability values obtained from
the Formisano approach are caused by parameters P4 (position of the building in the
masonry aggregate) and P1 (percentage of opening areas among adjacent facades) owning
a positive effect on the vulnerability results. Similarly, parameter P7 (aggregate position
and interaction) of the Vicente method decreases the seismic performance of the SUs located
at the corners, improving otherwise significantly the behaviour of the SUs inside the SAs.
Figure 11 shows the distribution of the Iv in the case study, assessed with the different
methods. What is presented above, in a general way, indicates relevant differences in the
adoption of different methods that were, as said, calibrated basing on different case studies.
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5.2. Reliability of the Seismic Vulnerability Methods

The reliability of the selected statistical methods for the buildings’ typologies of
Campi Alto di Norcia was assessed by comparing the real damage data recorded after
the 2016 earthquake sequence with theoretical damage scenarios evaluated through the
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above-presented IV methods. For the evaluation of the theoretical damage connected to the
different approaches, the formulation proposed by [31] was adopted:

µT = 2.5 + 3· tan h
(

I + 6.25 · V − 12.7
Q

)
·f(V, I) (3)

f(V, I) =

{
e

V
2 ·(I−7) I ≤ 7

1 I > 7
(4)

V = 0.56 + 0.0064·IV (5)

being V the vulnerability calculated from the IV value, I the intensity using the European
Macroseismic Scale 1998 (EMS98) using numbers between I (not felt) and XII (complete
destruction) for the individual classification of earthquakes, Q the ductility factor and µT
the damage value in the EMS98 scale, varying between 1 (negligible to slight damage) and
5 (destruction) according to [29]. Based on post-seismic damage evaluations of irregular
brick masonry buildings and on [36], a ductility factor of 2.5 was adopted for masonry
buildings with sufficient ductile behaviour.

To measure the strength of shaking produced by the 2016 earthquake at Campi Alto di
Norcia in October 2016, the magnitude, as well as the accelerograms, of the Campi Station
(Table 2) were transformed into a macroseismic intensity; the results were then compared
with data collected by the technician, who surveyed the damages just after the seismic
events [37]. Finally, an intensity IMCS equal to 8.5, evaluated with the MCS scale, was
assigned to the case study [38]. Since the damage assessment was performed, as already
said in the previous paragraph, through the European Macroseismic Intensity, to correlate
the two intensity measures the analytical expression provided by [39] was used:

IEMS98 = 0.734 + 0.814·IMCS = 7.65 ≈ 8.0 (6)

The relative error was evaluated as the difference between the theoretical and the
observed damage in the case study after the seismic events of October 2016, then related to
that specific seismic event’s intensity (6).

The Iv method reliability was calculated as the mean relative error of the values
achieved for the whole building stock analysed. The uncertainties affecting the methods
are both epistemic and aleatory, being related to the features characterizing each aggregate,
to the classification of buildings into a vulnerability class or construction typology [40].

To overcome these issues and to control with more accuracy the reliability of the IV
method, the vulnerability of each building was evaluated not as a single value but as a range
referred to the whole historical city centre. By this way, the upper and lower bounds of the
IV were defined for each SU, considering the SD of the vulnerability assessment of Campi
Alto di Norcia. This procedure allows obtaining, for each IV, the possible vulnerability
variation by taking into account the different assessments performed in the historic centre
for the construction typology analysed. The aim was to evaluate a range of possible results
for the seismic vulnerability of each building, whose amplitude is defined by the dispersion
of the data with respect to the sample space. Resorting to Equation (3), it was then possible
to achieve a reliable and credible range for the expected damage.

The accuracy of each statistical method was then evaluated as the minimum relative
error achieved considering the theoretical damage scenario defined with the reduced IV
and with the increased IV, compared to the real/observed one in the case study. A range
of the initial level of expected damage was then established to perform the parametric
analysis of the seismic vulnerability of the considered construction typology, evaluating
the influence of the IV methods in the seismic response of the buildings. The reliability of
the IV method was assessed, considering two typologies of relative error:

- at the individual building level (Errmean,d) considering the difference of the theoretical
damage (µT), evaluated with the direct measure of the Iv of the single building, with
the real damage observed (µR);
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- at a global level (Errmean,r), considering the difference of the theoretical damage
scenarios defined with the reduced IV (µ−T ) and with the increased IV (µ+

T ), with the
real damage observed (µR).

The comparison of the results achieved with the Errmean,r and Errmean,d provide import
information about the possibility of evaluating the IV of each building within a range, rather
than for a single value. The next expressions (7) and (8) try to clarify the procedure adopted
for each building:

Iv =


I−v = Iv − SD → µ−T (lower bound)→ Err− =

∣∣µR − µ−T
∣∣

Iv → µT (direct measure)→ Err = |µR − µT |
I+v = Iv + SD → µ+

T (upper bound)→ Err+ =
∣∣µR − µ+

T

∣∣ (7)

Errmean,d =
(

∑ Err
n

)
Errmean,r =

(
∑ min(Err− ;Err+)

n

) (8)

Being Err the error for a given building defined as the difference between theoretical
and real damage detected in the case study in absolute value, n the number of buildings,
and Err− and Err+ the errors in a given building as the minimum difference between
theoretical damage, considering the upper and lower bounds, and the real one of the case
study in absolute value.

Figure 12 summarizes the procedure adopted for the reliability evaluation of the
selected IV methods in the case study considering the vulnerability range for each building.
The process was applied to each of the three IV methods adopted, comparing the results
obtained and assessing the lowest relative error (Table 6).
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Table 6. Evaluation of the Iv method reliability in the case study analysed.

IV Method Accuracy (Direct Measure) IV Method Accuracy (Assuming a Range)

IV Methods Average relative errors Variance relative errors Average relative errors Variance relative errors
GDNT II 0.87 0.67 0.67 0.37

Formisano 1.13 0.72 0.72 0.55
Vicente 0.85 0.61 0.58 0.34

As visible, none of the methods was able to estimate the observed damage of Campi Alto
di Norcia with high accuracy, resulting in differences between real and theoretical damage,
evaluated for each building, higher than 0.85 for all procedures (Figure 13). Considering a
probable theoretical damage range, the relative errors decreased, remaining otherwise higher
than 0.58. As already said, results highlight the poor accuracy of the methods if used under
very different conditions than those assumed in their calibration processes.
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To check if the relative error is caused by an overestimation or underestimation of the
real damage by the different methods, the whole analysis of the damage distribution within
the case study is necessary. Considering the mean value of the IV range for each building
in the SA, it is possible to compare results of the different methods at single building and
urban scale levels. Figure 14 shows the comparison between theoretical and real damage
distribution in Campi Alto di Norcia, carried out at building scale by evaluating, for each
SU, the distance between the real and expected damage.
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Figure 14. Comparison between the real damage detected in the case study and the theoretical
damage evaluated through different vulnerability methodologies for each SU.

As visible, while real damage values are quite scattered, the distribution of the esti-
mated damage is concentrated around the average values: this indicates the limits con-
nected to the adoption of Equation (3) when estimating high or low damage classes for
different vulnerability values.

Figure 15 shows otherwise the comparison between real and theoretical damage for
Campi Alto di Norcia using the different vulnerability methods previously presented.
Some preliminary conclusions can be drafted: the Formisano method [22] provides less
conservative vulnerability values, with underestimation of the real damage; the average
value of the real damage lies in the middle between the GDNT [21] and the Vicente [35]
methods, showing how the latter can better catch the influence of the aggregate effect for
the present case study.
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Figure 15. Comparison between the real damage detected in the case study (a) and the theoretical damage scenarios
evaluated through (b) the GDNT, (c) the Vicente and (d) the Formisano method for each SU.

What is herein presented concerns the comparison between real/theoretical damage
for the different methodologies applied to the case study related to the specific seismic
event of 2016 and, therefore, to its specific intensity. Extensions are otherwise needed to
provide a general overview of the effective vulnerability of the case study.

By considering the average vulnerability values obtained for the different approaches
and changing the macroseismic intensity, it is possible to numerically develop various
damage scenarios for the urban centre of the case study analysed, following Equation (3).
The vulnerability curves presented in Figure 16 show how these methods overestimate
or underestimate the real damage even for different macroseismic intensities. The curve
representing the real damage of the case study for different seismic intensity is a simple
forecast, achieved through the average vulnerability value obtained from the real damage
detected through Equation (3).
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6. Calibration of the Vicente IV Method for Campi Alto di Norcia

Stating the results previously presented, the Vicente method is the one showing more
performing results and, besides, including aggregate considerations; with the aim of achiev-
ing an IV method suitable for damage prediction in Campi Alto di Norcia, a calibration
procedure was performed to opportunely modify the weights associated to the different
parameters achieving a good agreement between observed and theoretical damage sce-
nario. The issue consisted of relating the distribution of real/observed damages to the
vulnerability assessments carried out using parameters with fixed weights and classes,
translating—in this specific application—to a problem with 67 linearly independent equa-
tions (representing the damage of the buildings surveyed) and 14 unknown variables (the
weights used for each building) that cannot be solved at a deterministic level but require a
statistical approach where the evidence of a true state (i.e., damage detected) is expressed
in terms of degrees of probability.

A Bayesian linear regression was therefore adopted. The calibration of an IV method
was tackled as an inference problem; the probability of having a particular event E (the
damage) given the occurrence of A (the vulnerability) was expressed by Equation (9),
representing the basic idea used for this calibration.

P(Ei|A) =
P(A|Ei)·P(Ei)

P(A)
(9)

The statistical model combined some a priori knowledge of the weights with the
observed data points through Equation (10). The weights (θ) were considered as a random
vector, following the so-called prior distribution π. After checking the reliability of the first
distribution, a posterior distribution π(θ|y) was evaluated through a likelihood function π

(y|θ), representing the probability of observing the data (y) given a certain set of weights
theta (θ) [41].

π(θ|x) = π(x|θ)π(θ)
π(x)

(10)

The posterior distribution represented then an update of the prior one correcting the
initial estimation. The Markov Chain Monte Carlo simulation sampling method (MCMC)
was used for computing the solution. According to an iterative process, a proposed
new distribution was accepted or rejected until the solution converged within a given
probability [42]. Figure 17 summarizes the procedure followed to define the weight
distribution describing the real damage scenario detected in the case study.
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The analysis of the correlation between the weight distributions and the real damage
detected, and its subsequent improvement, was made using MATLAB-based software
framework called UQLab [43].

Figure 18 and Table 7 compare the calibrated and non-calibrated weights used in the
Vicente method for vulnerability assessment and damage scenario evaluation. The reli-
ability of the IV method was improved, reducing the mean relative error between real
and theoretical damage from 0.85 to 0.49, considering the direct measure (i.e., each SU
individually with no uncertainty). Considering the full sample range of the calibrated
vulnerability assessment, the mean relative error between real and theoretical damage
shifted from 0.58 to 0.53. Since the calibrated Iv values were less concentrated around an
average value and more distributed along the damage curve, the SD did not suffer for
strong modifications.
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The weights’ calibration was performed through the damage scenario of a case study
hit by a seismic event with a specific intensity (IEMS98 = 7.65 ≈ 8.0): this means that the
vulnerability assessment of a historical centre was carried out with the calibrated weights
only with a seismic intensity similar to that used. On the other hand, mathematical
methods [31] can be applied with the aim of extending the achieved results through the
adoption of the calibrated model. In this way, vulnerability curves for this construction
typology can be developed for different seismic intensities. It is noted that this process
is inevitably affected by uncertainties related to the theoretical estimation of the damage
scenarios with a mathematical expression, not compared with the real damage.

A more robust calibration of the weights can be also developed for different seis-
mic intensities, using the same calibration process with a bigger sample space, based on
post-earthquake damage data of the same construction typology, hit by different earth-
quakes [44].

7. Introduction of the Information Quality (IQ) Index

The individual building’s vulnerability is influenced by the knowledge of the uncer-
tainties related to considered parameters; the procedure before presented was therefore
repeated introducing an Information Quality (IQ) index accounting for confidence level (CL)
classes defined for the different parameters used in the IV method. A 4-level confidence
scale was developed based on the experience gained during the damage survey:

- High confidence level (H): high information quality coming from complete (internal and
external) surveys and direct measures on buildings including structures, materials,
details, etc. High confidence in achieved data.

- Medium confidence level (M): medium information quality, coming from external sur-
veys on buildings and information rescued from historical/critical analysis or visual
inspections. Medium confidence in achieved data resulted from direct/indirect mea-
surements.

- Low confidence level (L): external geometrical survey of the construction through satel-
lite images integrated with considerations coming from buildings of similar typologies.
Very low confidence in achieved data resulted from hypotheses not verified for the
building or the urban setting.

Absent confidence level (A): information adopted with limited confidence or by random
choice. The parameters’ class attribution is only indicative.

Three additional intermediate categories were introduced, with the aim of reducing
the arbitrary choices of a class and providing an improved score assignment [45]: high-
medium (HM), medium-low (ML) and low-absent (LA). The definition of a large number
of confidence classes was related to the specific features of the constructions, characterized
by high variability, and by the experience of the surveyor, that—as said—highly influences
the outputs of IV methods. Figure 19 shows the distribution of the CL in the case study;
thanks to the different information collected and inspections carried out, more than 66%
of the parameters resulted in a high-medium CL. In relation to assessed CL, a coefficient
accounting for related uncertainties (UL) was determined (Table 8). The final CL for each
class then resulted from the weighted average of the different CL ranges assigned to the
buildings, neglecting the extreme cases with damage equal to D0–D1 or D5 according to
EMS98 classification.
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Table 8. Uncertainty ranges and definition of the confidence classes.

Confidence Level (CL) Percentage of Uncertainty (UL)

High Confidence (H) 0.0%
High-Medium Confidence (HM) 10.0%

Medium Confidence (M) 20.0%
Medium-Low Confidence (ML) 30.0%

Low Confidence (L) 40.0%
Low-No Confidence (LA) 50.0%

No Confidence (A) 60.0%

The level of uncertainty (UL) was applied to the weight of each parameter, determining
the relevance (∆) of the parameter for the seismic behaviour of the building, Equation (11).

∆ =
∑ pi·UL

∑ pi
(11)

being pi the weight of the i-th parameter and UL the corresponding uncertainty in relation
to Table 8. The ∆ value was used to increase or reduce the IV defining a range where
the vulnerability index expresses a correct result (11). These bounds can be seen as the
transposition of the percentage of uncertainty coming from the evaluation of the parameters
determining the IV.

The range of numbers associated to each class was evaluated by checking whether the
average of the damage detected (µR) was within the upper

(
µ+

T
)

and lower bound
(
µ−T
)

of
the theoretical damage, assessed by increasing and reducing the IV. The definition of the
CL to be assigned to each class was defined through a step-by-step procedure, in which
the uncertainty interval was calculated after assessing the vulnerability of each building
(Figure 20).

Iv =


I−v = ∑ pi(1− ∆)·ci → µ−T (lower bound)

Iv = ∑ pi·ci → µT
I+v = ∑ pi(1 + ∆)·ci → µ+

T (upper bound)
(12)
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Figure 20. Step by step procedure for the LC definition of each confidence class.

The use of the IQ index in the assessment of seismic vulnerability provided a range of
possible values of IV for each masonry building analysed. In this case study, the uncertainty
classes used to describe the knowledge of the different Iv parameters, belong, on average,
to the medium confidence class. When considering the upper and the lower bound IV
values, a new damage scenario was defined for the case study hit by the seismic intensity
IEMS98 = 7.65 ≈ 8.0 (Figures 21 and 22). The line defining the average of the real damage
overlapped the line of the mean theoretical damage “average calibrated”, thanks to the
implemented weights’ calibration procedure. In this sense, the upper and lower bound
allowed to better evaluate the expected damage of the single SU, while on average define
the possible damage scenarios of the case study according to the EMS98 scale. Additionally
in this case, the limitation of the mean damage formulation, Equation (3), in estimating high
or low damage classes for different vulnerability values was evident: while real damage
values are more scattered, the distribution of the estimated damage is concentrated around
the average values. Figure 23 shows the relative error distribution considering all methods
used, as well as the calibrated methods with and without the IQ index. The mean relative
error between real and theoretical damage shifted from 0.49 (calibrated method) to 0.31
(calibrated method with IQ index).
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8. Conclusions

Seismic vulnerability assessment methods, or Iv methods, based on statistical eval-
uations and damage observations are suitable tools for urban scale analysis; exploiting
limited information and resources, they provide a first screening on the fragility of the area
for a given seismic scenario. In this research, several well-accepted vulnerability index
methods were studied and compared to verify their reliability in the estimation of damage
scenarios, using as reference a case study hit by the recent 2016 Central Italy earthquake.

Results revealed the main limitations of these methods, and, as a whole, of statistical
methods, i.e., their high dependence on the building characteristics and on the seismic
scenario(s) originally used to calibrate and validate them. Another limitation is related
to the definition of a single value for the vulnerability, which can potentially increase the
difference between the real and expected/analytical damage.

The uncertainties related to the information quality of the survey were accounted for
through a new parameter, the IQ index, analysing its influence on the variation of the IV
value. The obtained results revealed a difficulty in integrating this vulnerability assessment
technique into a macroseismic method for the development of damage scenarios. It is
important to note that a vulnerability assessment extended by two limiting conditions
provides a greater awareness of the expected damage scenarios: if the results are distributed
in a wide range, the survey has to be improved, giving a practical perspective to the IQ
index. In this sense, the relative error between the theoretical and real damage has to be
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considered critically, paying attention to the reduction or increase of the damage level
compared to the original data.

The estimated damage distribution is concentrated around the middle classes of the
EMS98 scale, not allowing to consider low (D0) or high (D5) damage classes, even for
very low or high vulnerabilities. This leads to an increase of the relative error between the
theoretical and real damage, resulting from a sort of incorrect estimation of Bernardini’s for-
mulation [31] and not by the vulnerability estimation itself. It shall also be underlined that
the weights’ calibration is performed for a specific seismic intensity (IEMS98 = 7.65 ≈ 8.0);
the calibrated method is reliable for historical centres with the same construction typology,
which, on average, is defined by a specific seismic vulnerability and hit by high seismic
intensity (IEMS98 ≈ 8.0). Most of the historical centres located in Central Italy, such as for
example Assisi, L’Aquila [46] and Castelluccio di Norcia [47], present settlement configura-
tions and building typologies similar to the case study. Their level of seismic hazard is also
higher than the one in the case study analysed herein. Still, mathematical models can be a
valid tool, when calibrated basing on real data, to achieve correct predictions.

As a final note, it is worth listing a few possibilities of future improvement of seismic
vulnerability assessment approaches, namely by increasing the sample space of the data
used for the statistical analysis, particularly in order to consider further seismic intensities
and to consider other formulations for the definition of damage scenarios. In this sense,
considering a large amount of data available, the Bayesian Linear Regression can be
implemented in an artificial neural network (ANN) model [48]. For this application, the
ANN must be trained to accurately understand the relationship between the damage level
and the specific vulnerability index. According to the results achieved, a new analytical
expression can be developed for the forecast of damage scenarios, and the issues related to
the Bernardini et al. (2007) formulation [31] can be overcome.
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