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Abstract: In this paper, model predictive control (MPC) based on an adaptive neural-fuzzy inference
system (ANFIS) is proposed to realize control of an omni-directional service robot in path tracking.
The weight of the cost function in a traditional MPC needs to be manually adjusted, and it is difficult
to adjust to a satisfactory value. In order to improve the performance and the control accuracy
of MPC, a fuzzy system trained by ANFIS is used to adaptively adjust the weight of MPC’s cost
function to reduce the error in the process of path tracking. The different simulation experiments
are conducted to verify the performance of the proposed algorithm. The experimental results show
that the distance error of MPC based on ANFIS is reduced by more than 50% under different paths
compared with a traditional MPC, and the angle error is reduced by more than 70%. Meanwhile, the
stability is increased by around 60%. The results show the feasibility and superiority of MPC based
on ANFIS.

Keywords: omni-directional chassis; path tracking; model predictive control; adaptive neural-fuzzy
inference system; weight of cost function

1. Introduction

In recent years, the technology of service robots has been developed widely, and it has
been a research hotspot [1,2]. Among these, path tracing is crucial.

Path tracing methods mainly include proportion integration differentiation (PID),
fuzzy control (FC), proportion integration differentiation fuzzy (FPID), model predictive
control (MPC), fuzzy model predictive control (FMPC), etc. In [2], a simple and effective
PID robust tuning method is proposed and applied to a simple mobile robot model with
uncertain delay estimation. Although experiments show that it has good path tracking
performance, it cannot cope with multiple controlled quantities simultaneously. Moreover,
it is not suitable for complex nonlinear time-varying systems. In [3], a path tracking and
heading adjustment system for a Mecanum wheel robot based on a fuzzy logic controller
(FLC) is proposed. It can achieve better path tracking control without external references
such as beacons or visual marks. However, it simplifies a Mecanum wheel chassis to a dif-
ferential wheel chassis during the control process. Additionally, the system cannot control
the rotation angle of the chassis, which makes the chassis lose the flexibility unique to the
Mecanum wheel chassis. In [4], an equivalence relationship between fuzzy proportional-
integral-derivative (PID) controllers and conventional PID controllers is put forward, the
designer can further tune the membership functions of fuzzy variables in the control rules
to acquire more superior performance. In [5], a self-tuning fuzzy PID controller, which is
easy to be realized on a single-chip microcomputer, is presented. Even though it can control
irregular lines precisely, the speed response of a single motor is insufficient in a short time.
In [6], a fuzzy controller is designed to minimize the path tracking error, and a cuckoo
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optimization algorithm (COA) is used to optimize the fuzzy controller. Experiments show
that it can achieve accurate path tracking.

Predictive control is a novel type of control algorithm in the field of industrial process
control. It is not only a representative advanced control algorithm but also a theoreti-
cal system of stability and robust design of uncertain systems with rolling optimization
characteristics [7]. In [8], a MPC strategy for non-holonomic constrained wheeled mobile
robot (WMR) is put forward. The kinematic model of the WMR is linearized. According
to the constraints of the status and input, WMR control law can achieve optimal control.
In [9–12], MPC applied to an omni-directional wheeled chassis is introduced. MPC can
realize accurate control of complex paths. Nevertheless, some parameters of MPC need
to be manually adjusted, which is time-consuming and labor-intensive. If the tuning is
inaccurate, it is difficult to achieve optimal path tracking. Thus, there is more research
and development required n the direction of adaptive tuning. In [13], an adaptive fuzzy
nonlinear model predictive control (FNMPC) strategy for trajectory tracking of the WMR
is proposed. An adaptive fuzzy system is obtained through training and applied to the
approximation of the WMR model. The parameters of the fuzzy model are adjusted online
by using the gradient descent algorithm, which can minimize the tracking error of a given
trajectory. In [14], an improved MPC strategy is designed. The improved MPC also can
adaptively adjust the weight of the cost function through fuzzy control, and it is superior to
a traditional MPC in terms of tracking accuracy and steering stability. However, operators
need to summarize a complete set of fuzzy control rules through a large amount of practical
experience. If the fuzzy system is simple or wrong, it may lead to the reduction of control
accuracy, even the deterioration of dynamic quality. Therefore, it is more difficult to build
complete fuzzy rules.

In [15], an adaptive network fuzzy inference system (ANFIS) architecture and learning
process are explored. This system can realize the establishment of a fuzzy inference system
in the framework of an adaptive network. It uses a hybrid learning algorithm or other
learning algorithms to train and learn data set. A superior fuzzy system can also be
obtained by optimizing the premise and consequence parameters. In [16], a control of a
pilot-scale conversion hydrogen production unit is studied. ANFIS is applied to MPC to
realize an optimal control strategy. The process is trained and learned by ANFIS, and the
membership function is optimized using empirical training data.

In order to ensure high tracking accuracy and stability, and without the need for
operators to summarize a complete set of fuzzy control rules, this paper puts forward a
strategy of MPC based on ANFIS. This strategy can adaptively adjust the weight of the
cost function in MPC to achieve accurate path tracking.

The rest of this paper is organized as follows: Section 2 describes the kinematic model
of the omni-directional wheel chassis. In Section 3, the design of the control system is
proposed. Section 4 is the simulation analysis. The conclusion of this paper is presented in
Section 5.

2. Kinematic Model

As shown in Figure 1, the local coordinate frame of the service robot chassis is XRPYR,
the global coordinate frame is XIOYI, and the point P is the reference point on the chassis.

In the global coordinate frame, the position P is determined by XI and YI [17–20], and
the position of the chassis in the local coordinate frame is:

ξR = R(θ)•ξI (1)
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where θ is the angle between the global coordinate frame and the local coordinate frame,
ξI =

[
xI yI θI

]T is the position of the robot in the global coordinate frame, and ξR is

ξR =
[

xR yR θR
]T. R(θ) is the rotation matrix. R(θ) is:

R(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (2)Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 19 
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Figure 1. Global coordinate and local coordinate frames.

The rolling constraint of the Mecanum wheel forces all rollers to move along the
ground direction. There must be a certain number of rollers rotating so that there is pure
rolling at the contact point [10,21]. The velocity direction of the wheels is decomposed
and deduced:

jR(θ)
•
ξI = r

•
ϕ cos γ (3)

where j =
[

sin(α + β + γ) − cos(α + β + γ) −l cos(β + γ)
]
, as shown in Figure 2, l

is the distance between every Mecanum wheel and the point P, and r is the radius of the
Mecanum wheel.
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Figure 2. A schematic diagram of the motion of a single wheel.

The rolling constraints of an individual Mecanum wheel can be grouped into the
single Equations (4) and (5).

JIR(θ)
•
ξI − J2

•
ϕ = 0 (4)

•
ϕ = J2

−1 JIR(θ)
•
ξI (5)
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where
•
ϕ(t) is the velocity function of the horizontal axis of the Mecanum wheel.

JI =


sin(α1 + β1 + γ1) − cos(α1 + β1 + γ1) −l cos(β1 + γ1)
sin(α2 + β2 + γ2) − cos(α2 + β2 + γ2) −l cos(β2 + γ2)
sin(α3 + β3 + γ3) − cos(α3 + β3 + γ3) −l cos(β3 + γ3)
sin(α4 + β4 + γ4) − cos(α4 + β4 + γ4) −l cos(β4 + γ4)

 (6)

J2 =


r cos γ1

r cos γ2
r cos γ3

r cos γ4

 (7)

Assuming J = J2
−1 JIR(θ), the velocity is:

•
ξI= (JT J)−1 JT •ϕ (8)

3. Design of Control System

The control system schematic diagram is shown in Figure 3. The schematic diagram
can be described as a MPC design and ANFIS design.
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3.1. MPC

MPC can solve complex control problems of multi-variable inputs [22]. MPC consists
of the following three parts: linearization and approximate discretization of a kinematic
model, design of objective function, and design of constraint conditions [23,24].

3.1.1. Linearization and Approximate Discretization

Define
•
ϕ as u, Equation (8) can be simplified as:

•
ξ = f (ξ, u) (9)

First-order Taylor expansion is performed at a reference point in Equation (9), which
was rewritten as:

•
∧
ξ = A

∧
ξ + B

∧
u (10)

where
•
ξ −

•
ξr =

•
∧
ξ, ξ − ξr =

∧
ξ, u − ur =

∧
u, ∂ f

∂ξ | ξ = ξr
u = ur

= A , ∂ f
∂u | ξ = ξr

u = ur

= B ,

•
ξr = f (ξr, ur), ξr and ur are the reference pose and velocity which are the closest to
the latest pose (Euclidean Distance).

Equation (10) can be approximately discretized as:

∧
ξ((k + 1)T) ≈ Ã

∧
ξ(kT) + B̃

∧
u(kT) (11)
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where Ã = I + TA, B̃ = TB.

3.1.2. Design of Objective Function

Define kT as k, The state functions are: χ(k+1) =
∧
Akχ(k) +

∧
Bk∆u(k)

η(k) =
∧
Ckχ(k)

(12)

where χ(k) =

[ ∧
ξ(k)

u(k−1)

]
(m+n)×1

,
∧
Ak =

[
Ãn×n B̃n×m
0m×n Im

]
(m+n)×(m+n)

,

∧
Bk =

[
B̃n×m

Im

]
(m+n)×m

,
∧
Ck =

[
In×n 0n×m

]
n×(m+n), m is the number of control quan-

tity, and n is the number of status quantity.
At time k + 2, Equation (12) can be written as: χ(k+2) =

∧
Ak+1χ(k+1) +

∧
Bk+1∆u(k+1)

η(k+1) =
∧
Ck+1χ(k+1)

(13)

Substituting Equation (12) into Equation (13), the state functions can be expressed as: χ(k+2) =
∧
Ak+1

∧
Akχ(k+1) +

∧
Ak+1

∧
Bk∆u(k) +

∧
Bk+1∆u(k+1)

η(k+1) =
∧
Ck+1

∧
Akχ(k) +

∧
Ck+1

∧
Bk∆u(k)

(14)

By recursion in the above way, Equation (15) can be solved.



η(k+1) =
∧
Ck+1

∧
Akχ(k) +

∧
Ck+1

∧
Bk∆u(k)

η(k+2) =
∧
Ck+2

∧
Ak+1

∧
Akχ(k) +

∧
Ck+2

∧
Ak+1

∧
Bk∆u(k) +

∧
Ck+2

∧
Bk+1∆u(k)

η(k+3) =
∧
Ck+3

∧
Ak+2

∧
Ak+1

∧
Akχ(k) +

∧
Ck+3

∧
Ak+2

∧
Ak+1

∧
Bk∆u(k) +

∧
Ck+3

∧
Ak+2

∧
Bk+1∆u(k) +

∧
Ck+2

∧
Bk+2∆u(k)

...

η(k + Nc) =
∧
Ck+Nc

Nc−1
∏
i=0

∧
Ak+iχ(k) +

∧
Ck
∧
Bk

Nc−1
∏
i=2

∧
Ak+i∆u(k) + · · ·+

∧
Ck+2

∧
Bk+Nc−1∆u(k)

...

η(k + Np) =
∧
Ck+Np

Np−1

∏
i=0

∧
Ak+iχ(k) +

∧
Ck
∧
Bk

Np−1

∏
i=1

∧
Ak+i∆u(k) + · · ·+

∧
Ck
∧
Bk+Nc−1

Np−1

∏
i=Nc

∧
Ak+i∆u(k)

(15)

Equation (16) can be abbreviated as:

Y(k) = ψkχ(k) + Θk∆Uk (16)
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where Y(k) =



η(k + 1)
η(k + 2)
· · ·

η(k + Nc)
· · ·

η(k + Np)


Np×1

,
∧
Ck =

∧
Ck+1 = · · · =

∧
Ck+Np , ψk =



∧
Ck
∧
Ak

∧
Ck
∧
Ak+1

∧
Ak

· · ·
∧
Ck

Nc−1
∏
i=0

∧
Ak+i

· · ·
∧
Ck

Np−1

∏
i=0

∧
Ak+i


Np×1

,

Θk =



∧
Ck
∧
Bk 0 · · · 0

∧
Ck
∧
Ak
∧
Bk

∧
Ck
∧
Bk 0 0

· · · · · · . . . 0
∧
Ck
∧
Bk

Nc−1
∏
i=1

∧
Ak+i

∧
Ck
∧
Bk+1

Nc−2
∏
i=2

∧
Ak+i · · ·

∧
Ck
∧
Bk+Nc−1

∧
Ck
∧
Bk

Nc
∏
i=1

∧
Ak+i

∧
Ck
∧
Bk+1

Nc
∏
i=2

∧
Ak+i · · ·

∧
Ck
∧
Ak
∧
Bk+Nc−1

...
...

. . .
...

∧
Ck
∧
Bk

Np−1

∏
i=1

∧
Ak+i

∧
Ck
∧
Bk+1

Np−1

∏
i=2

∧
Ak+i

∧
Ck
∧
Bk+Nc−1

Np−1

∏
i=Nc

∧
Ak+i


Np×Nc

,

∆Uk =


∆u(k)

∆u(k + 1)
· · ·

∆u(k + Nc − 1)


Nc×1

, Np is the prediction horizon, Nc is the control horizon,

and Np>Nc.
The MPC in this paper was a relatively simplistic but standard non-linear MPC

algorithm, in which all the
∧
Ak+i were the same in the processing of the prediction model

and all the
∧
Bk+i were the also same [23].

According to the MPC strategy, the optimization problem should be converted into
a quadratic programming (QP) problem [7]. The objective function was the quadratic
function of the spatial state of the omni-directional wheel chassis and the control inputs.
Additionally, the relaxation factor was introduced, which could not only directly limit the
control increment, but also avoid the emergence of non-feasible solutions in the execution
process [25]. The objective function is:

J(k) = (Y(k)−Yre f (k))
TQ(Y(k)−Yre f (k)) + ∆U(k)TR∆U(k) + ρε2 (17)

where Q is the weight matrix of Y, Q = diag(Q1, Q2, · · · , QNc , · · · , QNp), Qi = diag(qx, qy, qϕ),
(i = 1, 2, · · · , Nc, · · · , Np), R is the weight matrix of ∆U, R = diag(R0, R1, · · · , RNc−1),
Ri = diag(r∆1, r∆2, r∆3, r∆4), (i = 0, 1, 2, · · · , Nc−1), ρ is weight coefficient, and ε is the
relaxation factor.

3.1.3. Design of Constraints

QP is a typical mathematical optimization problem. The reference trajectory tracked
by the omni-directional wheel chassis was quicker and smoother by adding linear or non-
linear constraints. Hence, the motion performance of the omni-directional wheel chassis
was improved. The linear constraints were:

Umin ≤ Γ∆U(k) + U(k− 1) ≤ Umax (18)
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where Γ =

 1 0 0
...

. . . 0
1 · · · 1


Nc×Nc

⊗ Im =

 Im 0m 0m
...

. . . 0m
Im · · · Im

 (⊗ is Kronecker product),

Umin = [umin, umin, · · · , umin]1×Nc
T, Umax = [umax, umax, · · · , umax]1×Nc

T, U(k − 1) =

[u(k− 1), u(k− 1), · · · , u(k− 1)]1×Nc
T.

Equation (17) could be rewritten as:

J(k) =
[

∆U(k)T ε
]

H(k)
[

∆U(k)T

ε

]
+ G(k)

[
∆U(k)T

ε

]
+ P(k) (19)

where E(k) = ψ(k)−Yre f (k), H(k) =
[

Θ(k)TQΘ(k) 0
0 ρ

]
, G(k) =

[
2E(k)TQΘ(k) 0

]
,

P(k) = E(k)TQE(k).
Equation (20) is:

[
Γ(k) 0
−Γ(k) 0

][
∆U(k)

ε

]
≤
[

Umin −U(k− 1)
Umax −U(k− 1)

]
[

∆Umin
0

]
≤
[

∆U(k)
ε

]
≤
[

∆Umax
M

] (20)

Therefore, the quadratic programming problem is:

minJ(k)→ (J(k) =
[

∆U(k)T ε
]

H(k)
[

∆U(k)T

ε

]
+ G(k)

[
∆U(k)T

ε

]
+ P(k))

S.T →


[

Γ(k) 0
−Γ(k) 0

][
∆U(k)

ε

]
≤
[

Umin −U(k− 1)
Umax −U(k− 1)

]
[

∆Umin
0

]
≤
[

∆U(k)
ε

]
≤
[

∆Umax
M

] (21)

ε is used as an independent variable, and is computed by Equation (21). A series
of optimally controlled increments ∆U(k)∗ could be calculated in the control horizon by
optimizing Equation (21) in each control cycle.

∆U(k)∗ =
[

∆u(k)∗ ∆u(k + 1)∗ · · · ∆u(k + Nc − 1)∗
]T (22)

u(k) = u(k− 1) + ∆u(k)∗ (23)

The first element acted as the actual controlled increment of ∆U(k)∗ in Equations (22)
and (23).

3.2. Design of ANFI

ANFIS is a multi-inputs and single-output model. Based on experience and knowl-
edge, a neural network was employed to optimize the premise and consequence parameters
to adaptively establish a fuzzy inference system [15,26–29].

3.2.1. Architecture of ANFIS

Assuming that ANFIS had two inputs ∆l and ∆ϕ, and one output q. As shown in
Figure 4, ANFIS covered the input variables with 8 fuzzy subsets. The rules of the rule
base are:
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If ∆l is Ai and ∆ϕ is Bi, then fi = pi∆l + qi∆ϕ + si, (i = 1, 2 · · · , 8).
Where Ai(Bi) is the fuzzy subset of ∆l(∆ϕ), pi, qi, si called the consequence parameters

are the linear parameters of the function fi.
The structure of each layer of ANFIS was as follows.

Layer 1

This layer is called the “fuzzification layer”. The nodes are adaptive.

O1
i = µAi (∆l) or O1

i = µBi (∆ϕ), i = 1, 2 · · · , 8 (24)

where ∆l or ∆ϕ is the input of the node i. Ai or Bi is the language tags associated with this
node function, O1

i is the membership function of Ai or Bi, which specifies how much given
∆l(∆ϕ) satisfies Ai (Bi). The superscript 1 of O1

i indicates the first layer, and the subscript i
indicates the ith node.

Layer 2

This layer is called the “rule layer”. The nodes were fixed and labeled as Πi,
(i = 1, 2 · · · , 64). The nodes realized the process of fuzzy inference. The output, which
represented the firing strength of a rule, was the product of all the incoming signals.

O2
i = ωi = µAi (∆l)•µBi (∆ϕ), i = 1, 2 · · · , 8 (25)

Layer 3

This layer is called the “normalization layer”. The nodes were fixed and labeled as
Ni (i = 1, 2 · · · , 64). Every node in this layer received all outputs from layer 2 and the
normalized firing strength of the ith rule.

O3
i = ωi =

ωi
64
∑

i=1
ωi

, i = 1, 2 · · · , 64 (26)

Layer 4

This layer is called the “defuzzification layer”. The nodes were adaptive.

O4
i = ωi fi = ωi(pi∆l + qi∆ϕ + si), i = 1, 2 · · · , 64 (27)

where ωi is a normalized firing strength value received from layer 3, ∆l and ∆ϕ are the
input of the node i, and pi, qi, si are the linear parameters of the function fi.

Layer 5
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This layer is called the “summation layer”. The single node was fixed, and labeled
as Σ. This layer calculated the sum of all outputs from layer 4 and provided an output of
ANFIS.

O5
1 =

64

∑
i=1

−
ωi fi =

64
∑

i=1
ωi fi

64
∑

i=1
ωi

(28)

3.2.2. Collection of Data Set

It is a crucial process to collect a training data set for ANFIS. This paper used an
ANFIS architecture of two-inputs and single-output. The three parameters of a collected
data set are: 

∆l = (

√(
lre f X − lrealX

)2
+
(

lre f Y − lrealY

)2
)
∗ 100

∆ϕ = (ϕre f − ϕreal) ∗ 100

q =
qlX
qϕ

=
qlY
qϕ

(29)

where ∆l represents the error between the reference XY distance and the actual XY distance,
∆ϕ represents the error between the reference ϕref and the actual ϕreal, and the output q
represents the weight ratio.

A traditional MPC was used to track a reference trajectory. At the sampling period
T, ∆l and ∆ϕ were collected, and the weight ratio q was adjusted to reduce the error
significantly. The ∆l, ∆ϕ and adjusted q were collected as the training data set of ANFIS.

3.2.3. Training of Data Set

Training ANFIS means using the optimization algorithm to optimize the premise
and the consequence parameters in its structure. The premise parameters were µAi (∆l)
or µBi (∆ϕ)(i = 1, 2 · · · , 8) in the second membership function, and the consequence pa-
rameters were pi, qi, si (i = 1, 2 · · · , 64) in the fourth membership function fi. In MATLAB,
ANFIS toolbox and graphic editing tools were used to train the data set.

3.3. Control System

A fuzzy system can be obtained through ANFIS training. As shown in Figure 5, the
weight q can be adaptively adjusted by the fuzzy system according to the input of ∆l and
∆ϕ. Assuming qϕ is 1, Equation (30) can be solved according to Equation (29), and Qi is
used at Equation (21).

Qi = diag(q, q, 1), (i = 1, 2, · · · , Nc, · · · , Np) (30)
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4. Simulation and Analysis
4.1. Experiment Parameters
4.1.1. The Parameters of Omni-Directional Wheel Chassis

The distance l between every omni-directional wheel and the robot center point is
0.291 m, and the other parameters are shown in Table 1.

Table 1. Calculation parameters.

Wheel α β γ θ

1 45◦ 0◦ 0◦ 0◦

2 135◦ 0◦ 0◦ 0◦

3 −135◦ 0◦ 0◦ 0◦

4 −45◦ 0◦ 0◦ 0◦

4.1.2. Training of Data Set

MPC was used to track the path of a circle. The sampling period T was 0.5 s. The data
set for training ANFIS is shown in Figure 6. In SIMULINK, ANFIS toolbox and graphic
editing tools were used to train the data set, and the parameters were set as shown in Table 2.
The membership functions of using 7 and 8 fuzzy sets are shown in Table 3, the training
error of using 7 fuzzy sets was 137.63, and the training error of using 8 fuzzy sets was 0.14.
Accordingly, this paper used 8 fuzzy sets, and the membership functions after training
ANFIS are shown in Figures 7 and 8.
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4.2. Simulation Results

MPC based on ANFIS was adopted to simulate and analyze two different paths. The
simulation time t was 30 s, and the sampling period T was 0.5 s. The speed, acceleration,
and relaxation factor of every motor of the omni-directional wheel chassis were:

[
umin umax

]
=
[
−7 7

][
∆ umin ∆umax

]
=
[
−3 3

][
εmin εmax

]
=
[

0 10
] (31)

when the error curve fluctuated uniformly, the error peak value was the maximum fluctua-
tion difference. The optimization ratio of reducing the maximum fluctuation difference can
be solved by Equation (32).

Por =
et − eo

et
(32)

where Por is the optimization ratio, et is the maximum fluctuation difference of a traditional
MPC, and eo is the maximum fluctuation difference of MPC based on ANFIS.
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4.2.1. Path I

The reference trajectory of a circle was Equation (33), the initial status ξstart was
[0, 0, 0]T, and the range of weight ratio q was q ∈

(
13 50

)
. The simulation comparison

was conducted between a traditional MPC (the weight ratio q is 25) and MPC based
on ANFIS. 

X = 2.5 ∗ sin( 2∗pi∗t
30

)
Y = 3.5−2.5 ∗ cos( 2∗pi∗t

30

)
ϕ = 0.5

(33)

As shown in Figures 9–14, after stabilization, the results are shown in Tables 4 and 5.
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Table 4. Maximum fluctuation difference without disturbance.

∆l ∆ϕ

traditional MPC 6.887% 5.737%
MPC based on ANFIS 2.826% 1.555%

Table 5. The peak difference between the up and down fluctuations without disturbance.

∆l ∆ϕ

traditional MPC 11.199% 7.802%
MPC based on ANFIS 3.6357% 3.014%
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Compared with the traditional MPC without disturbance, MPC based on ANFIS re-
duced the maximum fluctuation difference of ∆l by 58.966%, and the maximum fluctuation
difference of ∆ϕ was reduced by 72.895%. The stability of ∆l increased by 67.668% and
the stability of ∆ϕ was increased by 61.369%. All the data showed that the error curve of
the proposed algorithm was flatter and more stable compared with the traditional MPC
without disturbance.

The external disturbance applied to the X direction at t was 10 s, and the disturbance
was 0.2 m. After stabilization, the results are shown in Tables 6 and 7.

Table 6. Maximum fluctuation difference with disturbance.

∆l ∆ϕ

traditional MPC 6.712% 5.670%
MPC based on ANFIS 2.841% 1.569%

Table 7. The peak difference between the up and down fluctuations with disturbance.

∆l ∆ϕ

traditional MPC 10.938% 7.693%
MPC based on ANFIS 3.707% 3.085%

Compared with the traditional MPC, MPC based on ANFIS reduced the maximum
fluctuation difference of ∆l by 57.673%, and the maximum fluctuation difference of ∆ϕ was
reduced by 72.328%. The stability of ∆l was increased by 66.109%, and the stability of ∆ϕ
increased by 59.899%. The error curve was much flatter and stabilized faster compared
to the traditional MPC with disturbance. The experiment showed the effectiveness and
superiority of the MPC based on ANFIS.

4.2.2. Path II

The reference trajectory of ∞ was Equation (34), the initial status ξstart was [1.1, 0.6, 0]T,
and the range of weight ratio q was q ∈ [9, 15]. The weight ratio q of a traditional MPC was
15. The simulation results are shown in Figures 15–20.

X = 1.1+0.7 sin( 2πt
30
)

Y = 0.9+0.7 sin
(

4πt
30

)
ϕ = 0.5

(34)
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As shown in Figures 15–20, after stabilization, the results are shown in Tables 8 and 9.

Table 8. Maximum fluctuation difference without disturbance.

∆l ∆ϕ

traditional MPC 3.869% ≈0
MPC based on ANFIS 1.045% ≈0

Table 9. The peak difference between the up and down fluctuations without disturbance.

∆l ∆ϕ

traditional MPC 3.5915% –
MPC based on ANFIS 0.798% –

Compared with the traditional MPC without disturbance, MPC based on ANFIS
reduced the maximum fluctuation difference of ∆l by 72.990%, and all the ∆ϕ approached
0. The stability of ∆l was increased by 77.780%. The error curve tended to be flatter and
more stable compared to the traditional MPC without disturbance.

An external disturbance applied to the X direction at t was 10 s, and the disturbance
was 0.1 m. After stabilization, the results are shown in Tables 10 and 11.
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Table 10. Maximum fluctuation difference with disturbance.

∆l ∆ϕ

traditional MPC 3.869% ≈0
MPC based on ANFIS 1.032% ≈0

Table 11. The peak difference between the up and down fluctuations with disturbance.

∆l ∆ϕ

traditional MPC 3.5923% -
MPC based on ANFIS 0.785% -

Compared with the traditional MPC with disturbance, MPC based on ANFIS reduced
the maximum fluctuation difference of ∆l by 73.326%, and all the ∆ϕ approached 0. The
stability of ∆l was increased by 78.148%. The error curve was much flatter and stabilized
faster compared with the traditional MPC with disturbance. Moreover, the robot could
respond more quickly when there was disturbance.

Experiments showed that MPC based on ANFIS had superior performance compared
with a traditional MPC.

5. Conclusions

By adjusting the weight of the cost function in MPC, the path tracking error can
be reduced prominently. However, the weight of the cost function in a traditional MPC
needs to be manually adjusted which is time-consuming and labor-intensive, and it is
difficult to adjust to a satisfactory value. Therefore, in order to adaptively adjust the weight,
MPC based on ANFIS is proposed. The ANFIS toolbox is used for data set training, and
the training error is 0.14. In SIMULINK, MPC based on ANFIS and a traditional MPC
are compared to verify the effectiveness and superiority. Experiments show that when
the path is circular and ∞, compared with a traditional MPC, the maximum fluctuation
difference effect of ∆l is reduced by around 50%, the maximum fluctuation difference effect
of ∆ϕ is reduced by around 70% (all the ∆ϕ approach 0 when the path is ∞), and the
stability is increased by around 60%. The error curve is much flatter and tends to stabilize
faster compared with a traditional MPC. All the experiments show the effectiveness and
superiority of the MPC based on ANFIS.
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