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Abstract: Measuring knee biomechanics provides valuable clinical information for defining patient-
specific treatment options, including patient-oriented physical exercise programs. It can be done by a
knee kinesiography test measuring the three-dimensional rotation angles (3D kinematics) during
walking, thus providing objective knowledge about knee function in dynamic and weight-bearing
conditions. The purpose of this study was to assess whether 3D kinematics can be efficiently
used to predict the impact of a physical exercise program on the condition of knee osteoarthritis
(OA) patients. The prediction was based on 3D knee kinematic data, namely flexion/extension,
adduction/abduction and external/internal rotation angles collected during a treadmill walking
session at baseline. These measurements are quantifiable information suitable to develop automatic
and objective methods for personalized computer-aided treatment systems. The dataset included
221 patients who followed a personalized therapeutic physical exercise program for 6 months and
were then assigned to one of two classes, Improved condition (I) and not-Improved condition (nI). A
10% improvement in pain was needed at the 6-month follow-up compared to baseline to be in the
improved group. The developed model was able to predict I and nI with 84.4% accuracy for men and
75.5% for women using a decision tree classifier trained with 3D knee kinematic data taken at baseline
and a 10-fold validation procedure. The models showed that men with an impaired control of their
varus thrust and a higher pain level at baseline, and women with a greater amplitude of internal
tibia rotation were more likely to report improvements in their pain level after 6 months of exercises.
Results support the effectiveness of decision trees and the relevance of 3D kinematic data to objectively
predict knee OA patients’ response to a treatment consisting of a physical exercise program.

Keywords: 3D kinematics; decision trees; knee osteoarthritis; physical exercises

1. Introduction

The knee is an anatomically and biomechanically complex joint that serves as the
basis for the mobility and stability of the human body. This joint undergoes various static
and dynamic stresses that make it subject to several degenerative diseases, including knee
osteoarthritis (OA). The World Health Organization (WHO) estimates that 10% of the adult
population in developed countries suffers from OA, 6.1% of which affects the knee [1].
In Canada, hundreds of thousands of people suffer from knee OA, which affects their
functional abilities and undermines their quality of life [2].

Although there are protocols and clinical guidelines for the management of knee
osteoarthritis, several studies showed that treatments are far from optimal and that signifi-
cant clinical gaps exist in the therapeutic management of knee OA [3,4]. Osteoarthritis can
be diagnosed by a physician (typically a general practitioner, an orthopedic surgeon or a
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rheumatologist) after a musculoskeletal evaluation that can be combined with an imaging
assessment (X-ray). Radiographic examinations collect information on the integrity of
knee structures but because they are performed in a static condition, they do not provide
information on the knee’s functional status. Although such examinations allow to assess
the impact of an injury on anatomical structures, they do not provide clinicians with infor-
mation to support whether a conservative treatment, such as physical exercises, should be
prescribed or not.

In this context, a dynamic functional evaluation of the knee provides valuable clinical
information (e.g., misalignments during gait) [5]. This evaluation can be completed with
a knee kinesiography exam which measures the three-dimensional rotation angles (3D
kinematics) during gait, allowing to identify mechanical biomarkers directly related to
the progression of the disease and the patient’s symptoms. This objective assessment
allows clinicians to recommend personalized exercises targeting the previously identified
mechanical biomarkers. This type of evaluation can easily be performed in a clinical setting
using the KneeKGTM system (EMOVI Inc., Montreal, QC, Canada; Figure 1). This system
consists of passive motion sensors fixed on the knee harness, an infrared motion capture
system and a computer equipped with an acquisition software. The harness is fixed quasi-
rigidly on the thigh and calf to measure tibial and femoral rotation [6]. Several studies have
demonstrated the accuracy, validity and reproducibility of 3D knee movements measured
with this technology [6–8].

Figure 1. Knee kinematic acquisition system. Measures are captured while walking on a
conventional treadmill.

Exercises are among the non-surgical treatment options with the most research ev-
idence supporting their effectiveness [9]. Overall, they aim to strengthen muscles and
improve flexibility and balance in order to alleviate symptoms and improve joint func-
tion [10]. However, the factors that could predict which patients would be more likely
to respond to such a treatment have yet to be determined. Indeed, the vast majority of
studies on predictive models in knee OA populations have focused on identifying risk
factors to help predict disease progression [11–13]. Notably, age, body mass index (BMI),
or radiographic grading appeared to play an important role, and thus they were mainly
used as the only possible predictors in the few studies which actually predicted the impact
of physical exercise programs on knee OA [14,15].

To our knowledge, only two studies assessed the role of knee kinematics as predictors
of patient response to exercises and both suggested that they can be useful to optimize
exercise recommendations [16,17]. However, these studies did not assess 3D kinematics
with a high degree of accuracy. Therefore, the aim of the present study was to investigate
whether 3D kinematic data can be efficiently used to objectively predict the impact of a
physical exercise program.
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2. Materials and Methods

The methodology used is described in the block diagram presented in Figure 2 and
involves the following steps: (1) establishing a database of knee OA patients with 3D knee
kinematics measurements at baseline and at the completion of a 6-month exercise program,
(2) identifying patients according to the improvement in their condition, (3) extracting
biomechanical factors from their kinematic data, and (4) building a prediction model based
on decision trees.
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Figure 2. Block diagram of the adopted methodology.

2.1. Participants and Exercise Program

The data used in this study were collected in a cluster randomized controlled trial
(RCT) approved by the institutional ethics committees of the University of Montreal
Hospital Research Center (Reference numbers: CE 10.001-BSP and BD 07.001-BSP), and of
the École de technologie supérieure (Reference numbers: H20100301 and H20170901). All
subjects provided informed consent before participation.

Of all the participants with knee osteoarthritis who took part in this RCT [18], 221 pa-
tients completed a 6-month personalized home-based exercise program and were included
in this study. The demographic characteristics (age, sex, and BMI) and one clinical feature,
the radiographic OA severity grade measured by the Kellgren-Lawrence scale (KL; grade 2:
mild; grade 3: moderate; grade 4: severe) [19] were collected for all participants. KL grades
were evenly distributed within the cohort (KL2: 61; KL3: 82; KL4: 78).

Each patient completed a knee kinesiography exam at baseline. For each one of them,
a physical therapist then created a unique program of five to ten land-based exercises.
It had to combine strengthening, stretching, and gait retraining exercises addressing the
mechanical biomarkers previously identified with the knee kinesiography exam (e.g., varus
thrust, dynamic flexion contracture...). Each exercise was recommended with a patient-
specific number of repetitions (or duration) and had to be achievable at home without
supervision. Patients were simply encouraged to “do them regularly” and were asked if
they followed their exercise program after 3 months and at the 6-month follow-up. Further
details about the program (therapist training, examples of exercises...) are published
elsewhere [18].

2.2. Identification of Patients According to the Improvement in Their Condition

The patients underwent a clinical assessment at baseline and after six months, using
the Knee Injury and Osteoarthritis Outcome Score (KOOS) [20]. This questionnaire assesses
five domains: the patient’s knee pain (9 items), other symptoms (7 items), function in daily
life (17 items), sport and recreation (5 items) and knee-related quality of life (4 items). Each
one of them can be analyzed individually with a score which ranges from 0 (indicating the
worst-case scenario) and 100 (indicating the absence of knee symptomatology).

Patient improvement was determined based on the KOOS questionnaire. Based on a
literature review and a preliminary study [21], the KOOSpain subscale was identified as the
most representative score and therefore its variation between baseline and 6 months was
used to determine whether a patient’s condition improved (Class I) or not (Class nI). A
growing consensus in the knee OA literature suggests that identifying a single threshold to
define a meaningful change in the KOOSpain score across varying OA severity and follow-
up periods is problematic [22,23]. Furthermore, a recent meta-analysis [24] supports that
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estimated thresholds increase along with patient baseline severity, and that relative changes
may be a better approach than absolute differences. Based on the authors’ conclusions
and the variability in our participants’ clinical characteristics (KL grades 2, 3, and 4), we
considered that a patient’s condition was improved if the KOOSpain score at 6 months
exceeded the baseline score by 10% or more, as this value is both “intuitive and consistent
with estimates for other instruments” [24].

Hence, the participants were divided into two classes based on the evolution of their
KOOSpain between baseline and 6-month follow-up: one class of patients whose condition
improved (I) and one class of patients whose condition did not improve (nI).

In other words, for each patient, the variable η was computed as follows:

η =
KOOSpain(t6)−KOOSpain(t0)

KOOSpain(t0)
× 100

and, the assigned condition (class) was then:{
I, if η ≥ 10%
nI, otherwise.

(1)

Based on this assessment, the participants were categorized according to their im-
provement status. Tables 1–3 summarize the demographic characteristics of the two classes
(i.e., I and nI) for all participants, the male and female population respectively. There was
no statistical difference in terms of age and BMI distributions between classes regardless of
the population considered (T-tests: all p > 0.68). Statistical processing was implemented via
SPSS 18.0 (Statistical Package for Social Sciences). A p-value of 0.05 was set as the criterion
for statistical significance.

Table 1. Demographic characteristics of the participants within each class.

Characteristics Class I Class nI
p-Value

(Units) N = 112 N = 109

Age (years) 63.87± 9.57 64.31± 7.86 0.80
BMI (kg/m2) 29.93± 5.51 29.75± 5.63 0.70

Table 2. Demographic characteristics of the male participants within each class.

Characteristics Class I Class nI
p-Value

(Units) N = 37 N = 41

Age (years) 64.81± 9.56 64.80± 7.93 0.99
BMI (kg/m2) 30.07± 5.61 29.71± 5.11 0.77

Table 3. Demographic characteristics of the female participants within each class.

Characteristics Class I Class nI
p-Value

(Units) N = 75 N = 68

Age (years) 63.40± 9.60 64.01± 7.85 0.68
BMI (kg/m2) 29.87± 5.50 29.77± 5.95 0.91

2.3. Biomechanical Factors Extraction

Kinematic data describe the joint angles between the tibia and the femur in the three-
dimensional space. These are in the form of 3D curves corresponding to flexion-extension
in the sagittal plane, adduction-abduction in the frontal plane and external-internal rotation
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in the transverse plane. These curves are mean patterns of multiple gait cycles collected per
subject and normalized to a range from 1% to 100% of the gait cycle (GC). The beginning of
the GC (1%) corresponds to the heel contact which is identified by the first minimum of the
flexion/extension curve (Figure 3).

A set of 69 biomechanical parameters of interest was then extracted from these 3D
kinematic curves for data analysis. The parameters chosen for extraction were based on
variables routinely assessed in biomechanical studies of knee OA populations, such as
maximums, minimums, varus and valgus thrust, angles at initial contact, mean values and
ranges of motion (ROM) throughout GCs or GC sub-phases (i.e., loading, stance, swing,
etc.) [25,26].
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Figure 3. Kinematic curves of the 221 subjects (I: improved (blue) and nI: not-improved (red)).
Angles are expressed in degrees: Flexion(+)/Extension(−), Adduction(+)/Abduction(−),
External(+)/Internal(−) rotation.

2.4. Prediction Model

In order to predict patient improvement (I or nI), we developed a supervised classifi-
cation system based on decision trees. The decision trees were built using the Classification
And Regression Tree (CART) algorithm that can be used for classification or regression
predictive modeling problems.

The algorithm to build a binary decision tree using CART operates node by node,
running through the M attributes (x1, x2, ..., xM) one by one, starting with x1 and continuing
on to xM. For each attribute, it explores all possible tests (splits) and chooses the best split,
that is, the one that maximizes impurity (uncertainty) reduction. Then, it compares the
best M splits to select the best one. The function that measures impurity will necessarily
reach its maximum when the instances are evenly distributed among the different classes
and its minimum when one class contains all the examples (the node is then considered
pure). In order to build the most discriminating nodes, questions are generated by the Gini
index [27].

This index measures the frequency with which a random element in the set would
be misclassified if its label was randomly selected based on the label distribution in the
sub-set. The index ranges from 0 to 1 and reaches its minimum value (zero) when all the
elements from the set are in the same class as the target variable. The Gini diversity index
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used by the CART algorithm can be calculated with the following formula: on a node t
with a probability distribution for the classes in this node P(j|t), j = 1, ..., J, we have [28]:

G(t) = i(t) = φ(p(1/t), p(2/t), ..., p(J/t)) = 1−∑
j
(P(j|t))2, (2)

where p(j/t) is the proportion of individuals belonging to class j and φ is the proportion
function to measure the impurity i(t).

It should be noted that the decision trees were pruned by the post-pruning method
to avoid over-learning. This approach proceeds as follows: after completing the decision
tree building process, the tree is pruned. To this end, classification errors are estimated at
each node. The subset is replaced by a leaf (class) or by the most frequent branch. We then
start at the bottom of the tree and examine each of the sub-trees (non-folio) to see whether
replacing the sub-tree by a leaf or its most frequent branch would result in a lower error
rate. If so, we trim the sub-tree using the replacement [28].

2.5. Evaluation of the Prediction Model

The evaluation of the classification system was carried out by two cross validation
methods. The first is a K-fold cross validation where the database is divided into two
sub-databases: a training database and a test database. This division allows the model to
be developed and tested on different data to verify its relevance. In our study, we opted for
K = 10 and K = 20 divisions to evaluate the model’s stability.

The second evaluation method is a the Leave-one-out cross validation (LOOCV) which
is a K-fold cross validation taken to its logical extreme, with K equal to N, the number of
data points in the set, that is to say the number of participants.

After model training, we considered the classification rate as an evaluation criterion.
This rate is the ratio between the total number of well-classified data points and the total
number of data points as described in Equation (3). The classification rate is computed for
each fold and the average used to evaluate the model.

Classification rate =
Well-classified observations

Total number of observations
. (3)

The confusion matrix can also be presented for a better interpretation of the results.
This is a matrix representation that determines the classification error from a set of test data.
The confusion matrix is a square matrix of [C× C] size where C is the number of classes.
The columns of this matrix correspond to the number of occurrences of an estimated class,
while the rows correspond to the number of occurrences of an actual class. Table 4 shows an
example of a confusion matrix with two classes. The precision of the classifier is calculated
by Formula (4), and the sensitivity and specificity by Formulas (5) and (6), respectively [29].

Table 4. Example of a confusion matrix. I = improved; nI = not-improved.

Predicted Class

Actual Class I nI

I True Positive False Negative

nI False Positive True Negative

True Positive (TP) is the number of patients that improved and were classified in the
class I. True Negative (TN) includes the patients that did not improved and were classified
as nI patients. False Positive (FP) describes patients that not improved but were classified as
I patients. False Negative (FN) is the number of patients that improved but were classified
in the class nI.

To be considered accurate, a classifier must be both highly sensitive and highly spe-
cific. The accuracy, sensitivity and specificity were computed according to the following
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mathematical formulas:

Accuracy =
TN + FP

Total number of observation
(4)

Precision =
TP

TN + FP
(5)

Sensitivity =
TP

TN + FP
(6)

Specificity =
TN

TN + FP
(7)

Significant differences in 3D knee kinematics between men and women have been
reported in the literature, both in healthy and knee OA subjects [30,31]. Therefore, three
different prediction systems were trained: one each for the male and the female population
and one for the overall data-set (male and female together) to account for the sex-specific
aspects of kinematics. The receiver operating characteristic (ROC) curve was generated
to illustrate the performance of the prediction models, using the area under the curve
(AUC) [32].

3. Results

Prediction models were developed using the CART algorithm. The training input
vectors consisted of the 69 biomechanical parameters (F1, F2,...,F69), patients’ age (F70),
BMI (F71), radiographic OA severity grade measured by the Kellgren-Lawrence scale (F72),
and the KOOSpain (F73). The training input measurements were evaluated at baseline as
required by the principle of a prediction model. Analyses were undertaken with Matlab
R2019b software (Mathworks, MA, USA). Specifically, we used the Toolbox Statistics and
Machine Learning Toolbox.

Table 5 summarizes the classification rates of the three models developed for each
validation method. Given that the prediction performances were better when the two
sexes were analyzed separately, the prediction model focused on the impact of the physical
exercise program for each group independently.

Table 5. Classification rates of the three models for each validation technique. Rates for K-fold
techniques are presented ±standard deviation.

Datasets

Validation Techniques Male (N = 78) Female (N = 143) All (N = 221)

10-Fold 84.4% ± 13.2 75.5% ± 6.8 71% ± 9.9

20-Fold 84.6% ± 19.2 75.7% ± 14.3 71% ± 14.6

LOOCV 78.2% 73.4% 71%

Figure 4 displays the ROC curve and the AUC for both the male and female
prediction models.

The confusion matrices using the LOOCV are presented in Tables 6 and 7. For instance,
the prediction model within the male population reached a sensitivity of 85.4% and a
specificity of 70.3%.
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Figure 4. The ROC curves and AUC of the prediction models (a) Males and (b) Females.

Table 6. Confusion matrix of the male prediction model. Accuracy is presented for each class
(I and nI).

Predicted Class
Accuracy

Real Class nI I

nI 35 (85.4%) 6 (14.6%) 85.4%

I 11 (29.7%) 26 (70.3%) 70.3%

Table 7. Confusion matrix of the female prediction model. Accuracy is presented for each class
(I and nI).

Predicted Class
Accuracy

Real Class nI I

nI 52 (76.5%) 16 (23.5%) 76.5%

I 22 (29.3%) 53 (70.7%) 70.7%

For a more in-depth analysis, we identified the discriminant features retained within
the 69 biomechanical factors for each prediction model (Table 8).

Table 8. Description of the retained features. All features (except for KOOSpain) are expressed in degrees.

Dataset Feature Id Feature Name Feature Description

Male

F4 Varus thrust during Maximum adduction angle between 10% and 30%
of the GC

loading minus the adduction angle value at 10% of the GC
F26 Flexion at initial swing Flexion angle value at 69% of the GC
F73 KOOSpain KOOS score on the pain subscale at baseline

Female

F14 External tibial rotation Rotation angle value at 1% of the GC
at initial contact

F15 Internal tibial rotation Maximum minus the minimum rotation angle
value between 1%

during loading and 20% of the GC

F39 Maximal tibial rotation Maximum rotation angle value between 1% and
100% of the GC

during gait
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Figure 5 shows the decision trees for each of the prediction models for both the
male and female populations. Training and validation were performed independently for
each population.
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Figure 5. Decision trees for each of the prediction models (a) Males and (b) Females. All features (ex-
cept for KOOSpain score) are expressed in degrees. Female prediction model: external(+)/internal(−)
tibia rotation.

4. Discussion

Results showed that regardless of the validation technique used, the classification
rates were higher when the male and the female population were considered separately.
Indeed, using a 10-fold validation, the prediction performance reached 84.4% for men and
75.5% for women but it was limited to 71 % when the two sexes were grouped together.
This confirms that prediction models should be sex-specific to achieve better results and
supports previous studies highlighting the differences in kinematics between men and
women [30,31].

The analysis of the confusion matrices and the ROC curves showed that the specificities
and the sensitivities led to accurate prediction models (i.e., 70% or higher). In both cases
sensitivity (85.4% and 76.5% respectively for men and women prediction models) was better
than specificity (70.3% and 70.7% respectively for men and women prediction models).
Therefore, the models were better at predicting a not-Improved (nI) condition than an
Improved (I) condition. Unlike many classification methods, decision trees are intuitive
and provide a graphic, meaningful and easy-to-read representation compared to other
well-known prediction and classification methods such as neural networks and support
vector machine. The prediction model was enhanced by implementing a user-friendly
graphical interface allowing clinicians to query patient characteristics and improve their
understanding of the classification system’s decision.

The three discriminant features retained for the male prediction model were entirely
different from the three chosen for the female model, confirming that sex-specific analyses
were appropriate. Interestingly, among the 69 features that were measured on 3D kinematic
curves at baseline, the features retained for both decision trees were closely linked to OA
progression [33]. Varus thrust is a sudden lateral shift of the knee when the weight on
the limb increases during the loading phase at the beginning of the gait cycle (frontal
plane). It is well known that this mechanism is associated with pain and increase risk of OA
progression [34,35]. Its significant role was also highlighted in another study assessing the
impact of knee kinematics on the response to exercises [17]. As shown in this study, patients
with a higher varus thrust at baseline were more likely to respond to a physical exercise
program. Furthermore, a lower KOOSpain at baseline (<62.5) appeared to be predictive of
an improvement for male patients. This was also observed by Kobsar et al. [16] who used
a predictive model based on principal component analysis, as well as being reported in the
hip OA literature [36]. Notably, the discriminant features retained in the male prediction
model were related to frontal and sagittal plane kinematics, whereas features in the female
prediction model were all related to tibial rotation.
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These results reached a state-of-the-art accuracy and compared favorably with others
that have considered the prediction of the impact of physical exercise. Indeed, the purpose
of Reference [16] was to use pre-intervention gait kinematics and patient-reported outcome
measures to predict post-intervention response to a 6-week hip strengthening exercise
intervention in patients with mild-to-moderate knee OA. Using a discriminant analysis on
a small dataset (39 patients), the classification accuracy was 85.4%.

Being male is associated with higher odds of presenting with a varus thrust [37], which
could help explain the important role of this feature played in the male prediction model.
This study suggests that exercises efficiently reduce pain in patients with varus thrust,
supporting their relevance as a conservative treatment especially in the presence of this
mechanical biomarker. Tibial rotation, which corresponds to external/internal rotation of
the shank with respect to the thigh (transverse plane), was the most discriminant movement
for the female model. To our knowledge, there has only been one other report of this feature
but it was as a possible factor to discriminate surgical from non-surgical knee OA female
patients [38]. Future studies exploring the biomechanical significance of movements in the
transverse plane could help improve our understanding of their clinical relevance in the
response to exercise programs.

Although the radiographic severity grade measured by the Kellgren-Lawrence scale
(F72) was incorporated as an input variable during the models’ training phase, it was
not identified as a discriminant variable. In the same way, for both decision trees, the
age and BMI were not identified as discriminant variables, suggesting that these patient
characteristics cannot be used to predict the knee OA patient response to a physical
exercise program. Furthermore, the statistical analysis showed that there was no statistical
difference on age and BMI between I and nI participants within the whole dataset.

This study has some limitations. First, results were based on a 10% improvement
threshold on the KOOS to determine whether patients improved or not, which can be
subject to debate. However, this choice was based on data from the literature and the use
of this threshold showed that decision trees could help predict the patient response to
an exercise program. Additional analyses with different thresholds could be performed
to study their impact on prediction models. Similarly, the prediction models were only
based on the KOOSpain subscale, while other subscales could have been of interest to better
understand the predictors of the response to a physical exercise program on other knee
OA aspects. Although the KneeKG™ system used to capture the 3D knee kinematics is a
validated and reliable tool, its accuracy in the transverse plane is 2.3◦ [6], which may have
influenced the actual classification rate of the female prediction model. This limitation
could affect overall decision tree methodology as the classification at each node is based
on a single value and does not account for variations. Further analyses are needed to
determine the impact of this variation in future algorithms. Finally, there was a notable
difference between the total number of men and women included in this study (78 vs. 143),
which may have impacted the performance of both prediction models.

5. Conclusions

To our knowledge, this study is the first to explore the combined use of machine
learning techniques and kinematic data to predict the impact (improvement or not) of
physical exercise programs in knee OA patients. To this end, a large database of subjects
who had completed a personalized physical exercise program was used, and a classification
system based on decision trees was developed. This classification system used 3D knee
kinematic data as input to reach an objective, evidence-based decision. Using a 10-fold
cross validation procedure, the decision trees achieved a classification rate of 84.4% and
75.5% respectively within the male and female populations. The decision trees suggest that
men with impaired control of their varus thrust and a higher pain level at baseline, and
women with a greater amplitude of internal tibia rotation were more likely to have less
pain after undertaking a 6-month exercise program.
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