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Abstract: Despite several studies having identified factors associated with successful treatment
outcomes in locally advanced cervical cancer, there is the lack of accurate predictive modeling for
progression-free survival (PFS) in patients who undergo radical hysterectomy after neoadjuvant
chemotherapy (NACT). Here we investigated whether machine learning (ML) may have the potential
to provide a tool to predict neoadjuvant treatment response as PFS. In this retrospective observational
study, we analyzed patients with locally advanced cervical cancer (FIGO stages IB2, IB3, IIA1,
IIA2, IIB, and IIIC1) who were followed in a tertiary center from 2010 to 2018. Demographic
and clinical characteristics were collected at either treatment baseline or at 24-month follow-up.
Furthermore, we recorded data about magnetic resonance imaging (MRI) examinations and post-
surgery histopathology. Proper feature selection was used to determine an attribute core set. Three
different machine learning algorithms, namely Logistic Regression (LR), Random Forest (RFF), and
K-nearest neighbors (KNN), were then trained and validated with 10-fold cross-validation to predict
24-month PFS. Our analysis included n. 92 patients. The attribute core set used to train machine
learning algorithms included the presence/absence of fornix infiltration at pre-treatment MRI as well
as of either parametrium invasion and lymph nodes involvement at post-surgery histopathology.
RFF showed the best performance (accuracy 82.4%, precision 83.4%, recall 96.2%, area under receiver
operating characteristic curve (AUROC) 0.82). We developed an accurate ML model to predict
24-month PFS.

Keywords: cervical cancer; machine leaning; neoadjuvant therapy; progression-free survival

1. Introduction

Cervical cancer is the third most common cancer in women worldwide with 569,000
new cases each year [1].

Although early stage forms are often asymptomatic, symptoms that may occur in
locally advance stages are abnormal vaginal bleeding, pelvic pain, hematuria, dysuria, or
hematochezia [2].
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The most common histopathologic type of cervical cancer is squamous cell carcinoma,
accounting for more than 80% of the cervical malignancies. The others histotypes are
adenocarcinoma (up to 15%) and adenosquamous carcinoma (less than 5%) [3]. Uncommon
histopathologic types are small cell or neuroendocrine, serouspapillary and clear cell. Non
squamous presentations are associated with the worst prognosis [4,5].

The most recent revision of the International Federation of Gynecology and Obstetrics
(FIGO) staging system was announced in 2018 introducing the role of the imaging as a
source of staging information [6,7].

For pretreatment local staging, pelvic magnetic resonance imaging (MRI) and/or
transvaginal ultrasound are the gold standard examinations. This evaluations are useful
to define pelvic tumor extent, allowing accurate assessment of either tumor size, stromal
invasion depth, and parametrial invasion.

MRI examination is a valuable imaging method in the diagnostic work-up of macro-
scopically visible cervical cancers (stage ≥ IB) and represents a tool for monitoring the
cervical tumor response to chemotherapy [8–10].

According to 2018 FIGO Staging System [7], in early stage forms (IA, IB1, IB2, IB3, and
IIA) treatment typically consists of surgery as chemoradiation makes patients susceptible
to more unpredictable long-term side effects and menopause, despite equally effective;
patients may undergo surgery alone if no risk factors requiring adjuvant radiation treatment
are identified [7] Conversely, in locally advanced cervical cancer (FIGO stage ≥ IIB),
definitive management with concomitant chemoradiation is the preferred treatment [2,11].

In patients with stage IB2, IB3, IIA, or IIB, the choice of neoadjuvant chemotherapy
followed by radical hysterectomy can improve disease control and reduce toxicity [12,13].

Additionally, several studies report that patients undergoing radical surgery after
neoadjuvant chemotherapy may lead to improved survival outcomes compared with those
on radiotherapy [14–16].

In several fields of science, machine learning (ML) is emerging as a promising tool for
the implementation of complex multi-parametric decision algorithms [17]. In this regard, a
ML approach is a potential gamechanger. In fact, in addition to detecting linear patterns in
analyzed data, it can unravel complex non-linear relationships between patient attributes
that cannot be solved by traditional statistical methods, merging them to output a forecast
or a probability for a given outcome [18].

ML is a step towards precision medicine, leading to the improvement of patient
profiling and treatment personalization. Supervised ML algorithms have proven effec-
tive in predicting treatment responses and disease progression in patients affected with
heterogeneous diseases [19,20].

Despite several studies had identified factors correlated with successful treatment
outcomes in locally advanced cervical cancer [21], there is the lack of accurate predictive
modeling for long-term progression-free survival (PFS) after neoadjuvant therapy.

Here we investigated whether ML may have the potential to provide a tool to predict
neoadjuvant treatment response in terms of PFS.

2. Materials and Methods

In this retrospective observational study, we analyzed patients with locally advanced
cervical cancer who were followed in a tertiary center from 2010 to 2018. All patients of
our cohort underwent a pre-treatment MRI and, consequently, a pretreatment radiologic
stage, according to FIGO 2018 [7], was established. All patients had either IB2, IB3, IIA1,
IIA2, IIB, or IIIC1 stage (ordinal variable). They also received neoadjuvant chemotherapy
and a subsequent post-treatment MRI. The treatment response was assessed by variation
in tumor size according to Response Evaluation Criteria In Solid Tumors (RECIST v. 1.1,
ordinal variable) [22]. In case of complete response (CR), partial response (PR) or stable
disease (SD), the patients underwent radical hysterectomy with pelvic and lombo-aortic
lymphadenectomy. Radical hysterectomy type was C1. All surgery cases were performed
by open surgery.
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Demographic features (age), clinical characteristics (Body Mass Index (BMI), parity,
menopause, regime of neoadjuvant therapy and number of cycles) and progression free
survival (PFS) at 24-month were collected at either treatment baseline and 24-month follow-
up. Furthermore, we recorded data about MRI examinations as well as information about
post-surgery histopathology (histotypes, grading, lymph node involvement).

In pre and post-treatment MRI we recorded the largest diameter of lesion, the pres-
ence/absence of either lymph node involvement, fornix infiltration, parametrium infiltra-
tion, vescico-vaginal septum infiltration and recto-vaginal septum infiltration.

In total, the original database included n. 92 patients and n. 24 variables.
Proper feature selection was used to determine an attribute core set (see “Attributes

Selection” paragraph for further details).
This study followed STARD guidelines [23] and the TRIPOD statement [24].
The ML algorithms were aimed at forecasting PFS at 24-month follow up.
Student’s t-test for paired samples or Wilcoxon matched-pair signed-rank test were

used as appropriate to identify difference among continuous variables between different
observation periods. McNemar’s test was used to identify the difference among dummy
variables between different observation periods. The significance level at α = 0.05 was used.

The attribute core set used to train the algorithms was determined using a recursive
feature elimination (RFE) wrapper based on a decision tree algorithm with extreme gra-
dient boosting (XGBoost) [25]; in brief, this algorithm automatically selects among all the
recorded attributes (n. 23) the best number of features upon their importance for predic-
tions of the given outcome (PFS at 24 months). Feature selection may contrast overfitting
problems and improves classification performance. RFE elimination method is one of the
commonly used feature selection methods for small samples problems [26–28] (For further
details about RFE see Supplementary Materials).

The whole analysis was implemented in a Python 3.6 environment using scikit-learn
(ver.0.22.1) and XGBoost (ver. 1.1.0) libraries [25,29]. After z-score normalization, we ran a
Bayesian ridge conditional imputation [30] for missing data. The latter method has proven
to be the more accurate method of imputation for obstetrics and gynecology datasets [31]
(see Supplementary Materials for further details).

Three different classifiers, either linear and non-linear, were trained and validated
with 10-fold cross-validation using the attribute core set retrieved by the RFE for predicting
24-month PFS.

While logistic regression (LR) had been almost always the algorithm of choice to
find independent predictors in multivariate models, it must be noticed that the study
hypotheses were usually based on the unreal assumption that the association between
the prognostic factors and clinical outcomes is direct and isolated. On the contrary, LR is
not suitable for the modeling of non-independent variables. For this reason, along with
usual LR, for linear modeling we deployed the non-parametric K-nearest neighbors (KNN)
and random forest (RFF) [30] algorithms. The latter models have recently proven able to
accurately predict important outcomes for woman’s health, also in presence of non-linear
patterns in data [32–34]. Additionally, we choose RFF as there is evidence of accurate
performance in case of imbalanced data, which is often the case of clinical datasets [35]. We
also ran RFF using cost-sensitive training (using the argument class weight = “balanced”
in scikit-learn) to try to overcome imbalanced class issue.

A repeated grid-search with cross-validation was used for optimal hyperparameter
tuning to maximize the classifiers’ performance [36] (See Supplementary Material for
hyperparameter fine-tuning).

For each classifier, we plotted ROC curves, and then area under receiver operating
characteristic curve (AUROC) was determined.

Then, based on the optimal probability cut-off (Youden’s Index) [37] classifiers’ perfor-
mance was compared with the following metrics:

• Accuracy = true positives+true negatives
true positives+true negatives+ f alse positives+ f alse negatives ,

• Recall (True Positive Rate (TPR)) = true positives
true positives+ f alse negatives ,
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• Precision = true positives
true positives+ f alse positives .

In general, a classification model forecasts a binary outcome for a given observation
and class. In the process of predicting, a model may output the probability of an observation
belonging to each possible class. This case provides some flexibility both in the way
predictions are interpreted and presented, allowing the choice of a threshold, as the above
mentioned Youden’s index [38].

For a model to be reliable, the estimated class probabilities should be reflective of
the true underlying probability of the sample. To check these assumptions, a diagnostic
calibration curve for the candidate best classifier was also plotted [38].

3. Results

Our analysis included n. 92 patients with diagnosis of locally advanced cervical cancer.
Demographic and clinical data, MRI parameters and histological examination are

shown in Table 1.

Table 1. Demographic and clinical data, MRI parameters and histological examination.

Age at diagnosis (years), mean ± SD 48.9 ± 11.5
Parity, median (IQR) 2 (1–3)
Premenopausal, n. (%) 50 (54.3%)
FIGO stage, n. (%)

IB2 4/92 (4.3%)
IB3 23/92 (25%)
IIA1 1/92 (1.1%)
IIA2 16/92 (17.4%)
IIB 29/92 (31.5%)
IIIC1 19/92 (20.7%)

Neoadjuvant therapy, n. (%) n. cycles
Paclitaxel-carboplatin 46/92 (50%) 9
Cisplatin-vinorelbine 39/92 (42.4%) 3
Topotecan-cisplatin 6/92 (6.5%) 2
Paclitaxel-ifosfamide-cisplatin 1/92 (1.1%) 3
Pre-treatment MRI
Largest diameter of lesion (mm), mean ± SD 44.6 ± 10.5
Lymph node involvement, n. (%) 19/92 (20.7%)
Fornix infiltration, n. (%) 46/92 (50%)
Parametrium infiltration, n (%) 46/92 (50%)
Vescico-vaginal septum infiltration, n (%) 1 (1.1%)
Recto-vaginal septum infiltration, n (%) 1 (1.1%)
Post-treatment MRI
Largest diameter of lesion (mm), mean± SD 19.6 ± 12.5
Lymph node involvement, n. (%) 4/92 (4.3%)
Fornix infiltration, n. (%) 5/92 (5.4%)
Parametrium infiltration, n (%) 4/92 (4.3%)
Vescico-vaginal septum infiltration, n (%) 0 (0)
Recto-vaginal septum infiltration, n (%) 0 (0)
Recist criteria
CR, n. (%) 19/92 (21%)
PR, n. (%) 67/92 (73%)
SD, n. (%) 5/92 (6%)
Histotypes, n. (%)
Squamous cell carcinoma 70/92 (76.1%)
Adenocarcinoma 18/92 (19.6%)
Adenosquamous carcinoma 4/92 (4.3%)
Grading, n. (%)
G1 13/92 (14%)
G2 32/92 (35%)
G3 47/92 (51%)
pN0, n. (%) 76/92 (83%)
pN+, n. (%) 16/92 (17%)
Persistence of cervix disease after NACT 73/92 (79%)
Further treatment needed 25/92 (27%)
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Patients had a mean age (±SD) of 48.9 ± 11.5 years at diagnosis and n. 50 (54.3%)
patients were premenopausal. All patients underwent neoadjuvant therapy; n. 46/92 (50%)
paclitaxel-carboplatin, n. 39/92 (42.4%) cisplatin-vinorelbine, n. 6/92 (6.5%) topotecan-
cisplatin, n. 1/92 (1.1%) paclitaxel-ifosfamide-cisplatin (TIP)). 24-month PFS was achieved
by 70/92 patients (76.1%, imbalanced classes).

At pre-treatment MRI the largest diameter of lesion (mm), mean ± SD was 44.6 ± 10.5,
lymph node involvement occurred in n. 19/92 (20.7%), fornix infiltration in n. 46/92 (50%),
parametrium infiltration in 46/92 (50%), vescico-vaginal septum infiltration in n. 1 (1.1%),
recto-vaginal septum infiltration in n. 1 (1.1%).

At post-treatment MRI the largest diameter of lesion (mm), mean ± SD was 19.6 ± 12.5,
lymph node involvement occurred in n. 4/92 (4.3%), fornix infiltration in n. 5/92 (5.4%),
parametrium infiltration in 4/92 (4.3%), vescico-vaginal septum infiltration in n. 0 (0%),
recto-vaginal septum infiltration in n. 0 (0%).

RECIST criteria showed CR in n. 19/92 (21%), PR in n. 67/92 (73%), SD in n. 6/92 (6%).
At histopathological analysis histotypes were n. 70/92 (76.1%) squamous cell carci-

noma, n. 18/92 (19.6%) adenocarcinoma, n. 4/92 (4.3%) adenosquamous carcinoma.
Grading was G1 in n. 13/92 (14%), G2 in n. 32/92 (35%), G3 in n. 47/92 (51). Lymph

node involvement occurred in n. 16/92 (17%). Persistence of cervix disease after NACT
was verified in 73/92 (79%); n. 25/92 patients (27%) needed further treatment.

RFE retrieved an attribute core set used to train machine learning algorithms in-
cluding the presence/absence of fornix infiltration at pre-treatment MRI as well as the
presence/absence of either parametrium invasion and lymph nodes involvement at post-
radical surgery histopathology.

The final dataset had a dimensionality of 92 columns × 4 rows (n.3 selected attributes
plus n. 1 target class (PFS at 24 months, as above mentioned).

As reported in Table 2, at optimal cut-off (Youden’s index), RFF (n. estimators = 500,
depth = 5) showed the best performance (accuracy 82.4%, precision 83.4%, TPR 96.2%,
AUROC 0.82, Figure 1), outperforming LR (accuracy 77.9%, precision 80.1%, TPR 96.2%,
AUROC 0.81), and KNN (n. of neighbors = 5) (accuracy 73.6%, precision 76.5%, TPR 96.2%,
AUROC 0.67).

Table 2. Algorithms Performance. In bold the algorithm with the best performance on 10-fold cross
validation. Accuracy, Recall, Precision and AUROC for RFF, were significantly better than other
algorithms’ ones.

Youden’s Index Cut-Off Accuracy (%) TPR (%) Precision (%) AUROC

LR 0.77 77.9 96.2 80.1 0.81

RFF 0.62 82.4% 96.2 83.4 0.82

KNN 0.84 73.6 96.2 76.5 0.67
AUROC: Area under receiver operating characteristics curve; LR: Logistic Regression; KNN: K-nearest neighbors;
RFF: Random Forest; TPR: True Positive Rate.

In Figure 1, ROC curve for RFF (box A), LR (box B) and KNN (box C) models
was reported.

In Figure 2 calibration diagnostic has been plotted for RFF; PFS roughly happened with
an observed relative frequency consistent with the forecast value, showing an acceptable
calibration curve. We would expect the match between predicted frequencies and observed
frequencies to increase with a larger dataset.
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4. Discussion

The pillar of survival analyses in oncologic research had historically been Cox propor-
tional hazard regression model, being a surrogate for estimating treatment effectiveness
and safety. This model is based on an assumption of linear association. However, many
clinicopathologic features exhibit a nonlinear association in medicine [39].

Conversely in the area of cervical cancer research, ML can be used for supporting
the study of human papillomavirus-related disease, evaluating either cervical cytology,
colposcopy and genomic analysis [40–51]. However, there are only a few studies that have
examined oncologic outcome [52].

This is the first study that wants to analyze the accuracy of a ML modeling to predict
the response to neoadjuvant chemotherapy in patients with locally advanced cervical cancer.

Gadducci et al. [53] studied predictors of clinical outcome in patients with locally ad-
vanced cervical cancer treated with radical hysterectomy followed neoadjuvant chemother-
apy using traditional statistics. This study stated that an optimal pathological response
was the most relevant predictor for disease-free survival (DFS) and overall survival (OS).
The involvement of the parameters and/or margins of surgical resection was the other
independent predictor; vice versa, the lymph node status and the involvement of the
lymphovascular spaces correlated with DFS and OS.
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A study of Liang et al. established prognostic value of pathological response to
neoadjuvant chemotherapy in 204 patients affected with stage IB2—IIA cervical squamous
cell cancer. Clinical response and FIGO stage are variables statistically associated with DFS.
Patient age, histological grade and chemotherapy regimen result not associated with DFS.
An optimal pathological response to neoadjuvant chemotherapy has been shown to be
associated with improved long-term outcome.

In this study tumor regression results to be an independent prognostic factor for
survival performing the multivariate analysis. Moreover, in patients without extra-cervical
deposits, an association between survival rate and chemotherapy response grade was
shown, while this was not true in patients with extra-cervical deposits. This implies that
when the tumor is confined to the cervix, residual viable tumor cells has an impact on
prognosis. Although this is not true when tumor cells have spread outside the cervix [54].

The role of extra-cervical deposits (vaginal disease, nodal metastasis, parametrial
involvement) in determining the prognosis of cervical cancer patients after NACT has been
reported in previous studies. Uegaki et al. demonstrated that pelvic lymph node metastasis
was the only histopathologically independent prognostic factor (p = 0.0029) [55].

Benedetti-Panici et al. showed that lymph node metastases and involved parametria
were the only two independent factors for survival [56].

From all the recorded variables in our cohort, the automated attribute selection al-
gorithm selected the presence/absence of fornix infiltration at pre-treatment MRI as well
as presence/absence of either parametrium invasion and lymph nodes involvement at
post-radical surgery histopathology as the attribute core set to be used in ML models
training and validation.

The presence/absence of either parametrium invasion and lymph nodes involvement
at post-radical surgery histopathology had been already evaluated as predictors in previous
studies [53,55,56]. On the other hand, the presence/absence of fornix infiltration at pre-
treatment MRI was not considered as a classical predictor of response to neoadjuvant
chemotherapy.

On the contrary, for predictive modeling RFF, a non-linear algorithm, showed a slightly
higher performance than LR in terms of accuracy and precision.

The lack of balance in target class (PFS at 24 months) may be responsible of the better
performance of RFF, especially in terms of precision, when compared to KNN and LR.

The main strength of our model is its capability of predicting sustained remission
basing on easy-to-gather attributes that are widely available at treatment baseline visit and
come with no added cost.

Despite good performance, the main limitation of this study remains the sample size.
Although our sample size for training and validation is similar or larger than those recently
published [54], it must be noticed that ML algorithms score dramatically better when huge
cohorts (i.e., thousands of patients) are used for training.

5. Conclusions

In gynecologic oncology, ML is a step towards precision medicine, leading to the
improvement of patient profiling and treatment personalization.

We developed an accurate model to predict 24-month PFS in patients with locally
advanced cervical cancer on neoadjuvant therapy, based on an ML algorithm requiring few
easy-to-collect attributes. Our results are promising but need to be tested prospectively.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/2/823/s1.
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