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Abstract: Safety is an essential topic to the architecture, engineering and construction (AEC) industry.
However, traditional methods for structural health monitoring (SHM) and jobsite safety management
(JSM) are not only inefficient, but also costly. In the past decade, scholars have developed a wide
range of deep learning (DL) applications to address automated structure inspection and on-site safety
monitoring, such as the identification of structural defects, deterioration patterns, unsafe workforce
behaviors and latent risk factors. Although numerous studies have examined the effectiveness of
the DL methodology, there has not been one comprehensive, systematic, evidence-based review of
all individual articles that investigate the effectiveness of using DL in the SHM and JSM industry to
date, nor has there been an examination of this body of evidence in regard to these methodological
problems. Therefore, the objective of this paper is to disclose the state of the art of current research
progress and determine the relevant gaps, challenges and future work. Methodically, CiteSpace was
employed to summarize the research trends, advancements and frontiers of DL applications from
2010 to 2020. Next, an application-focused literature review was conducted, which led to a summary
of research gaps, recommendations and future research directions. Overall, this review gains insight
into SHM and JSM and aims to help researchers formulate more types of effective DL applications
which have not been addressed sufficiently for the time being.

Keywords: machine learning; deep learning; jobsite safety management; structural health monitoring;
workforce safety

1. Introduction

The architecture, engineering and construction (AEC) sector is a significant driver of
economic activity around the world [1]. Structure- and workplace-related safety accidents
have the potential to be life-threatening [2]. Unfortunately, these are always some of the
most overlooked things in the sector. In the United States, around 40% of bridges are over
50 years old, and more than 9% of them are rated as structurally deficient, which would
draw a total cost for bridge rehabilitation of around $123 billion [3]. In addition to the need
to design more robust structures under various loads [4,5], efficient structural monitoring is
also important for aging infrastructure. Accurate structural health assessments are the basis
for the decision-making of infrastructure maintenance, repair and rehabilitation. Typically,
structure health monitoring (SHM) relates to different approaches, such as conducting
regular visual inspections or relying on structural monitoring sensors [6]. Visual inspections
require experienced inspectors to carry inspection instruments to reach the structure surface
and conduct the inspection, and such a process can be labor-intensive, time-consuming
and sometimes risky. Sensor-based monitoring can identify defects from both the structure
surface and interior, and it is more reliable when the sensors are functional [7,8]. As time
goes by, however, the accuracy may be compromised due to changing environments or
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sensor aging problems. Under these circumstances, noise filtering approaches could be
used to correct the data. However, this is also tedious and requires expertise.

Similarly, workforce safety issues in jobsite safety management (JSM) are also a
challenge for the AEC industry [9]. For example, the US Occupational Health and Safety
Agency (OSHA) recorded a surprisingly high death toll of 1008 construction worker
fatalities in 2018 that were mainly caused by common on-site accidents, such as being
struck by falling objects and falling from heights [10,11]. Traditionally, construction on-
site safety monitoring relies on site patrols and surveillance [12]. However, the complex
nature of site dynamics would make on-site safety monitoring more difficult and less
proactive [13]. In addition, the fatigue level of workers cannot be accurately identified.

Over the past few years, researchers have been formulating various machine learn-
ing (ML) applications for various fields [14–17]. Prime ML applications in SHM and
JSM include structure damage detection [18] and on-site worker safety monitoring [19].
The rapid evolution of graphics processing units (GPUs) has dramatically improved the
computational capacity for processing ML algorithms, which has led to the advent of an
increasing amount of deep learning (DL) applications that are underpinned by improved
GPU performance [20]. In particular, the convolutional neural network (CNN), a DL al-
gorithm, achieved extraordinary results in the ImageNET Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012), which is a benchmark in object classification and detection
for thousands of object classes and millions of images [21]. Currently, DL has outperformed
many advanced algorithms in numerous fields [20,22,23]. More and more, DL applications
are being developed and deployed to address image classification, data augmentation
and object detection problems [24–27]. Besides that, scholars have also made encouraging
progress in integrating DL and natural language processing (NLP) for the text extraction of
construction safety reports [28,29]. Through analyzing and classifying such reports, hidden
dangers can be identified in time. Therefore, corresponding measures can be taken to avoid
similar accidents in the future. It can be seen that ML and DL have great potential in image
recognition and data analysis and are likely to be the best options to address the challenges
of SHM and JSM.

To understand the research forefront in relation to applying ML and DL to address
SHM and JSM, this paper provides a comprehensive literature review that covers ML- and
DL-related research and development. This study gains insight into SHM and JSM and
aims to help researchers formulate more types of effective DL applications which have not
been addressed sufficiently for the time being. The remainder of the paper is organized as
follows: Section 2 details the review methodology and scientometrics analysis; Section 3
demonstrates the SHM, JSM, DL and ML review; Section 4 denotes the limitations and
future research directions; and Section 5 concludes this study.

2. Methodology
2.1. Literature Search

Over the past decade, researchers have progressively concentrated on the DL-based
studies and have published an increasing amount of articles. Such an amount of research
papers may challenge researchers to find the research focus and current states. To system-
atically identify and analyze the state-of-the-art SHM, JSM, DL and ML applications, this
study used the Web of Science (WoS) as the data source for searching for articles. A variety
of keywords, terms and variations were attempted, including TITLE-ABS-KEY (“deep
learning” OR “machine learning” OR “convolutional neural network*” OR CNN* OR
RNN OR “Recurrent neural network*”) AND TITLE-ABS-KEY (construction* OR site* OR
civil* OR “AEC industr*”) AND TITLE-ABS-KEY (crack* OR “structu* health monitoring”
OR SHM OR damage* OR defect* OR maintenance* OR inspection* OR behavi* OR safe*
OR unsafe* OR fatigue* OR concrete* OR “computer vision*” OR “Natural Language
Processing” OR NLP OR integration*). The time span of the search was from 2010 to 2020.
The relevance of papers was ensured by reviewing each article’s title and abstract and
excluding the irrelevant ones. Eventually, 527 papers remained.
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2.2. Literature Analysis

In this study, CiteSpace [30] was used to provide a comprehensive understanding of
the research hotspots and development trends for DL-based SHM and JSM. CiteSpace is
a dynamic visual analysis tool which can draw knowledge maps diversely via clusters,
network connectivity diagrams, nodes and so forth [31]. The uniqueness of this analysis is
that emerging trends can be determined based on indicators derived by CiteSpace without
domain experts’ intervention or prior knowledge of the topic. Additionally, CiteSpace
can expand a data set by collecting the most-cited references. This makes the data set
more robust than defining the researched field with a list of predefined keywords. Figure 1
demonstrates a keyword co-occurrence network which consists of 367 keyword nodes
and 1787 links generated from the literature database. The frequency of co-occurrence
of the keyword is proportional to the font size of the keyword. Table 1 summarizes each
keyword’s occurrence. The trendy research themes are shown in Figure 2, as reflected in
the keyword bursts.
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Table 1. Keyword frequency.

Frequency Centrality Keyword

101 0.04 machine learning
92 0.11 model
89 0.09 system
88 0.24 computer vision
80 0.01 deep learning
60 0.15 classification
58 0.03 neural network
48 0.04 identification
44 0.05 tracking
42 0.05 recognition
39 0.04 convolutional neural network
39 0.04 damage detection
37 0.13 construction
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Table 1. Cont.

Frequency Centrality Keyword

33 0.02 equipment
32 0.03 safety
32 0.01 algorithm
30 0.05 worker
28 0.03 crack detection
27 0.01 prediction
24 0.01 structural health monitoring
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Co-citation analysis is an effective method for identifying the relationship of citations
by annotating their citation and co-citation footmarks [32]. The literature co-citation net-
work consisted of 492 nodes and 2075 links (Figure 3). Figure 4 identifies the citations
with the strongest bursts. The references were sorted by starting time, and this order
indicated the development of the research trend. Figure 3 shows the co-citation network
clusters based on the log-likelihood ratio (LLR) test. The order number of clusters reflects
the number of relevant papers published in an area. As can be seen from Figure 3, the
major research results are mainly focused on cluster #0 body posture, cluster #1 DL-based
roadway crack classification and cluster #2 infrastructure construction site. Therefore, the
articles included in these clusters were analyzed primarily in order to identify emerging
trends. Besides that, the latent semantic indexing (LSI) test and the mutual information
(MI) test were also used for cluster labeling. The top-ranked clusters derived from these
three algorithms are summarized in Table 2. Table 3 demonstrates the journals that were fre-
quently cited by the acquired literature. It could be noted that Automation in Construction,
Journal of Computing in Civil Engineering, Lecture Notes in Computer Science, Advanced
Engineering Informatic and Computer-Aided Civil and Infrastructure Engineering were
the most-cited journals in the ML, DL, SHM and JSM domains. Based on the derived
clusters and keywords derived from CiteSpace, this study classified the collected papers
into four categories using a systematic and manual process, namely vision-based damage
detection, vibration-based damage detection, workers’ unsafe behavior detection and the
analysis of construction safety documents. In the next section, the state-of-the-art ML- and
DL-based technologies and applications are discussed in the corresponding categories.



Appl. Sci. 2021, 11, 821 5 of 18Appl. Sci. 2021, 11, 821 5 of 17 
 

 
Figure 3. Cluster co-citation network. 

Table 2. Top-ranked clusters derived from three algorithms. 

Size Silhouette LSI LLR MI 
82 0.844 fuzzy inference body posture jobsite video stream 
66 0.977 crack detection deep learning-based crack classification rapid damage assessment 
54 0.895 computer vision infrastructure construction site tunnel construction project 
39 0.831 deep learning deep learning-based crack classification field surveillance video 
38 0.911 construction workers construction worker biomechanical analysis 
38 0.896 automated 2d detection support vector machine automated 2D detection 
37 0.979 parameter optimization automated concrete detection deep learning 

13 0.993 
improved deep learning ap-

proach 
construction accident report deep learning 

6 0.971 concrete crack detection pixel-level bridge deep learning 
4 0.996 multiple vehicles multiple vehicles personal protective equipment 

Figure 3. Cluster co-citation network.
Appl. Sci. 2021, 11, 821 6 of 17 
 

 
Figure 4. Strong citation burst references. 

Table 3. Cited journal frequencies (Impact Factors (IFs) are based on the first cited year). 

Co-Citation Count First Cited Year Cited Journals Impact Factors (SCI) 
271 2010 AUTOMAT CONSTR 3.13 
229 2010 J COMPUT CIVIL ENG 1.42 
187 2011 LECT NOTES COMPUT SC 1.17 
184 2010 ADV ENG INFORM 3.10 
161 2010 COMPUT-AIDED CIV INF 5.29 
142 2012 J CONSTR ENG M 2.00 
107 2016 SENSORS-BASEL 3.32 
104 2011 INT J COMPUT VISION 6.56 
97 2014 EXPERT SYST APPL 5.23 
81 2018 IEEE ACCESS 4.64 
77 2016 NATURE 40.13 
76 2015 J MACH LEARN RES 3.13 
74 2018 NEUROCOMPUTING 5.19 
72 2015 COMMUN ACM 4.46 
69 2016 ENG STRUCT 2.99 

3. Review of DL and ML Safety Applications 
3.1. SHM 
3.1.1. Vision-Based Damage Detection 

In recent years, researchers have used computer vision-based methods to conduct 
the visual inspection of surface defects and have attested considerable merits [33–35]. 
These methods are primarily based on image processing techniques (IPTs), such as histo-
gram transformation, texture recognition and edge detection [1,36]. However, these meth-
ods are vulnerable to lighting condition changes and image distortion issues. 

To enhance the performance of IPT-based approaches for defect detection, research-
ers have integrated ML algorithms [37–39]. Technically, ML algorithms can efficiently 
classify different damage features extracted from IPTs. ML-based methods mostly focus 
on identifying typical structural defects such as cracks [40–47], rusting [48,49], spalling 

Figure 4. Strong citation burst references.



Appl. Sci. 2021, 11, 821 6 of 18

Table 2. Top-ranked clusters derived from three algorithms.

Size Silhouette LSI LLR MI

82 0.844 fuzzy inference body posture jobsite video stream

66 0.977 crack detection deep learning-based crack
classification rapid damage assessment

54 0.895 computer vision infrastructure construction site tunnel construction project

39 0.831 deep learning deep learning-based crack
classification field surveillance video

38 0.911 construction workers construction worker biomechanical analysis
38 0.896 automated 2d detection support vector machine automated 2D detection
37 0.979 parameter optimization automated concrete detection deep learning
13 0.993 improved deep learning approach construction accident report deep learning
6 0.971 concrete crack detection pixel-level bridge deep learning
4 0.996 multiple vehicles multiple vehicles personal protective equipment

Table 3. Cited journal frequencies (Impact Factors (IFs) are based on the first cited year).

Co-Citation Count First Cited Year Cited Journals Impact Factors (SCI)

271 2010 AUTOMAT CONSTR 3.13
229 2010 J COMPUT CIVIL ENG 1.42
187 2011 LECT NOTES COMPUT SC 1.17
184 2010 ADV ENG INFORM 3.10
161 2010 COMPUT-AIDED CIV INF 5.29
142 2012 J CONSTR ENG M 2.00
107 2016 SENSORS-BASEL 3.32
104 2011 INT J COMPUT VISION 6.56
97 2014 EXPERT SYST APPL 5.23
81 2018 IEEE ACCESS 4.64
77 2016 NATURE 40.13
76 2015 J MACH LEARN RES 3.13
74 2018 NEUROCOMPUTING 5.19
72 2015 COMMUN ACM 4.46
69 2016 ENG STRUCT 2.99

3. Review of DL and ML Safety Applications
3.1. SHM
3.1.1. Vision-Based Damage Detection

In recent years, researchers have used computer vision-based methods to conduct the
visual inspection of surface defects and have attested considerable merits [33–35]. These
methods are primarily based on image processing techniques (IPTs), such as histogram
transformation, texture recognition and edge detection [1,36]. However, these methods are
vulnerable to lighting condition changes and image distortion issues.

To enhance the performance of IPT-based approaches for defect detection, researchers
have integrated ML algorithms [37–39]. Technically, ML algorithms can efficiently classify
different damage features extracted from IPTs. ML-based methods mostly focus on identi-
fying typical structural defects such as cracks [40–47], rusting [48,49], spalling [50,51] and
loose bolts [52]. Nevertheless, these methods require defect features to be clearly defined
and extracted using proper classifiers. Overall, these methods lack efficiency, feasibility and
accuracy. Rapidly developing DL techniques are expected to solve the problems mentioned
above. The CNN, as an end-to-end model, can improve the efficiency of defect detection
and localization significantly because it can learn the defect features automatically from the
labeled defects in the training samples. Normally, the process of using a CNN to determine
defects in images is as follows: a fixed-size sliding window is used to scan and separate
the image into small patches, and then a well-trained CNN is used to detect the defects
on each small patch separately. Because the scales and shapes of defects may vary, it is
difficult to find an appropriate window size to fit all kinds of them in practice.
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To overcome the drawback above, a region-based CNN (R-CNN) [53] was proposed to
replace the sliding windows method. The R-CNN is a two-stage detector. First, it employs
a selective search approach [54,55] to generate region proposals. Then, the defect features
can be extracted from the regions for classification and be highlighted by bounding boxes.
However, the proposed region may be overlapped and, therefore, it may increase the
computational burden [56].

To increase the efficiency of object detection, a Fast R-CNN [57] and Faster R-CNN [58]
were proposed successively. Researchers have currently employed these two-stage detec-
tors to detect the surface damages of structures. For instance, Cha et al. [56] used a Faster
R-CNN to identify five classes of structural defects in both steel and concrete structures. A
Faster R-CNN architecture modified by Li et al. [59] could determine the small concrete
defects even in a complex image background. Although two-stage detectors can provide
high accuracy, the generation of a region proposal hinders the detection speed. Therefore,
two-stage detectors are hard to use for achieving real-time detection.

Due to the above limitations, single-stage detectors (e.g., the single shot Multibox
detector (SSD) [60] and you only look once (YOLO) [61]) were proposed by combining
object classification and localization into one single convolution network. The removal
of the proposal generating step is the main feature of single-stage detectors. Besides that,
they can predict multiple bounding boxes simultaneously. Hence, the detection speed
of single-stage detectors can be improved significantly. Similarly, YOLOv3 was used by
Zhang et al. [5] to detect the cracks, pop-out, delamination and exposed rebar of the bridge
with relatively high accuracy.

However, using bounding boxes to identify the damage may not be suitable, as such
rectangular boxes cannot determine the boundaries of the crack textures accurately. In
this case, pixel-level semantic segmentation, which assigns classification labels to each
image pixel instead of generating bounding boxes, allows for better defect localization
and analysis [2]. A fully convolutional network (FCN) [19] is a pixel-by-pixel network
for semantic segmentation. It predicts the class (crack or non-crack) of each pixel by
using a deconvolution layer to upsample the last convolutional layer. Compared with the
methods above, the pixel-level method can completely separate the damage feature from
the background by highlighting each pixel of the defect. At present, the FCN method has
already been exploited to identify concrete cracks [55,62] and other structure defects [63–65].
For example, Zhang et al. [66] proposed an FCN-based, pixel-level asphalt pavement crack
detector. Similarly, Bang et al. [67] employed an FCN as a part of their developed network
for road crack detection based on digital images produced by black box cameras. The
results proved that an FCN is optimal for defect information segmentations. Except for
segmenting the crack, it can also provide valuable damage information, such as crack
widths for damage assessment. When annotating defects in an image sample, a small
portion of non-cracked surfaces is likely to be labeled as defects. Such random errors are
inevitable and not easy to measure. To reduce the impact of such uncertainty, Tong et al. [68]
combined an FCN and a Gaussian-conditional random field for pavement defect detection.
The developed framework can address the uncertainty of defect labeling.

3.1.2. Vibration-Based Damage Detection

Although a pixel-level representation of structural defects is beneficial for SHM, it
can only identify the damage level on the structure surface and is not competent to infer
the performance of internal structural components which may have been deteriorated in
advance [69]. Vibration data is the main type of source of data utilized in SHM. Technically,
any structural damage will change the stiffness and mass distributions of the structure and
lead to differences in the natural frequencies and mode shapes [70,71]. Hence, vibration-
based SHM methods have the potential to detect internal structural damages by analyzing
the abnormal data acquired from the sensors (e.g., accelerometers). The previous research
of vibration-based SHM mainly focused on setting up a real physical model to imitate
the status of a real structure. Basically, this model-driven method employs mathematical
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modeling and physical laws to represent the monitored structure [72]. Hence, the level
and location of the damage can be determined accurately by analyzing and solving the
model. Nevertheless, it is challenging to build and solve such a complicated model when
the complexity of the monitored structure increases and the environmental factors are
considered. Currently, model-driven methods have been progressively replaced by data-
driven methods [73,74]. The most critical drawback of the model-driven approach is that
modeling usually requires expertise and is time-consuming. Unlike the model-driven
method, the data-driven method can identify the anomaly data directly by measuring
the data collected from the sensors. Most of the data-driven method is based on the
ML paradigm [75]. As the appropriate sensors’ layouts can improve the efficiency and
accuracy of data collection and transmission, ML algorithms, such as a genetic algorithm
(GA) [76], have also been used for the determination of optimal sensor layouts. However,
when applying vibration-based SHM methods in practice, the natural frequencies of the
structure are easily affected by environmental factors (e.g., temperature) [77,78]. For
example, if a structure has some small-scale damages, the changes in the natural frequency
of the structure would possibly be suppressed by those environmental variables. Some
scholars have conducted several analyses on the evolution of structural properties and
their relationship with changes in environmental parameters [79,80]. Among them, the
monitoring of the Z24 bridge is emblematic for addressing this issue [81]. Although
significant efforts have been made in this regard, it requires comprehensive expertise and
is time-consuming [82].

Currently, DL methods can potentially remedy the issue, as they can fully utilize the
sensor data by automatically extracting the data features. Therefore, without expertise,
even a delicate anomaly can be perceived. Recently, Ni et al. [83] presented a 1D CNN-
based algorithm along with autoencoder data compression to identify anomaly data in
a long-span suspension bridge. The results showed that the developed algorithm could
achieve a precision of 97.53%. Similarly, Avci et al. [84] presented a 1D CNN-based method
to detect the structural damages on a steel frame by using wireless sensor data. Azimi and
Pekcan [85] introduced a novel CNN-based approach which could detect and locate the
damage in a large-scale structure. Lin et al. [86] trained a deep CNN by feeding it unrefined
sensor data and applied it for identifying the damage of a simulated beam structure. The
results revealed that the trained CNN could detect structural damage with high accuracy,
even if the test data were noisy. Zhang et al. [2] proposed a CNN to detect structural
stiffness and mass changes. The developed CNN achieved good results on both the in-lab
structure and the in-service bridge. Gulgec et al. [87] used a DL-based method for steel
fatigue assessment. Compared to the traditional method, which is costly and laborious,
their proposed method could achieve a high detection accuracy with a low cost.

Vibration-based methods integrated with DL have proven that they can perform
well in damage detection, and the costs of these methods are relatively low. However,
these methods still need much effort in data labeling, which is tedious. There is a novel
application using an unsupervised learning method, which does not require data label-
ing. Guo et al. [88] presented an unsupervised learning method called a sparse coding
algorithm for SHM. Sparse coding was employed to learn the feature representations from
unstructured vibration data to improve the performance of damage detection. Through
simulation, different degrees of damage were conducted, and the results showed that
the proposed method outperformed other ML methods, such as logistic regression and
decision trees, with a precision of 98%. However, this application was only validated on
the simulated model. As the performance on real-world structures has yet to be verified,
this may become a notable topic for future research.

3.2. JSM
3.2.1. Workers’ Unsafe Behavior Detection

On-site surveillance videos or images have been used for automated unsafe behavior
detection in recent years. Variables such as hard hats, safety vests and workers can be
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detected by using certain computer vision techniques (e.g., a background subtraction
algorithm [89], the histograms of oriented gradients (HOG) method [90], and the scale-
invariant feature transform (SIFT) [91]). Nowadays, such methods which require much
work for feature extraction are being replaced by DL gradually.

Mneymneh et al. [92] developed a CNN-based framework that could determine
if workers (even they are moving) were wearing hard hats on the construction site.
Xie et al. [93] modified a CNN to detect workers’ hard hats, and the model produced
excellent results in the mean average precision (mAP) performance metric. Similarly, the
Faster R-CNN [94] and SSD methods [95] were also employed to detect hard hats.

Fang et al. [96] modified the Faster RCNN to identify if workers equipped harnesses
properly. Kolar et al. [97] employed a VGG-16 model to detect if safety guardrails were in-
stalled correctly to prevent workers from falling from heights. Siddula et al. [98] integrated
a Gaussian mixture model (GMM) with CNNs to detect roofers on roof construction sites.
This research can alleviate roof site fall risks.

In the unsafe activities identification area, Ding et al. [19] coupled a long short-term
memory (LSTM) model [99] with CNNs to identify if the worker would climb a ladder
unsafely [19]. Kim et al. [100] developed an image-based risk prevention system to display
the safety-related information of each construction worker on a wearable augmented reality
(AR) device. Luo et al. [101] utilized a Faster R-CNN to determine workers’ activities
based on construction site images. Considering that temporal information is necessary for
dynamic activities detection, Luo et al. [102] later improved the framework for video-based
worker activity recognition by helping the temporal information emerge. Some researchers
have also investigated construction vehicle detection using DL. Kim et al. [103] employed a
region-based FCN to detect construction vehicles. Fang et al. [104] used a Faster R-CNN to
identify the spatial relationship of workers and excavators on construction sites. This study
provided a basic prototype of the site safety alert system, which can prevent workers from
being hit by heavy equipment. Son et al. [105] used a Faster R-CNN to identify on-site
workers in diverse poses against complex backgrounds.

3.2.2. Analysis of Construction Safety Documents

On-site managers can benefit from analyzing safety reports, as they can acquire details
about the events and circumstances that result in safety accidents. Hence, corresponding
actions can be taken to prevent similar accidents in the future [106]. With the development
of safety management, scholars have proposed various text classification methods to
classify and analyze accident causation [107]. More recently, researchers have tried to
apply various ML algorithms to construction-related accident analysis. Tixier et al. [108]
developed a predictive model which used random forest (RF) [109] and stochastic gradient
tree boosting (SGTB) methods [110]. This model can forecast the different types of injuries
recorded by on-site injury reports. Later, Tixier et al. [111] presented an improved NLP
method to extract outcome variables and injury precursors from the unstructured injury-
related text. This method can reduce the labor cost of text analysis. Chokor et al. [112]
adopted an unsupervised learning approach for injury report classification based on K-
means clustering. The text mining approach presented outstanding results regarding recall
and precision. Goh et al. [113] applied six ML approaches to classify the near-miss accident
reports. The results illustrated that ML algorithms performed better than traditional text
classification methods. However, ML requires hand-crafted featuring, which limits the
generalization of the classifier and also may affect the adaptability.

DL-based methods perform excellently, in regard to text mining and classification,
when compared with traditional ML [114]. Word2Vec [115] is a popular DL method that
adopts word embedding technology. Word2Vec can be trained by public semantic resources
such as Wikipedia when utilizing it for text classification [116]. It avoids the manual
featuring process and augments knowledge concurrently. However, there is relatively
limited research focusing on this topic. Future research can be conducted by combining
Word2Vec and computer vision in JSM. For example, CNN can be used to detect unsafe
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events from the construction site images taken from surveillance cameras. Then, image
captioning technology provided by Word2Vec can be used to explain the event in text
formation. In this way, an automated safety report generation system based on construction
images can be developed.

4. Challenges and Recommendations for Future Work
4.1. Limitations of the Data Set and Weak Generalization of DL Models

To achieve a high detection or classification accuracy, normally a massive labeled im-
age is needed to train a deep neural network well. However, there are few civil engineering-
related data sets available to the public, and it is not easy to obtain such data. To this
end, it is common to pre-train a CNN model with an extensive common object dataset
(e.g., ImageNet, MNIST and CIFAR-10). Normally, most of the popular pre-trained CNN
models (e.g., VGG-16, ResNet50, Inceptionv3, and YOLOv3) are available online. Such
models with pre-trained weight have already learned to extract the basic features of the
images. Researchers can download these models as the backbone of their DL structures
for conducting specific tasks. This process is called transfer learning [20,117], and many
DL-based applications have employed it in practice. However, a pre-trained model is still
required to learn the nuanced features of the specific targets. Given the lack of available
datasets for training, researchers in construction are normally required to create their own
by labeling images manually. This process is time-consuming, tedious and expensive.
Since the specific database has to be created, it tends to be limited and, thus, can hinder
the generalization ability of the model. To this end, data augmentation methods can be
employed to upsize the dataset synthetically. In general, those methods include spatial
flipping, cropping, bending and other deformations of the images [118]. Typically, the
semantic meaning of the labels will not be changed by these augmentation approaches.
Therefore, the newly generated images are highly associated with the original ones. In this
way, the generalization of the DL model may not be improved effectively.

In order to tackle these issues, a generative adversarial network (GAN) may be a
possible option. GANs were first introduced by Goodfellow et al. [119] and can be used as
data generation models. A GAN consists of a generator and a discriminator. The principle
of a GAN is to let the discriminator evaluate the new data produced by the generator.
As the recurrent training progresses, the performance can be improved gradually during
the process. This kind of unsupervised learning has been proven to be powerful in many
applications. In recent years, scholars start using GANs to produce synthetic images.
Compared to the data augmentation methods, the images generated by GANs are more
diverse and distinct [5]. In addition, researchers have used the advantages of GANs to
generate face images. For example, Jin et al. [120] applied a GAN to anime character
creation. The GAN demonstrated stable performance in the innovative face creation of
anime characters. Zhang et al. [5] designed a GAN which illustrated good outcomes in
natural scene images. Besides those examples, Kitchen and Andy [121] leveraged a GAN
in the health sector. They applied a deep GAN to produce synthetic prostate lesion images
and utilized these images to upsize their training dataset. However, there are relatively
few GAN-related studies conducted in the AEC safety industry. Implementing a GAN in
practice might be a possible solution for tackling the construction-related data set challenge.

Similarly, there are few public vibration data sets available for researchers to train
their classifiers. Hence, future research should focus on finding an alternative method
to train those classifiers when sensor data is insufficient. One recommended method for
building up training data sets is combining real-life data from an undamaged structure
with simulated data for the damage scenarios collected from an in-lab model. Besides that,
as more and more emerging algorithms come out, unsupervised learning that can run on a
small amount of labeled and unlabeled sensor data may become a hot topic in the future.
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4.2. Directions of Future Studies

With the advances of powerful cloud-based computing and the DL platform, the
importance of data is more obvious than ever. However, there are still many types of
data from SHM and JSM that have not been fully utilized by ML and DL technologies.
Considering the development of emerging technologies and underutilized data types, the
recent development direction of DL-based SHM and JSM research can be divided into the
following categories.

4.2.1. DL-Based Seismic Vibration Control for SHM

Seismic vibration control is, in conjunction with SHM, another very important field
for safety management [122–124]. In order to improve the stability of the structure when an
earthquake occurs, the active controller and the passive base-isolated systems are generally
integrated together [125]. Some scholars have started to used ML algorithms to evaluate the
failure probability of base-isolated systems [122] and design active control schemes [123].
However, sensor malfunction and time delay are among the major concerns that impact a
vibration control system’s performance under seismic vibration [59,126,127]. The LSTM
model has been proven to be effective in distinguishing long-term dynamical dependencies
over sequential frames [99]. Therefore, it is possible to predict the response of structures to
overcome the breakdown of signal and time delay issues by using LSTM networks, which
results in developing robust and efficient control systems.

4.2.2. Visual-Based On-Site Fatigue Monitoring

In the field of JSM, fatigue monitoring is also important. Given the increasing com-
plexity of on-site dynamics, the heavy equipment operators, as well as their operations and
judgment, play an essential role in ensuring safety and productivity on the construction
site. Nevertheless, as the work becomes more intense, their cognitive awareness may
become more jeopardized, which may lead to a safety hazard. It is noteworthy that Tam
and Fung [128] revealed that approximately 60.5% of crane operators would continue to
work even feeling fatigued after long working hours under a tight construction schedule,
and about 52.6% of the crane operators experienced a lack of breaks, as they found it
inconvenient to frequently move in or out within the narrow workspace. Hence, automated
fatigue monitoring and warnings can provide timely support for this cohort. As the fatigue
condition of heavy equipment operators and workers is relatively easy to be detected via
analyzing their facial expressions, the real-time monitoring of their faces through cameras
can be an effective, feasible and non-invasive method to identify drowsiness and avoid
accidents [129]. Currently, CNNs have been used in real-time fatigue monitoring of on-road
driving [130–132]. Some researchers have employed CNNs to extract video-level features
and then integrate them into LSTM models to analyze the temporal information for fatigue
identification [133,134]. However, the potential of a CNN-LSTM model regarding fatigue
monitoring of heavy equipment operators is far from being comprehensively explored.
Therefore, these DL-based applications have the potential to be leveraged to detect driver
fatigue in the construction field.

4.2.3. Possible Integrations with Other Digital Technologies

Future research can integrate DL with other novel technologies, such as AR and virtual
reality (VR) [135,136], building information modeling (BIM) [137–140], 5G technology
and the Internet of things (IoT) [64], into real-time SHM and JSM to extract information
from the massive amounts of data continuously received from wireless sensor networks.
Such research can further expand the scope of SHM and JSM through various advanced
sensors to provide decision-making assistance accurately. Being capable of interpreting
unstructured data in large volumes, DL technology can be employed to facilitate the entire
integrated system cost-effectively and intuitively. Future research can propose such a new
paradigm in relation to IoT-based sensor data collection, transformation and visualization
as part of the DL-based SHM and JSM applications. Nowadays, unmanned aerial vehicles
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(UAVs), mobile phones and AR devices (e.g., HTC VIVE Focus Plus, Microsoft Hololens and
Google Glass) have become an integral part of human activities. These compact devices
can normally collect digital data and have good computing and network technology.
Moreover, most of these devices are programmable, having the potential to achieve real-
time and cloud-based assessments. Currently, some popular CNNs (e.g., MobileNet-SSD
and YOLOv3-Lite) have been proposed. These networks do not require a high computing
power and can maintain relatively stable performance. Therefore, it is possible to conduct
on-site safety inspection through these mobile devices. With the advent of the 5G era, low-
latency collaboration and intelligent optimization become possible. For example, UAVs
can be paired with mobile phones to obtain and process image data while embedding
light-weight DL algorithms. In addition, AR technologies have been broadly exploited in
construction through superimposing virtual elements onto the construction site [84,141,142].
By integrating these advanced digital devices and technologies with DL, it is possible to
establish a real-time hazard alerting system. First, site images or videos are transmitted to
the mobile phone continuously by using UAVs. Then, a mobile phone with DL algorithms
installed can be used to detect hazardous activities based on these image-based data. When
a worker enters the hazardous area (e.g., working too close to the construction vehicles), the
AR device worn by the worker can provide timely alerts through popping up a warning in
the worker’s point of view. However, current lightweight DL algorithms are only qualified
for detecting and localizing objects with apparent features in the images; things such as
cracks and minor defects of structures with subtle features may not be applicable in this
case. Therefore, an optimized version of the DL structure is still needed in the future.

5. Conclusions

DL-based applications in the AEC safety industry are becoming more and more
widespread [143,144]. The purpose of this paper was to summarize the past decade of
research in SHM- and JSM-based on ML and DL applications and offer possible solutions
for current research challenges. First, this study started with scientometrics analysis by
using CiteSpace to visualize the knowledge map of ML and DL applications in the AEC
safety industry. Second, this study reviewed the related state-of-the-art literature and
identified the main challenges of current research. Additionally, possible suggestions for
future research directions were provided. It is believed that this comprehensive review can
inspire researchers to develop more types of practical DL applications in the future.
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