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Abstract: In this paper we address a decentralized neighbor-based formation tracking control of
multiple quadrotors with leader–follower structure. Different from most of the existing work, the
formation tracking controller is given in one loop without distinguishing the motion control and
attitude control by means of the theory of flatness. In order to achieve an aggressive formation
tracking, the high-order states of the neighbors motion are estimated by using a proposed extended
finite-time observer for each quadrotor. Then the estimated motion states are used as feedforwards
in the formation controller design. Simulation and experimental results show that the proposed
formation controller improves the formation performance, i.e., the formation pattern of the quadrotors
is better maintained than that using the formation controller without high-order feedforwards, when
tracking an aggressive reference formation trajectory.

Keywords: quadrotors; aggressive formation tracking control; extended finite-time observer; flatness

1. Introduction

The cooperative control of multi-quadrotor systems has progressively attracted at-
tention of researchers in both civil and military areas [1]. Especially, in the application
of object transportation, the formation of multiple quadrotors has potential application
significance [2–6].

The formation control problem can be categorized into two types. Namely, the forma-
tion producing problem and the formation tracking problem [7]. The former problem refers
to the algorithm design for a group of vehicles to reach a predefined geometric pattern
without a group reference [8–10], while the latter problem refers to the same task and
meanwhile following a predefined trajectory [11–13]. The object transformation is a typical
formation tracking problem, which is considered in this paper. An external reference
formation trajectory (RFT) is given to the leading quadrotor(s) to guide the formation. We
note that in the case of multiple leaders, they share the same RFT. According to [14,15], the
formation tracking problem can be attributed as a consensus problem.

In most aggressive maneuver cases, the quadrotor is controlled in tracking a desired
aggressive moving trajectory that is prescribed a prior, for instance, by polynomials w.r.t
time. A widely used method is the control of geometry on Lie group (SE(3) for example).
The aggressive formation problem of multiple quadrotors is investigated in [16], where the
quadrotors are permitted to move quickly in 3-D environment with a tight formation. The
formation of quadrotors is based on proper trajectory generation process, thereby, the full
information of the trajectory (including each order derivatives) are known. However, in a
multi-agent system with neighbor-based decentralized control, it is impossible to enforce
the motion of quadrotor by generating polynomials-based trajectories.

The flatness-based control is frequently used in the trajectory planing for high-order
dynamical system. For instance, the time-optimal trajectory generation problem is in-
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vestigated for helicopter landing in [17] and for multi-rotor in [18]. Especially, in [18],
the trajectory is planned in real-time. The agile maneuvers for a quadrotor with a cable-
suspended load are investigated in [19]. In this work, by means of flatness-based planning,
the air vehicle is able to behave in aggressive maneuver, real-time collision avoidance, and
time optimal flight. However, the planned trajectory’s high-order derivatives are required
for the quadrotor. In the decentralized formation tracking control of quadrotors, each
quadrotor (including the leader) has to behave according to the state of neighbors, which
are in general not able or difficult to get the full information of these states.

In multi-agent systems, the consensus speed of agents with linear dynamics depends
on the minimum non-singular eigenvalue of the interaction matrix (or Laplacian) [20] and
the absolute value of the maximum pole in left half plane of agent dynamics [21]. For
the formation of quadrotors, the idea in this paper is to propose a nonlinear formation
controller, in order to use these existing results.

One of the difficulties in the control of multi-quadrotor systems is that the quadrotor
has under-actuated, nonlinear, and coupling dynamics. The existing consensus algorithms
in the literature, which are mostly developed for single-integrator or double-integrator
agent dynamics, have not satisfactory formation performance for the formation control of
quadrotors in practice, especially in aggressive formation tracking where the small angle
assumption should be removed. Furthermore, lacking velocities and its higher derivatives
of the neighbors’ states and the RFT makes aggressive formation non-trivial. Nevertheless,
in very recent years, the researchers start to consider the nonlinearities/disturbances in
formation control [1,22].

In this paper, we aimed at proposing an aggressive control framework for a class of
systems with high-order dynamics (in special, quadrotor). Instead of using inner-outer
loop structure, we directly design the torques by using the flatness theory, where the
high-order cooperative errors are used. The formation controller is decentralized, since
the quadrotors move based on the measurement to their neighbors (in special, positions.
We suppose that the velocities and higher-order derivatives are not available). Then, the
main contributions of this paper are three-fold. A flatness-based formation control with
estimated feedforwards is proposed such that the aggressive formation is attained. In order
to estimate the velocities and higher-order derivatives of the neighbors states, an extended
finite-time observer is proposed. To avoid probably instability caused by the great initial
deviation of the estimated states, the saturated feedforwards are developed to improve the
formation controller, the convergence of the formation tracking error is then analyzed.

We note that our proposed controller can be combined with the existing methods
by adding some nonlinear compositions into the controller, for instance, to deal with the
bounded nonlinearities (uncertainties), to achieve asymptotic convergence, to improve
the formation speed. These methods can be listed such as robust compensation [20,22],
composite nonlinear feedback [13], artificial neural network estimation [23].

The paper is organized as follows. Some preliminaries in graph theory are given in
Section 2. The aggressive control of quadrotors with finite-time observer is presented in
Section 3. The formation control design and the stability analysis are shown in Section 4.
Some simulation and experimental results are given in Section 5. Finally, some conclusions
are stated in Section 6. Some useful notations and definitions are given as follows.

Notations: The real vectorial field is represented by Rm. Notation R+ represents real
positive numbers. The saturation function σb : Rn → Rn is defined as follows, if n = 1,
σb(a) = sign(a) ·min{‖a‖, b}, where sign(·) represents the sign function. If n > 1 and
a = [a1, . . . , an]T , then, σb(a) = [σb(a1), . . . , σb(an)]T . In special, if b = ∞, the saturation
function is equal to a linear function without saturation, i.e., σ∞(a) = a, for any a ∈ R. The
notation Cm(R,Rn) represents the ensemble of m−order continuous manifolds in R→ Rn.
The notations In and 0n×n represent identical and zero matrices in Rn×n. In special, 1n
and 0n represent the vectors with all entries equal to one and zero in Rn, respectively.
Function λi(·) represents the i-th eigenvalue of matrix inside the parenthesis, in special,
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λmax(·) and λmin(·) represent the maximum and minimum eigenvalue of matrix inside the
parenthesis, respectively.

2. Preliminaries

Some basic knowledge in graph theory and ‘interaction matrix’ is given in this section.
Some propositions and corollaries about the interaction matrix are introduced, which are
useful in the analysis of the consensus of quadrotors in Section 4.

2.1. Graph Theory

Graph theory is helpful to represent the interaction relations of multi-agent systems.
A graph G = (V , E) is normally with the sets of vertices V and edges E . The set of vertices
V = {1, 2, . . . , n} is composed of the indices of agents. |V| represents the cardinality of the
set V , which satisfies |V| = n. The set of edges is represented by E ⊆ V × V . If an edge
exists between two vertices, the two vertices are called adjacent. In this work, simple and
undirected graphs are considered.

The adjacency matrix of G is denoted by GA = [aij] ∈ Rn×n, where aij represents the
connection of nodes i and j on a graph. Since the simple graph is considered, we have
aii = 0. Since the graph is undirected, we have aij = aji and aij = 1 if (i, j) ∈ E , otherwise,
aij = 0. The degree matrix of G is denoted by GD = diag{∑n

j=1 a1j, . . . , ∑n
j=1 anj}. The

neighbor set Ni = {j ∈ V : (i, j) ∈ E} of agent i, is composed of the indices of the agents j,
which has interaction with the agent i. In other words, if aij > 0, then, agent j is a neighbor
of agent i. The number of neighbors of agent i is equal to |Ni|.

We define a diagonal matrix GL = diag{l1, . . . , ln}, which indicates the knowledge of
reference formation trajectory (RFT) of each agent. If li = 1, agent i can obtain the RFT (by
sensing/detecting), i.e., a leader. Otherwise, if li = 0, agent i is a follower, for i ∈ V . Then,
the leader set is defined as VL = {i ∈ V : li > 0}. The leader set VL ⊂ V is a subset of V ,
which contains the indices of the leaders. Particularly, all the quadrotors are leaders, when
VL = V . The indices of the followers are contained in the complementary set of VL, namely,
V − VL.

2.2. Interaction Matrix

We propose an interaction matrix G for representing the interconnecting relations of
quadrotors with leader–follower (L–F) configuration as follows.

G = GD − GA + GL (1)

Remark 1. Let us note that the first two terms GD − GA are normally called the Laplacian in
graph theory.

Proposition 1. Let G be an undirected simple graph, then the interconnection matrix G in
Equation (1), is positive-definite, if (i) G is connected; (ii) VL 6= Φ, where Φ represents a null set.

Proof. Since G is connected, we have GD − GA ≥ 0. Considering the definition of GL, we
have GL ≥ 0. We prove this proposition by contradiction. Firstly, we suppose that there
exists a nonzero vector x ∈ Rn, which renders

xTGx = xT(L + GL)x = xT Lx + xTGLx = 0

Therefore, we must have xT Lx = 0 and xTGLx = 0.
Since xT Lx = 0, we obtain that x = α1n, where α is a nonzero scalar. According to the

fact that VL 6= Φ, then, GL 6= 0. As a result, xTGLx = α21T
n GL1n > 0, which contradicts

xTGLx = 0. Therefore, such a nonzero vector x does not exist. Thus, for any nonzero vector
x, xTGx > 0, namely, G is positive-definite.
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When condition (i) is not satisfied such that G is not connected, the graph can be
divided into s connected sub-graphs G1,G2, . . . ,Gs. In that case, according to Proposition 1,
we have the following corollary.

Corollary 1. The interaction matrix G is positive-definite, if the leaders set satisfies VL ≥ s, and
ViL 6= Φ, where i = {1, 2, . . . , s}.

Proof. If a multi-agent system contains s connected sub-groups of agents, then, the interac-
tion matrix is block diagonal, which has s blocks on the diagonal. Since each sub-group
Gi, i = {1, 2, . . . , s} is connected and ViL 6= Φ, then, the block in the interaction matrix is
positive definite. Hence, the interaction matrix is positive definite.

The normalized interaction matrix is defined by

Ḡ = (GD + GL)−1G (2)

The normalized interaction matrix Ḡ is not symmetric, but it has the following property.

Proposition 2. The normalized interaction matrix Ḡ has real eigenvalues, if G is undirected.

Proof. Since Ḡ is a normalized interaction matrix, then, Ḡ = (GD + GL)−1 · G. We recall
that G is symmetric.

Using (GD + GL)−
1
2 , we apply similarity transformation to Ḡ, then, we obtain that

(GD + GL)
1
2 · Ḡ · (GD + GL)−

1
2 = (GD + GL)−

1
2 · G · (GD + GL)−

1
2 is symmetric, because

GD + GL are diagonal and G is symmetric.
Since Ḡ is similar to (GD + GL)−

1
2 · G · (GD + GL)−

1
2 , the eigenvalues of Ḡ are real,

moreover, they are equal to the eigenvalues of (GD + GL)−
1
2 · G · (GD + GL)−

1
2 .

Corollary 2. The normalized interaction matrix Ḡ is positive-definite, if conditions in Proposition 1
or Corollary 1 are satisfied.

Proof. According to the conditions in Proposition 1 or Corollary 1, we know that G is
invertible. Since Ḡ is similar to (GD + GL)−

1
2 ·G · (GD + GL)−

1
2 according to Proposition 2,

we obtain that Ḡ is also positive-definite.

3. Aggressive Control of Quadrotors with Extended Finite-Time Observer
3.1. Quadrotor Model

The dynamics of a quadrotor is modelled as the motion of a rigid body in 3-D space
under a thrust force and three moments, which are generated by the thrust forces of the four
rotors. The notations used in the quadrotor’s model are shown in Table 1. The orientation
of the quadrotor with respect to the inertial frame is represented by the rotation matrix
Ri ∈ SO(3), where SO(3) represents a special orthogonal group, and whose determinant
is one. Note that RT

i Ri = I, where I represents an identical matrix. The dynamics of a
quadrotor i is shown as follows

mẌi = −mge3 + RiFTi e3
Ṙi = RiS(Ωi)

JΩ̇i + S(Ωi)JΩi = τi

(3)

where Xi = [Xi, Yi, Zi]
T represents the coordinates of the center of mass of a quadrotor in

the fixed inertial frame xeyeze. The Euler angles (pitch, roll, and yaw) are represented by the
vector Θi = [φi, θi, ψi]

T . The first equation of (3) represents the translational dynamics in
the inertial frame, where m represents the mass of a quadrotor and g represents the gravity.
The rotation matrix Ri in the second equation of (3) can transform the coordinates of a point
from the body-fixed frame to the inertial frame. The third equation of (3) represents the
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rotational dynamics of quadrotor i. The inertia matrix J of a quadrotor i is represented in
the body-fixed frame, according to the assumptions on the physical structure of a quadrotor,
we can obtain that J = diag{Ixb , Iyb , Izb} is diagonal, where scalars Ixb , Iyb and Izb represent
the moments of inertia with respect to xb, yb and zb respectively. Additionally, we assume
that all the quadrotors in the flock have the same physical coefficients such as the mass
and the inertia matrix. The angular velocity of the quadrotor i in the body-fixed frame
is represented by Ωi ∈ R3. The function S(·) : R3 → R3×3 represents an operation that
transforms a vector in R3 to a skew-symmetric matrix R3×3. Given two arbitrary vectors
v1, v2 ∈ R3, the function S(·) satisfies the property S(v1) · v2 = v1 × v2. Then, according to
the definition of cross product and the operation S(·), we conclude that S(Ωi) ∈ R3×3 is
skew-symmetric matrix in terms of the members of Ωi = [pi, qi, ri]

T as follows

S(Ωi) =

 0 −ri qi
ri 0 −pi
−qi pi 0

 (4)

where pi, qi and ri represent the angular velocities with respect to the body-fixed frame of
the quadrotor i.

Table 1. The denotations of the variables in the dynamic model of quadrotor.

Symbol Description

xeyeze Fixed inertial frame

e1, e2, e3
Basis vector of inertial frame e1 = [1, 0, 0]T , e2 = [0, 1, 0]T ,

e3 = [0, 0, 1]T

Xi = [Xi, Yi, Zi]
T Coordinates of the center of mass of a quadrotor in xeyeze

Θi = [φi, θi, ψi]
T Euler angles (pitch, roll and yaw)

Rz(ψi), Ry(θi), Rx(φi) Rotation matrices in yaw, pitch and roll
Ri Rotation matrix Ri = Rz(ψi)Ry(θi)Rx(φi)

J = diag{Ixb , Iyb , Izb} Inertia matrix represented in the body-fixed frame xbybzb
Ωi = [pi, qi, ri]

T Angular velocity of the quadrotor i in the body-fixed frame
S(·) : R3 → R3×3 Operation from vector in R3 to skew-symmetric matrix R3×3

τi = [τφi , τθi , τψi ]
T ∈ R3 The moments of roll, pitch and yaw

FTi Total thrust force of quadrotor i
κi = [X T

i , Ẋ T
i ] State of quadrotor i

ui = [FTi , τT
i ]

T ∈ R4 Control input of the quadrotor i

We refer to φi, θi, ψi as the roll, pitch, and yaw angles, τi = [τφi , τθi , τψi ]
T ∈ R3 repre-

sents the roll, pitch, and yaw moments. The thrust force is represented by FTi . We note that
e3 = [0, 0, 1]T is a constant vector. The attitude dynamics of each quadrotor is generated by
moments τφi , τθi and τψi and thrust force FTi .

The rotation matrix Ri from the body-fixed frame to the inertial frame is the sequence
of roll-pitch-yaw (namely φ− θ − ψ), i.e., Ri = Rz(ψi)Ry(θi)Rx(φi), where Rz(ψi), Ry(θi),
Rx(φi) represents the rotation matrices of yaw, pitch, and roll.

Ri =

cos ψi cos θi cos ψi sin θi sin φi − cos φi sin ψi sin ψi sin φi + cos ψi cos φi sin θi
cos θi sin ψi cos ψi cos φi + sin ψi sin θi sin φi cos φi sin ψi sin θi − cos ψ sin φi
− sin θi cos θi sin φi cos θi cos φi


Thus, according to Equation (3), we obtain the translational dynamics as follows

Ẍi = (sin ψi sin φi + cos ψi cos φi sin θi)
FTi
m

Ÿi = (cos φi sin ψi sin θi − cos ψi sin φi)
FTi
m

Z̈i = −g + (cos θi cos φi)
FTi
m

(5)
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According to the second equation in (3), we can obtain

Ωi =

pi
qi
ri

 = RT
i ψ̇ie3 + θ̇iRT

x (φi)RT
y (θi)e2

+ φ̇iRT
x (φi)e1 = Ti ·

φ̇i
θ̇i
ψ̇i

 (6)

where

Ti =
[

RT
x (φi)e1 RT

x (φi)RT
y (θi)e2 RT

i e3

]
=

1 0 − sin θi
0 cos φi cos θi sin φi
0 − sin φi cos θi cos φi


Let us denote

T̃i =

tan θi 0 cos θi + tan θi sin θi
0 − cos θi 0

sec θi 0 tan θi


According to (6) and using T̃i, we can obtain the rotational dynamics as followsφ̈i

θ̈i
ψ̈i

 = (JTi)
−1τi + T̃i ·

 φ̇i θ̇i
φ̇iψ̇i
θ̇iψ̇i

+ (JTi)
−1ST

Ti ·

φ̇i
θ̇i
ψ̇i

JTi ·

φ̇i
θ̇i
ψ̇i

 (7)

The quadrotor is known as an under-actuated system. When the quadrotor tilts, a
component of the total thrust is directed sideways and the aircraft translates horizontally.
Therefore, the translational motion of quadrotor is generated by implicitly controlling
its attitude (pitch and roll). This fact can be observed from (5), where the translation is
controlled by the rotational angles.

In general, the control of the quadrotor is composed of inner and outer loop controllers,
in which the outer loop is the translation control and the inner loop is the rotation control.
Within this control framework, the control output of the outer loop is treated as an input of
the rotational control loop. Nevertheless, in this paper, the idea is to get rid of the structure
of inner-outer-loop control, we use the theory of flatness to directly design the torques of
the quadrotor.

We assume that θ 6= ±π
2 . According to (3), (5), and (7) the quadrotor dynamics

in inertial frame is represented in state space as Equation (8). We denote the state of a
quadrotor i by κi ∈ R12, which is defined by κi = [X T

i , Ẋ T
i , ΘT

i , Θ̇T
i ]

T . We denote the
control input of the quadrotor i by ui = [FTi , τT

i ]
T ∈ R4. The state space quadrotor i

dynamics is given by
κ̇i = f(κi) + g(κi)ui (8)

where f : R12 → R12×12 and g : R12 → R12×4 satisfy

f(κi) =



Ẋi
ge3
Θ̇i

T̃i ·

 φ̇i θ̇i
φ̇iψ̇i
θ̇iψ̇i

+ (JTi)
−1ST(Ti · Θ̇i

)
JTi · Θ̇i

 g(κi) =


03×1 03×3
− 1

m Rie3 03×3
03×1 03×3
03×1 (JTi)

−1



The output vector yi of the quadrotor i is composed by the positions, linear velocities,
angles, and the angular velocities, which will be used in the controller design. Then, yi is
given as follows

yi = Ciκi (9)
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where Ci =

[
Ct

Cr
i

]
. Matrix Ci is divided into two parts as follows

Ct =

[
I3

03×3
06×9

]
and Cr

i =

[
06×6

I3 03×3
03×3 Ti

]
It is important to note that the translational dynamics are modeled in the inertial frame

while the rotational dynamics are modeled in the body-fixed frame, although the states
(Xi, Ẋi, Θi and Θ̇i) of the quadrotor model (8) are represented in the inertial frame. Indeed,
in the body-fixed frame, the inertia matrix J is diagonal and then the rotational dynamics
are easier to calculate than in the inertial frame, where J is not diagonal and time-variant.
Note that in this work, the dynamics of the motors are omitted for the sake of simplicity.

The identification of the quadrotor parameters is not detailed here. Therefore, in
the sequel, the parameters of the quadrotor, such as mass, inertias, and physical size are
supposed to be known.

For a quadrotor system, the flat output can be selected according to the follow-
ing proposition.

Proposition 3. The vector zi = [X T
i , ψi]

T is a flat output of system (8).

Proof. See Appendix A.1.

3.2. Nonlinear-Flatness Based Decoupling Control

We firstly define the aggressive formation of quadrotors as follows.

Assumption 1 (Aggressive formation assumption). The attitude angles pitch θi and roll φi of
each quadrotor can be greater than 15◦ (but smaller than 30◦) in aggressive formation modes.

According to Proposition 3, we conclude that the desired motion of a quadrotor can
be uniquely specified by the 3D coordinates Xi and the yaw angle ψi. Therefore, the
decentralized formation tracking problem is to find the guidance vector [Xd

i , Yd
i , Zd

i , ψd
i ]

T for
each quadrotor. The guidance vector is composed by the neighbors states, which will be
designed in Section 4.

The control input ui = [FTi , τφi , τθi , τψi ]
T is designed in order to minimize the tracking

errors of Xi −X d
i and ψi − ψd

i , where X d
i and ψd

i represent the desired 3D position and the
heading direction (yaw angle). According to Equation (A1), the controller for the altitude
is designed as follows

FTi =
(Z̈d

i − k2Z(Żi − Żd
i )− k1Z(Zi − Zd

i ) + g)m
cos θi cos φi

(10)

where Zd
i represents the desired value of the altitude. Let us denote by eZi = Zi − Zd

i
the tracking error of the altitude and substitute (10) into the third equation in (5). Then,
we have

ëZi = −k2Z ėZi − k1ZeZi

Obviously, the altitude can exponentially track the given desired altitude trajectory Zd
i

for some selected positive scalars k1z and k2z. The desired altitude trajectory should
satisfy Zd

i ∈ C3(R,R). Then, the altitude dynamics are decoupled with the other states of
the quadrotor.



Appl. Sci. 2021, 11, 792 8 of 24

We rewrite the dynamic of the attitude angles in (7) as follows

Θ̈i = T̃i ·

 φ̇i θ̇i
φ̇iψ̇i
θ̇iψ̇i

+ (JTi)
−1ST(Ti · Θ̇i

)
JTi · Θ̇i + (JTi)

−1τi (11)

The inputs τi = [τφi , τθi , τψi ]
T are designed as follows

τi = JTiτ̄i + JT̄i

 φ̇i θ̇i
φ̇iψ̇i
θ̇iψ̇i

− ST(Ti · Θ̇i
)

JTi · Θ̇i (12)

Substituting (12) into (11), we obtain

Θ̈i = τ̄i (13)

where τ̄i = Θ̈d
i − k2Θi (Θ̇i − Θ̇d

i )− k1Θi (Θi −Θd
i ). Notations k1Θi and k2Θi represent two

diagonal gain matrices.
If Θd

i , Θ̇d
i and Θ̈d

i are calculated according lto the equations in (A4), namely, replacing

zi, żi, z̈i,
...
zi, and

....
z i by zd

i , żd
i , z̈d

i ,
...
zd

i , and
....
zd

i , it is trivial to observe that the attitude
angles can exponentially track the desired attitude angles that are in terms of zi and
its derivatives. However, the controller (12) is open-loop on the translational dynamics,
because the position feedback is not used in the controller design. If the dynamics of
the quadrotor is precisely modeled and no external disturbances and sensors noise exist,
this controller can perfectly perform. However, in practice, the dynamics of the system
can be never precisely modeled, additionally, the noise and disturbance always exist.
Therefore, the closed-loop control should be used, such that the feedback of the positions
and translational velocities are required.

We observe from the equations in (A4) that the yaw angle is a component of the flat
output zi, then, the desired values of the yaw angle (ψd

i , ψ̇d
i and ψ̈d

i ) are trivial to obtain.
However, the desired pitch and roll angles are not explicitly given by the components of
the flat output zd

i and its derivatives. We will discuss how to obtain the terms φd
i , φ̇d

i φ̈d
i ,

θd
i , θ̇d

i and θ̈d
i as follows.

As analyzed before, the design of τψi is simple. Normally, in order to represent the
control input by using the flatness output, the high-order derivatives of zi are calculated.
Specifically, in our case, in order to represent the torques τφi and τθi , two supplementary
derivatives of Ẍi and Ÿi in Equation (A2) are necessary and we obtain[

Xi
Yi

](4)
= A

[
φ̈i
θ̈i

]
+ ζ(Θi, Θ̇i, ψ̈i, Z̈i,

...
Zi,

....
Z i) = vi

where matrix A satisfies

A = (Z̈i + g)×
[

sin ψisec2 φisec θi cos ψisec2 θi + sin ψi tan φitan θisec θi
− cos ψisec2 φisec θi sin ψisec2 θi − cos ψi tan φitan θisec θi

]
The function ζ represents the terms of the second-order derivative of the right side of

Equation (A2) except the term that contains φ̈i and θ̈i.
The vector vi = [vi1 vi2]

T is composed by the new control inputs vi1 and vi2, which
are decoupled on axes X and Y. Then, the new trajectory tracking controllers in closed loop
on the plane X−Y are given as follows

vi1 =
....
X d

i − k4X(
...
Xi −

...
X

d
i )− k3X(Ẍi − Ẍd

i )− k2X(Ẋi − Ẋd
i )− k1X(Xi − Xd

i )

vi2 =
....
Y d

i − k4Y(
...
Y i −

...
Yd

i )− k3Y(Ÿi − Ÿd
i )− k2Y(Ẏi − Ẏd

i )− k1Y(Yi −Yd
i )

(14)
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Observe that det A = (Z̈i + g)sec2 φisec3 θi. Therefore, when Z̈i 6= −g and |φi| < π
2 ,

|θi| < π
2 , det A is finite and positive such that A is invertible. In fact, if |φi| < π

2 , |θi| < π
2 ,

we have Z̈i > −g. Z̈i will be never equal to −g, unless that all the rotors of the quadrotor
stop rotating. This case is not considered in this work.

Then, according to Equation (13), we can design the torque τ̄i = [τ̄φi τ̄θi τ̄ψi ]
T

as follows τ̄φi

τ̄θi
τ̄ψi

 =

[
A−1(vi − ζ)

ψ̈d
i − k2ψi (ψ̇i − ψ̇d

i )− k1ψi (ψi − ψd
i )

]
(15)

Then, substituting (15) into (12), we obtain the three torques.
In practice, the velocities Ẋi, Ẏi and its higher-order derivatives Ẍi,

...
Xi, Ÿi and

...
Y i

are not directly measurable (not contained in the output yi (9)), they are obtained by
using Equation (A2) and its derivatives. We will present in the following subsection how
to obtain the these derivatives.

Under Assumption 1, we can assume that tan θi ≈ θi, tan φi ≈ φi, cos θi ≈ 1, and
cos φi ≈ 1. The desired yaw angle is zero. Using controller (11), ψi ≈ 0. Then, cos ψi ≈ 1
and sin ψi ≈ 0. We also assume that the altitude is stabilized and keep constant, such
that Zi ≈ Zd

i and Zi ≈ 0. Then we have, Z̈i ≈ 0. Therefore, according to the analysis in
Appendix A.2, we consider

Ẍi = θig
Ÿi = −φig

(16)

Then, the controllers in (14) becomes

vi1 =
....
X d

i − k4X(θ̇ig−
...
X

d
i )− k3X(θig− Ẍd

i )− k2X(Ẋi − Ẋd
i )− k1X(Xi − Xd

i )

vi2 =
....
Y d

i − k4Y(−φ̇ig−
...
Yd

i )− k3Y(−φig− Ÿd
i )− k2Y(Ẏi − Ẏd

i )− k1Y(Yi −Yd
i )

(17)

Then, we obtainτ̄φi

τ̄θi
τ̄ψi

 =

 − 1
g vi2

1
g vi1

ψ̈d
i − k2ψi (ψ̇i − ψ̇d

i )− k1ψi (ψi − ψd
i )

 (18)

The control strategy in (18) is based on the knowledge of high-order derivatives of the
planar positions Xd

i and Yd
i in guidance vector, which are normally not measurable. Note

that, for each quadrotor, the guidance vector depends on neighbors states (and the reference
formation trajectory (RFT), if the quadrotor is a leader). If the quadrotors move slowly and
the RFT varies slowly, we can assume that the higher-order derivatives are null. However,
the performance will not be satisfactory for aggressive formations. The fast convergence
of the observer is crucial in aggressive formation. Therefore, we will propose in the next
subsection an extended finite-time observer to estimate these high-order derivatives.

3.3. Extended Finite-Time Observer

An observer of the high-order derivatives guidance vector for each quadrotor is
proposed to get the feedforwards. We take Xd

i for example, according to vi1 in (17), we

have to estimate Ẋd
i , Ẍd

i ,
...
X

d
i and

....
X d

i . Therefore, we construct an observer to estimate the
high-order derivatives of the positions in guidance vector.

Before designing the finite-time observer, we introduce the following lemma about
finite-time stability.

Lemma 1. [24] Consider the system ẋ = f (x, u). Suppose that there exist continuous differentiable
functions V(x) : Rn → R+, real numbers c > 0, and 0 < α < 1, such that V(0) = 0, V(x) > 0
for any x 6= 0, and V̇(x) ≤ −cVα(x). Then, for all x(t0) = x0 in the neighborhood µ of the origin,

there exists settling time function T(x0) : µ→ R+, such that T(x0) ≤ V1−α(x0)
c(1−α)

.
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Denoting that xd
i = [Xd

i , Ẋd
i , Ẍd

i ,
...
X

d
i ]

T , the dynamics of xd
i yields

ẋd
i =Atxd

i + Bt
....
X d

i

yi =Ctxd
i

(19)

where

At =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

, Bt =


0
0
0
1

and Ct =


1
0
0
0


T

The extended state is (xd
i )E = [(xd

i )
T ,

....
X d

i ]
T and its estimation x̂d

i = [X̂d
i , ˆ̇Xd

i , ˆ̈Xd
i ,

.̂..
X

d
i ,

.̂...
X

d
i ]

T.
Then, we propose the extended observing model as follows

˙̂xd
i =

[
At Bt
0T

4 0

]
x̂d

i − Lt(X̂d
i − Xd

i ) (20)

where Lt represents the gain matrix which satisfies Lt =
[
Lt1 Lt2

]T , where Lt1 =

[ko1 ko2 ko3 ko4] and Lt2 = ko5. Let us denote x̃d
i = x̂d

i − (xd
i )E, then, according to (19)

and (20), ˙̃xd
i satisfies

˙̃xd
i =

[
At Bt
0T

4 0

]
x̃d

i −
[

04
1

]
(Xd

i )
(5) − Lt[Ct, 0]x̃d

i (21)

Denoting

Ao =

[
At − LT

t1Ct Bt
−LT

t2Ct 0

]
, Bo =

[
04
1

]
Suppose that J is the Jordan standard form of matrix Ao by implementing a Jordan

transformation using matrix M.

Theorem 1. For each agent, the extended guidance vector observer is given in (20). If Xd
i ∈

C5(R+,R2), then, (i) the matrix Ao is stabilizable by proper selected gain matrix Lt; (ii) the
observing error x̃d

i converge to the compact sphere ‖x̃d
i ‖ ≤ β, where β > λ̄ρ

λ(γ−1) , within finite-time

Tconverge ≤
‖x̃d

i (0)‖
(γ− 1)βλ/λ̄− ρ

(22)

where we denote by λ = min{|λi(M)|} and λ̄ = max{|λi(M)|}, scalar γ > 1. The scalar ρ
represents the bound of |(Xd

i )
(5)|.

Proof. (i). The matrix Ao can be rewritten in the following form.

Ao =

(
−LT

t1 I4
−Lt2 0T

4

)
which is stable, for some gains koi > 0, i = {1, . . . , 5} in Lt.

(ii). The control gains in Lt are selected such that the nearest pole of Ao to imaginary
axis is placed to −γ, where γ > 1. The Equation (21) can be rewritten as ˙̃xd

i = Ao x̃d
i −

Bo(Xd
i )

(5), where |(Xd
i )

(5)| < ρ is bounded, since Xd
i (t) ∈ C5(R+,R2). Choose an invertible

matrix M, which transforms Ao to Jordan standard form Jo = MAo M−1. We process the
variable transformation ε = Mx̃d

i , then we have ε̇ = Joε− MBo(Xd
i )

(5). The Lyapunov
function candidate is chosen by V(ε) = 1

2 εTε. Its derivative yields, V̇(ε) = εT Joε −
εT MBo(Xd

i )
(5). We suppose that the Jordan matrix Jo has l Jordan blocks, the size of the
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blocks is mi, i = {1, . . . , l}. The eigenvalue of each block is represented by λi(Jo). The
Lyapunov function candidate can be rewritten by

V(ε) =
m1

∑
i=1

1
2

εT
i εi + · · ·+

m1+···+ml

∑
j=m1+···+ml−1+1

1
2

εT
i εi =

l

∑
i=1

Vi(ε)

The quadratic term εT Joε in V̇(ε) yields,

εT Joε = λ1(Jo)
m1

∑
j=1

ε2
j +

m1−1

∑
j=1

εjεj+1 + . . . + λl(Jo)
m1+···+ml

∑
j=m1+···+ml−1+1

ε2
j +

m1+···+ml−1

∑
j=m1+···+ml−1+1

εjεj+1 (23)

where the intersection term ∑m1+···+mi−1
j=m1+···+mi−1+1 εjεj+1 is null, when mi = 1.

We note that ∑m1+···+mi
j=m1+···+mi−1+1 ε2

j − ∑m1+···+mi−1
j=m1+···+mi−1+1 εjεj+1 = (1/2)ε2

m1+···+mi−1+1 +

(1/2)∑m1+···+mi−1
j=m1+···+mi−1+1(εj − εj+1)

2 + (1/2)ε2
m1+···+mi

≥ 0. Thus, ∑m1+···+mi
j=m1+···+mi−1+1 ε2

j ≥

∑m1+···+mi−1
j=m1+···+mi−1+1 εjεj+1, i.e., ∑m1+···+mi−1

j=m1+···+mi−1+1 εjεj+1 ≤ 2Vi(ε). Add both side from i = 1 to
l, then we have

m1−1

∑
j=1

εjεj+1 + . . . +
m1+···+ml−1

∑
j=m1+···+ml−1+1

εjεj+1 ≤ 2V(ε) (24)

According to (23) and (24), we have

εT Joε ≤
l

∑
i=1

2λi(Jo)Vi(ε) + 2V(ε) ≤ 2(1− γ)V(ε) (25)

Then, the derivative of the Lyapunov function candidate yields,

V̇(ε) = εT Joε− εT MBo(Xd
i )

(5) ≤ 2(1− γ)V(ε)− εT MBo(Xd
i )

(5)

Therefore,

V̇(ε) ≤ 2(1− γ)V(ε) + λ̄|(Xd
i )

(5)|‖ε‖ = (1− γ)‖ε‖2 + λ̄ρ‖ε‖ =
[
(1− γ)‖ε‖+ λ̄ρ

]
‖ε‖

=
√

2
[
(1− γ)‖ε‖+ λ̄ρ

]
V

1
2 (ε) = −

√
2
[
(γ− 1)‖ε‖ − λ̄ρ

]
V

1
2 (ε)

(26)

When ‖x̃d
i ‖ ≥ β, then, ‖ε‖ = ‖Mx̃d

i ‖ ≥ λ‖x̃d
i ‖ ≥ λβ. Note that γ > 1, thus,

(γ− 1)‖ε‖ − λ̄ρ ≥ (γ− 1)λβ− λ̄ρ. Thus, V̇(ε) ≤ −
√

2[(γ− 1)λβ− λ̄ρ]V
1
2 (ε). Hence,

V̇(ε) is negative definite, since β > λ̄ρ
λ(γ−1) . In addition, V̇(ε) = 0, if and only if V(ε) = 0.

Note that V(ε) = 1
2 εTε = 0, only if ε = 0 which is equivalent to that the observer error

x̃d
i = 0. Therefore, the observer error is asymptotic stable.

According to Lemma 1, ε will converge into the compact sphere within the finite-
time Tconverge.

Tconverge ≤
√

2V
1
2 (ε(0))

(γ− 1)λβ− λ̄ρ
=

‖Mx̃d
i (0)‖

(γ− 1)λβ− λ̄ρ
≤

‖x̃d
i (0)‖

(γ− 1)βλ/λ̄− ρ

The proof is completed.

Remark 2. The observing error x̃d
i is ultimately bounded, since |(Xd

i )
(5)| is bounded by

√
2ρ.

According to (26), the observing error will converge to the invariant set ‖ε‖ ≤ λ̄ρ
γ−1 . Therefore, by

increasing observer gains, which renders a greater γ, the invariant set will become smaller. The
observing error will smaller as well. Nevertheless, the gains cannot be chosen arbitrarily great in
practice, since the sensor noise will become significant and lead to instability.
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Remark 3. We note that since a decoupling quadrotor dynamics control law is derived in (16), the
observer for the derivatives of Yd

i can be designed independent with Xd
i .

The high-order derivatives are replaced by the estimated values using the observer (20).
Then, the decoupled control law (17) becomes

vi1 = (
.̂...
X

d
i )− k4X(θ̇ig− (

.̂..
X

d
i ))− k3X(θig− ( ˆ̈X

d
i ))− k2X(Ẋi − ˆ̇Xd

i )− k1X(Xi − Xd
i )

vi2 = (
.̂...
Y

d
i )− k4Y(−φ̇ig− (

.̂..
Y

d
i ))− k3Y(−φig− ( ˆ̈Y

d
i ))− k2Y(Ẏi − ˆ̇Yd

i )− k1Y(Yi −Yd
i )

(27)

where the scalars kiX and kiY, i ∈ {1, 2, 3, 4} represent some selected positive gains.
In the following section, we will show how to find the Xd

i and Yd
i in the guidance

vector (since the control of the altitude and yaw is decoupled in double integrators, it is
omitted in the following section).

4. Formation Controller Design

Since the control of altitude (10) and rotation (12) is decoupled with the planar motion
control, they are assumed to be controlled in constant, without loss of generality.

4.1. Available Guidance Vector

The formation controller of each quadrotor uses the relative states (positions, velocities,
and the high-order derivatives with respect to its neighbors). If the quadrotor is a leader,
besides the foregoing measurements, its formation controller also uses the relative states
with respect to the RFT r(t) = [rX(t), rY(t), rZ(t), rψ(t)]T , where rZ and rψ are assumed
to be constant. Then, for the sake of simplicity, the formation control in (X, Y) space
is considered.

The objective of the formation tracking control is to guarantee that all the quadrotors
track the RFT with some constant biases di0 = [dX

i0, dY
i0] ∈ R2, such that the quadrotors keep

a formation pattern. In detail, the formation objective is to achieve the following equations.

lim
t→∞

∥∥∥∥(Xi − rX − dX
i0

Yi − rY − dY
i0

)∥∥∥∥ = 0 where i = 1, . . . , n (28)

for some initial condition xi(0), i = 1, . . . , n.
An example of the formation tracking task of four quadrotors is shown in Figure 1 (left),

where the solid red circle represents the RFT at time ta. The dashed red circles represent
the desired positions (X̄d

i (ta), Ȳd
i (ta)) for the quadrotors i ∈ V at ta, where we denote by

X̄d
i = rX + dX

i0 and Ȳd
i = rY + dY

i0. The solid black circles represent the quadrotors’ real
positions at ta, i.e., (Xi(ta), Yi(ta)), i ∈ V .

Figure 1. Left: Intuitive desired motion trajectories for quadrotors. Right: Available desired motion trajectories using
neighbor-based states.
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However, in decentralized formation control, the RFT r(t) is not available for the
followers, therefore, it is not possible to design the formation tracking controller using the
errors X̄d

i − Xi and Ȳd
i − Yi for quadrotor i. For the followers, only the neighbors states

are available for the formation controller design, as shown in Figure 1 (right). Now, the
formation problem becomes: how to find the available guidance vector for quadrotors
i ∈ V in order to attain the formation task.

Let us make a sum of the relative position state vectors. Note that we drop the explicit
expression of time in the expressions for the sake of simplicity. Similar to the foregoing
analysis, we still take X for example.

∑
j∈Ni

(Xi − Xj − dX
ij ) if i ∈ V − VL

∑
j∈Ni

(Xi − Xj − dX
ij ) + Xi − rX − dX

i0 if i ∈ VL
(29)

The inter-distance satisfies dX
ij = dX

i0 − dX
j0. Then, Equation (29) can be rewritten

as follows

∑
j∈Ni

(Xi − rX − dX
i0 − (Xj − rX − dX

j0)), if i ∈ V − VL

∑
j∈Ni

(Xi − rX − dX
i0 − (Xj − rX − dX

j0)) + Xi − rX − dX
i0, if i ∈ VL

Then, the guidance vector for each quadrotor is given as follows

Xd
i =


1
|Ni | ∑

j∈Ni

(Xj + dX
ij ), if i ∈ V − VL

1
|Ni |+1

(
∑

j∈Ni

(Xj + dX
ij ) + rX + dX

i0

)
, if i ∈ VL

(30)

We then observe that Xd
i is available for quadrotor i, since Xd

i is composed only by
neighbors states.

Xi − Xd
i =


1
|Ni | ∑

j∈Ni

(
(Xi − X̄d

i )− (Xj − X̄d
i )
)

, if i ∈ V − VL

1
|Ni |+1

(
∑

j∈Ni

(
(Xi − X̄d

i )− (Xj − X̄d
i )
)
+ Xi − X̄d

i

)
, if i ∈ VL

(31)

Then, according to definition of normalized interaction matrix in (2), we can rewrite
Equation (31) in matrix form for all the quadrotors as followsX1 − Xd

1
...

Xn − Xd
n

 = Ḡ

X1 − X̄d
1

...
Xn − X̄d

n

 (32)

where Ḡ represents the normalized interaction matrix.
According to Corollary 2 and the definition in Equation (2), we know that Ḡ is in-

vertible if each connected sub-graph of the multi-quadrotor system has at least one leader.

Therefore, the formation task is achieved, i.e.,
[

X1 − X̄d
1 , . . . , Xn − X̄d

n

]T
→ 0, as long

as each quadrotor can precisely track the guidance vector Xd
i (t) and Yd

i (t), i.e., vector[
X1 − Xd

1 , . . . , Xn − Xd
n

]
→ 0, and

[
Y1 −Yd

1 , . . . , Yn −Yd
n

]
→ 0.
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4.2. Convergence Analysis

Now, the guidance vector [Xd
i , Yd

i , Zd
i , ψd

i ]
T for each quadrotor is obtained (we note that

Zd
i and ψd

i are set constant, so omitted here). Their higher-order derivatives are estimated
by using finite-time observer (20) in an aggressive formation. Then, these estimated
derivatives are used as feedforwards in Equation (17), composing controller (12).

In practice, the estimation errors are usually high at t = 0 s, when the initial states
of the observer may greatly deviate from the real values. In order to avoid the instability
caused by the big initial deviation of the observer, we implement saturation functions to
the estimated high-order derivatives to prevent great observation errors at the beginning.

To avoid the instability of quadrotors caused by the great initial observation error, we
propose a modified controller in Equation (33) using the saturation function as follows

vi1 = σb4(
.̂...
X

d
i )− k4X(θ̇ig− σb3((

.̂..
X

d
i )))− k3X(θig− σb2(

ˆ̈Xd
i ))

− k2X(Ẋi − σb1(
ˆ̇Xd

i ))− k1X(Xi − Xd
i )

vi2 = σb4(
.̂...
Y

d
i )− k4Y(−φ̇ig− σb3(

.̂..
Y

d
i ))− k3Y(−φig− σb2(

ˆ̈Yd
i ))

− k2Y(Ẏi − σb1(
ˆ̇Yd
i ))− k1Y(Yi −Yd

i )

(33)

The analysis of the convergence is given by the following theorem.

Theorem 2. Consider the quadrotors with dynamics (8) are controlled by the formation controller (12)
composed by (33). The bounds are chosen as follows,

bj =

{
h̄j, when t ≤ Tconvergence
∞ when t > Tconvergence

(34)

where j = {1, 2, 3, 4} and h̄j ∈ R+. Then, the formation error for each quadrotor is ultimately
bounded and converge to the invariant set as follows.

Sb = {eXi |‖eXi‖ ≤
2κ̄βλmax(P)

λmin(Q)
} (35)

where κ̄ > 0. Notations P and Q represent some positive-definite matrices.

Proof. Using (13), (16), (18) and (33), the closed-loop planar dynamics of a quadrotor yields
the following decoupled form.

....
X i = σb4(

.̂...
X

d
i )− k4X(

...
Xi − σb3(

.̂..
X

d
i ))− k3X(Ẍi − σb2(

ˆ̈Xd
i ))− k2X(Ẋi − σb1(

ˆ̇Xd
i ))− k1X(Xi − Xd

i )

....
Y i = σb4(

.̂...
Y

d
i )− k4Y(

...
Y i − σb3(

.̂..
Y

d
i ))− k3Y(Ÿi − σb2(

¨̄Yd
i ))− k2Y(Ẏi − σb1(

ˆ̇Yd
i ))− k1Y(Yi − Ȳd

i )

Take Xi for example and denote by eXi = [Xi − Xd
i , Ẋi − Ẋd

i , Ẍi − Ẍd
i ,

...
Xi −

...
X

d
i ]

T . Then,
we can write the dynamics of eXi in state-space form as follows

ėXi = AceXi + δi (36)

where

Ac =


0 1 0 0
0 0 1 0
0 0 0 1
−k1X −k2X −k3X −k4X


and δ = [0, 0, 0, ∆i]

T .

∆i = σb4(
.̂...
X

d
i )−

....
X d

i + k4X(σb3(
.̂..
X

d
i )−

...
X

d
i ) + k3X(σb2(

ˆ̈Xd
i )− Ẍi) + k2X(σb1(

ˆ̇Xd
i )− Ẋi) (37)
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• When t ≤ Tconvergence, it is trivial to prove that ‖δi‖ = |∆| ≤ h̄4 + |
....
X d

i | + k4X(h̄3 +

|
...
X

d
i |) + k3X(h̄2 + |Ẍi|) + k2X(h̄1 + |Ẋi|) ≤ d < ∞ is bounded, since r(t) ∈ C5(R+,R2).

• When t > Tconvergence, bj = ∞, the saturations are removed, such that ∆ =
.̂...
X

d
i −

....
X d

i +

k4X(
.̂..
X

d
i −

...
X

d
i ) + k3X(

ˆ̈Xd
i − Ẍi) + k2X(

ˆ̇Xd
i − Ẋi) = κT x̃d

i , where κ = [0, k2X , k3X , k4X , 1]T ,
its norm is ‖κ‖ = κ̄. According to theorem 1, ‖x̃d

i ‖ ≤ β when t > Tconvergence. Then,
we conclude that ‖δi‖ = |∆i| = κ̄‖x̃d

i ‖ ≤ κ̄β < ∞.

Therefore, the perturbed term δ in (36) is bounded and satisfying ‖δi‖ ≤ δmax =
max{d, κ̄β}, for all t ≥ t0.

The control gains are selected such that Ac is Hurwitz. Since Ac is Hurwitz, there
exists a positive-definite matrix P, which solves the Lyapunov equation AT

c P + PAc = −Q,
for a positive-definite matrix Q. A Lyapunov function is selected as V = eT

Xi
PeXi . Then, its

time derivative yields

V̇ =eT
Xi
(AT

c P + PAc)eXi + 2eT
Xi

Pδi ≤ −eT
Xi

QeXi + 2λmax(P)‖eXi‖‖δi‖
≤− λmin(Q)‖eXi‖

2 + 2λmax(P)‖eXi‖‖δi‖ = ‖eXi‖(2δmaxλmax(P)− λmin(Q)‖eXi‖)

Then, V̇ < 0, if ‖eXi‖ > 2δmaxλmax(P)
λmin(Q)

. When t > Tconvergence, according to LaSalle’s
invariance principle, for any initial condition x(t0), the state x will finally stay in the set
Sb = {eXi |‖eXi‖ ≤

2κ̄βλmax(P)
λmin(Q)

}. The error eXi in (36) is ultimately bounded. The same result
on Y can be obtained similarly.

Remark 4. According to Theorem 2, the tracking error of quadrotor is proportional to the bound β
of the observer error after finite time Tconvergence. If the observer error asymptotically converges to
zero, then the formation tracking error will also converge to zero asymptotically.

Remark 5. In practice, before the time instant Tconvergence, the bounds bj are chosen small enough
in order to prevent the unstable dynamics, since the observer error probably enormous, which is
generated by great initial deviation.

5. Simulation and Experimental Results

In this subsection, we first use numerical simulation by means of MATLAB to qual-
itatively illustrate that the formation controller with estimated feedforwards has better
performance than that without them. By doing this, we are able to show that our proposed
formation controller makes the multi-quadrotor system performing a high bandwidth,
such that the aggressive formation is achieved.

Then in the second subsection, the proposed control laws are implemented on the
simulator-experiment platform comparing with that using the formation controller without
high-order feedforwards.

5.1. Simulation Results

We reconsider the formation of four quadrotors in Figure 1 (left). The reference
formation trajectory RFT is given by r(t) = [3 sin(0.1t), 3 cos(0.1t), 1, 0]T . The four quadro-
tors should keep a desired biases w.r.t. RFT defined by di0, i ∈ {1, 2, 3, 4}. As shown in
Figure 1 (right), quadrotor 3 has two neighbors, i.e., 2 and 4. The quadrotor 3 is expected
to keep inter-distances d32 = [

√
2,−
√

2]T and d34 = [−
√

2,−
√

2]T with respect to 2 and 4.
It is easy to verify that d32 = d30 − d20 and d34 = d30 − d40.
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The tuning process of the controller gains in Table 2 is given as follows.

• Controller gains tuning on simulator: Let Ẋd
i , Ẍd

i ,
...
X

d
i ,

....
X d

i , and Ẏd
i , Ÿd

i ,
...
Yd

i ,
....
Y d

i be
null. Give some small Xd

i and Yd
i , for example a small step signal, then, tune the

gains k jX and k jY, j = {1, 2, 3, 4}. Observe the oscillation of the rotation angles during
translational motion, adjust the gains k3X , k4X and k3Y, k4Y to reduce the oscillation.

• Implement the controller gains on real quadrotor: Test on single quadrotor, slightly
tune the parameters k1X , k2X if necessary. Then, if the performance is satisfied, imple-
ment them on the formation tracking control.

Table 2. The controllers parameters.

k4X k3X k2X k1X k4Y k3Y k2Y k1Y k2ψ k1ψ k2Z k1Z

1.0 2.5 1.8 1.3 1.0 2.5 1.8 1.3 17.3 10.2 3.1 2.2

The observer gain matrix is selected according to the pole assignment as follows

• Pole assignment: The gains of the observer are dominated by the finite time Tconverge
that we want to have. Once it is fixed, the gains of the observer can be calculated by
the technique of pole assignment, such that the nearest pole of Ao to imaginary axis is
placed to −γ.

In the following simulation and experiments, we assume that the position and velocity
in the guidance vector are measurable, i.e.,

Ct =

[
1 0 0 0
0 1 0 0

]
the observe gains are selected as follows,

Lt =

[
6 1 1 1.02 0.198

1.804 9.02 14.432 6.675 0.934

]T

(38)

Some constant bounds of the saturation functions are selected as b4 = 0.000035,
b3 = 0.00035, b2 = 0.0035, and b1 = ∞. The saturation functions are introduced to regulate
the large initial deviation of the observer. There bounds are tuned progressively until a
satisfactory performance is achieved.

We respectively show in Figures 2 and 3 the simulation results (i) without estimation
of high-order derivatives and (ii) with estimation of high-order derivatives. We observe
from Figure 2 that the quadrotors track the RFT with delays and the inter-distances are not
well maintained. On the contrary, in Figure 3, the delays are small and the quadrotors keep
around the desired inter-distances.

In the following subsection, we will implement the formation control protocol on the
real-time simulator-experiment platform.
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Figure 2. Rigid formation of 4 quadrotors without high-order derivatives estimation, the objective is to track the RFT r(t)
and meanwhile keep inter-distance between quadrotors.
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Figure 3. Rigid formation of 4 quadrotors with high-order derivatives estimation, the objective is to track the RFT r(t) and
meanwhile keep inter-distance between quadrotors.
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5.2. Experimental Setup

Heudiasyc laboratory (In the Université de Technologie de Compiègne) has developed a
PC-based simulator-experiment framework (This framework is primarily designed and
developed by engineer Guillaume Sanahuja under the help of other colleagues and PhD
students in Heudiasyc laboratory) for controlling quadrotors in real-time. The programs
(written in C++) running in the quadrotors are the same, both in the simulator and in the
embedded processors of real quadrotors. The goal of the framework is to firstly validate
a program on the simulator before implementing on real quadrotors, in order to avoid
destroying the real drones. It is important to note that within this framework, the control
algorithms are implemented on the quadrotors rather than on a PC. There does not exist a
central controller that sends control signals to the quadrotors.

In the simulator, the complete quadrotor dynamics are used. The flight of the quadro-
tors are animated in a virtual 3D environment, which permits us to observe the behavior of
the quadrotors under some formation control laws. This framework permits the simulation
to reflect better the real-time experiment. Both the simulator and the real-time experiment
share the ground station interface on the PC, which is responsible for displaying and
sending instructions such as taking off and landing.

The experimental setup is shown in Figure 4. In the experiments, the motion capture
system Optitrack is used to localize the quadrotors in the formation. The ArDrone2
quadrotors manufactured by Parrot are used for real-time experiments.

Figure 4. The experimental setup of the real-time experiments.

The procedure of using the simulator-experiment framework is stated as follows:

• Program the algorithms by using C++.
• Compile the program into executable files for the quadrotors in the simulator and for

the real quadrotors.
• Test the algorithm in the simulator, adjust the parameters of the controller.
• Send the executable file to each quadrotor.
• Carry out the real-time experiment.

Remark 6. Although the system Optitrack is a global localization system, we just use it to obtain
the coordinates or inter-distances of the quadrotors. For instance, a quadrotor can use its on-
board cameras to detect other quadrotors and calculate their inter-distances. Additionally, the
self-localization can be realized by using GPS or other sensors (laser, etc.). The system Optitrack is
used here to simplify the study.
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5.3. Real-Time Experiments on Simulator-Experiment Platform

In these experiments are the formation task of four quadrotors, where quadrotor 1 is
a leader. The objective is to track the trajectory r(t) with constant biases d10 = [0,

√
2]T ,

d20 = [−
√

2, 0]T , d30 = [0,−
√

2]T and d40 = [
√

2, 0]T .
Two tests are carried out on the simulator for the sake of comparison. In both tests,

the objective is to track a circular trajectory (radius: 2 m; maximum linear velocity: 1.3 m/s;
linear acceleration 0.1 m/s2).

In the formation control without high-order feedforwards, the gains are chosen by
kp = 1.5 and kd = 0.1. We note that these gains are not arbitrarily chosen. For the
fairness of comparison, we tune the parameters on the simulator to obtain the gains with
best performance.

We proposed a nonlinear-flatness-based formation controller in (12), where the high-
order derivatives are estimated by using (20). In the simulator and the experiment, the
control frequency is 50 Hz. Then, the states of the observer (20) are updated as follows

X̂d
i (k + 1) = (I5 + T · At)X̂d

i (k)− T · Lt · Ct(X̂d
i (k)− Xd

i (k))

where T = 1
50 = 0.02 s. The observer gains are given by (38).

In Figure 5, we observe from Figure 5 that even at the beginning (when t < 20 s), the
quadrotors are able to follow the given trajectory, after 20 s, the performance becomes not
satisfactory, although the formation errors keep stable.
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Figure 5. Formation control without high-order feedforwards.

On the contrary, by using the proposed formation control with the same controller
gains, the performance is greatly improved and the quadrotors can always follow the given
trajectory (see Figure 6).

The desired altitude is 1 m for all the quadrotors. The curves of the altitudes of the
quadrotors are given in Figure 7. We can observe from Figure 7 (left) that the altitude of the
quadrotor 2 oscillates after t = 25 s. It is important to note that this phenomena is caused
by the actuator saturation of the quadrotors. Considering this problem, we have proposed
several bounded formation controllers such as in [13], which will not be detailed in the
current paper.
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Figure 6. Our proposed formation control.
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Figure 7. Altitudes of the quadrotors. Left: Formation control without high-order feedforwards. Right: Our proposed
formation control.

Figure 8 shows the animation in the simulator. On the left of Figure 8, the formation
control without high-order feedforwards is used, where the quadrotors fail to preserve the
rectangle formation pattern after several second of flight. On the contrary, the nonlinear-
flatness-based formation control can preserve the rectangle formation and track the RFT
that is only given to the leader.

A real-time experiment is also given in Figure 9, where four quadrotors are used in
the tests. The reference is a circular trajectory. Two tests are given for comparison. We can
observe that by using our proposed controller, the formation trajectory is more precisely
followed. Figure 10 shows a photo of flight in a real-time experiment.
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Figure 8. Four quadrotors with rectangle formation pattern, tracking a circular trajectory, using formation control without
high-order feedforwards (left), and the proposed formation control (right).
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Figure 9. The real-time four quadrotors formation. Left: Formation control without high-order feedforwards; Right: our
proposed method.

Figure 10. A snap of the real flight of four quadrotors’ formation, tracking a circular trajectory while
maintaining a rectangle pattern.
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6. Conclusions

In this paper, a nonlinear-flatness-based formation control with feedforwards of
estimated high-order guidance vector (neighbors’ states, and RFT, if the quadrotor is
a leader) derivatives is developed. The formation controller is decentralized, which is
designed based on neighbors’ states. In order to attain an aggressive formation, an extended
finite-time observer of the guidance vector is investigated. In order to deal with the
great initial deviation of the estimated states, the saturated feedforwards are developed.
Then, the convergence of the formation tracking error is analyzed. Furthermore, the
proposed formation control is illustrated by simulation and real-time experiment by means
of MATLAB and the simulator-experiment platform, comparing with the formation control
without high-order feedforwards. Both simulation and real-time experimental results show
that the aggressive formation performance is improved by using our proposed formation
controller.

One of the directions of the future work is to implement the proposed control with
advanced nonlinear control methods, in order to deal with the effects of nonlinearities
(uncertainties), to achieve asymptotic finite-time convergence, to control explicitly the
formation tracking speed, etc.
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Appendix A

Appendix A.1. Proof of Proposition 3

Proof of Proposition 3. According to (5), we obtain that

FTi =
(Z̈i + g)m

cos θi cos φi
(A1)

Replacing FTi by (A1) in the first two equations in (5), we obtain

Ẍi =
(

sin ψi
tan φi
cos θi

+ cos ψi tan θi

)
(Z̈i + g)

Ÿi =
(

sin ψi tan θi − cos ψi
tan φi
cos θi

)
(Z̈i + g)

(A2)

We assume that Z̈i 6= −g. Then, according to Equation (A2), we obtain that

tan φi
cos θi

=
Ẍi sin ψi − Ÿi cos ψi

Z̈i + g

tan θi =
Ẍi cos ψi + Ÿi sin ψi

Z̈i + g
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Then, we have

θi = arctan
(

Ẍi cos ψi + Ÿi sin ψi

Z̈i + g

)
φi = arctan

(
Ẍi sin ψi − Ÿi cos ψi

Z̈i + g
cos
(

arctan
(

Ẍi cos ψi + Ÿi sin ψi

Z̈i + g

))) (A3)

Since zi = [X T
i , ψi]

T , we denote zi1 = Xi, zi2 = Yi, zi3 = Zi and zi4 = ψi. Then, the
state of the quadrotor κi yields

Xi =zi1 , Yi = zi2 , Zi = zi3 ,

Ẋi =żi1 , Ẏi = żi2 , Żi = żi3 ,

θi = arctan
(
z̈i1 coszi4 + z̈i2 sinzi4

z̈i3 + g

)
φi = arctan

(
z̈i1 sinzi4 − z̈i2 coszi4

z̈i3 + g
cos
(

arctan
(
z̈i1 coszi4 + z̈i2 sinzi4

z̈i3 + g

)))
ψi =zi4

θ̇i =

(
arctan

(
z̈i1 coszi4 + z̈i2 sinzi4

z̈i3 + g

))(1)

φ̇i =

(
arctan

(
z̈i1 sinzi4 − z̈i2 coszi4

z̈i3 + g
cos
(

arctan
(
z̈i1 coszi4 + z̈i2 sinzi4

z̈i3 + g

))))(1)

ψ̇i =żi4

(A4)

Equation (A4) imply that the state κi can be parameterized by variable zi and its
derivatives. According to (9), the output yi is in terms of Xi, Ẋi, Θi and Θ̇i, therefore yi can
also be parameterized by zi. Additionally, according to (8), the control input ui is in terms
of Zi, Żi, Θi, Θ̇i and Θ̈i. Therefore, the variable zi is the flat output of system (8).

Appendix A.2. Model Simplification

According to Equation (A2), we can obtain the following equations

θi = arctan
(

Ẍi cos ψi + Ÿi sin ψi

Z̈i + g

)
φi = arctan

(
Ẍi sin ψi − Ÿi cos ψi

Z̈i + g
cos
(

arctan
(

Ẍi cos ψi + Ÿi sin ψi

Z̈i + g

))) (A5)

Without loss of generality, we assume that the yaw angle is controlled at origin, and
the altitude is stabilized at some constant value, then,

θi = arctan
(
Ẍi/g

)
and φi = arctan

(
−(Ÿi/g) cos θi

)
(A6)

Furthermore, considering Assumption 1, we obtain that

Ẍi = θig + ∆Xi
Ÿi = −φig + ∆Yi

(A7)

where the nonlinearities ∆Xi and ∆Yi are bounded since the absolute values of θi and φi are
bounded within 30◦ by assumption 1. Then, we know that (A7) is Lyapunov stable, if the
simplified system (16) is asymptotically stable.
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