
applied  
sciences

Article

Integrating Dilated Convolution into DenseLSTM for Audio
Source Separation

Woon-Haeng Heo 1, Hyemi Kim 2 and Oh-Wook Kwon 1,*

����������
�������

Citation: Heo, W.-H.; Kim, H.; Kwon,

O.-W. Integrating Dilated

Convolution into DenseLSTM for

Audio Source Separation. Appl. Sci.

2021, 11, 789. https://doi.org/

10.3390/app11020789

Received: 9 December 2020

Accepted: 12 January 2021

Published: 15 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronics Engineering, Chungbuk National University, Cheongju 28644, Korea;
whheo89@cbnu.ac.kr

2 Creative Content Research Division, Electronics and Telecommunications Research Institute,
Daejeon 34129, Korea; miya0404@etri.re.kr

* Correspondence: owkwon@cbnu.ac.kr; Tel.: +82-43-261-3374

Abstract: Herein, we proposed a multi-scale multi-band dilated time-frequency densely connected
convolutional network (DenseNet) with long short-term memory (LSTM) for audio source separation.
Because the spectrogram of the acoustic signal can be thought of as images as well as time series
data, it is suitable for convolutional recurrent neural network (CRNN) architecture. We improved the
audio source separation performance by applying the dilated block with a dilated convolution to
CRNN architecture. The dilated block has the role of effectively increasing the receptive field in the
spectrogram. In addition, it was designed in consideration of the acoustic characteristics that the
frequency axis and the time axis in the spectrogram are changed by independent influences such as
speech rate and pitch. In speech enhancement experiments, we estimated the speech signal using
various deep learning architectures from a signal in which the music, noise, and speech were mixed.
We conducted the subjective evaluation on the estimated speech signal. In addition, speech quality,
intelligibility, separation, and speech recognition performance were also measured. In music signal
separation, we estimated the music signal using several deep learning architectures from the mixture
of the music and speech signal. After that, the separation performance and music identification
accuracy were measured using the estimated music signal. Overall, the proposed architecture shows
the best performance compared to other deep learning architectures not only in speech experiments
but also in music experiments.

Keywords: dilated convolution; audio source separation; speech enhancement; speech recognition;
music signal separation; music identification

1. Introduction

In a real environment, humans hear several mixed signals simultaneously. In these
situations, we can selectively attend to a signal we want, effectively segregating a target
from the perceived mixture. This is the so-called auditory scene analysis or the cocktail
effect problem [1], which is the main topic of this paper. In particular, when signals such as
unwanted noise are mixed with the target signal, system performance is degraded, and the
necessity of this study is emphasized [2,3]. Audio source separation is used to estimate the
target signal, such as speech and music, when the target signal and other signals are mixed.
If the target signal to be estimated is speech, it is the speech enhancement task; if the target
signal is music, it is the music signal separation task.

In the conventional method of audio source separation with linear characteristics,
non-negative matrix factorization (NMF) [4] is used not only for speech enhancement but
for music source separation tasks [5–7]. NMF is an algorithm that decomposes a signal into
two non-negative matrices that are a basis matrix representing independent characteristics
and an activation matrix for each characteristic [4]. Each component of the signal can be
separated using the basis matrix learned in the training process. Recently, deep learn-
ing, which has non-linear characteristics, showed better results than the traditional NMF
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method in audio source separation [8–14]. Deep learning has several representative archi-
tectures, such as the fully connected neural network (FCNN) [15], convolutional neural
network (CNN) [16], and recurrent neural network (RNN) [17]. Often, these architectures
are modified or combined to design a new architecture suitable for the task. FCNN archi-
tecture, which is the most basic deep learning architecture, is an architecture in which the
nodes of each layer are fully connected [15], while the CNN designed for image processing
is an architecture that convolves filters as a weight sharing method [16]. In addition, an
RNN suitable for processing time series data is characterized by accumulating and using
the information of the input data in chronological order within the architecture [17].

Many studies have shown better performance than the FCNN by using bidirectional
long short-term memory (BLSTM) and CNN architectures [18–25]. Long short-term mem-
ory (LSTM) has a memory cell involved in inputs and outputs to store longer time series
information than vanilla RNN [26]. BLSTM architecture determines the output by combin-
ing the forward time series information and the backward time series information of the
LSTM [27]. The CNN architecture that shares weights can be used to design deeper layers
of networks with the same parameters, which means that CNNs can learn more complex
patterns of filters than FCNN architecture.

Recently, the convolutional recurrent neural network (CRNN) architecture [28] that
uses CNNs suitable for image processing and RNNs suitable for time series data processing
in one architecture at the same time shows better performance than other CNN, RNN, and
BLSTM architectures [29–31]. In the CRNN architecture, LSTM or BLSTM architectures of
the RNN series, which has better performance than vanilla RNN, is used. The parameters
of the CNN are learned to estimate a filter for the target, and also the parameters of the
RNN are learned to store the target information using time series information [28]. In the
spectrogram of the acoustic signal, the target pattern shows slightly different characteristics
depending on the frequency axis but appears at various locations along the time axis.
Therefore, it is suitable for the translation-equivariance characteristics of the CNN archi-
tecture. In addition, since the time series data is along the time axis, it is suitable for the
RNN architecture [29–31]. When the spectrogram is an input, the CRNN architecture first
obtains a feature map through the CNN, and then features using time series information
can be obtained from the RNN since time series information can still be used along the
time axis of the feature map. Therefore, it is ideal to learn various patterns together using a
CRNN architecture in an acoustic signal, and it shows good performance [29–31].

The CNN-based architectures for music source separation have an encoder-decoder
architecture through down-sampling and up-sampling [23–25]. This encoder-decoder
style architecture is intended to effectively increase the receptive field [32] and utilize the
contextual information extracted from a wider time range of input data. In our previous
study [33], we created a dilated block that effectively increased the receptive field by using
a dilated convolution [34], which is suitable for the acoustic characteristics. The dilated
convolution has the advantage of having a larger receptive field with the same number
of parameters by adding an empty space between the filter nodes [34]. In order to apply
the dilated convolution more appropriately to the spectrogram, the dilated block of the
previous study was designed to arrange the dilated convolution of the time axis, the dilated
convolution of the frequency axis, and the standard convolution in parallel [33]. The
architecture where the dilated block is added in front of the dense block is called a dilated
dense block. A dilated time-frequency DenseNet (DilDenseNet), which we designed using
a dilated block, confirmed that it improves the performance in a music signal separation
task [33].

In this study, we proposed a multi-scale multi-band dilated time-frequency DenseNet
with LSTM (MMDilDenseLSTM) architecture for source separation. In addition to the
encoder-decoder style, we applied a dilated block to CRNN architecture in order to expand
the receptive field more effectively. We experimented with speech enhancement and
music signal separation to evaluate the performance of MMDilDenseLSTM in comparison
with other deep learning architectures. In the speech enhancement task, we performed
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subjective evaluation for the enhanced speech signal. In addition, we also measured
speech quality, intelligibility, separation performance, and speech recognition accuracy. In
the music separation task, separation performance and music identification performance
were tested. We found that separation performance did not always correlate with speech
recognition performance or music identification performance. To investigate the cause of
this uncorrelated relationship, we analyzed the separated signal by plotting an intuitive
feature of the music identification system on the spectrogram. In the speech and music
experiments, the proposed architecture, which effectively increased the receptive field in
CRNN architecture, showed the best performance overall compared to the existing deep
learning architectures.

We first introduce related works in Section 2 and then explain the proposed MMDilD-
enseLSTM in detail in Section 3. In Section 4, we present our experimental results. Finally,
we offer conclusions in Section 5.

2. Related Works

Gated residual network (GRN), which is a CNN-based architecture, consists of a
frequency-dilated module that extends the receptive field on the frequency axis, a time-
dilated module that increases the receptive field on the time axis, and, finally, a prediction
module that outputs a mask of the same size as the input [35]. In particular, the GRN archi-
tecture is a deeper network that has a wide receptive field along the time axis by arranging
several time-dilated modules, and this architecture has shown better performance than
vanilla RNN and BLSTM based on a fully connected layer in speech enhancement [35].

Recently, the multi-scale multi-band DenseNet (MMDenseNet) architecture using
densely connected convolutional networks (DenseNet) [36] showed good performance in
music source separation [25]. In the DenseNet architecture, since the final output feature
map includes the input and the output feature map of each layer, it has the advantage
that a lot of information is included in the feed-forward process. In addition, there is
an advantage that the gradient vanishing problem can be untangled because an error
is simultaneously transmitted to each layer without passing through nodes in the error
backpropagation process [36]. MMDenseNet has a multi-scale DenseNet (MDenseNet)
architecture in parallel for each divided frequency band. The MDenseNet architecture has
a process of obtaining low-dimensional features by repeating a dense block of DenseNet
and down-sampling, and then restoring the original size by repeating dense block and up-
sampling. For simplicity, the process of representing the input data as a low-dimensional
feature is called an encoding process, and the process of restoring the low-dimensional
feature obtained in the encoding process to its original size is called a decoding process.
Recently, the best performance of the music source separation task is MMDenseNet with
LSTM (MMDenseLSTM) [31], which combines BLSTM with CNN-based MMDenseNet [25].
MMDenseLSTM is a CRNN architecture in which a BLSTM architecture is added after
several dense block of MMDenseNet. Similar to speech enhancement tasks, the CRNN
architecture is currently the best performing architecture.

In the time domain, end-to-end methods not relying on spectrogram have been
successfully applied to audio source separation [37,38]. There are two drawbacks when the
spectrogram is used as input. First, it consumes time to extract the spectrogram and restore
it to a signal. Second, the phase information of the mixture used in the restoration process
causes distortion. Recently, one of the end-to-end methods, Wave-U-Net, actually did not
show good performance in music signal separation [37], whereas the other Conv-TasNet
showed very good performance in the speaker separation task [38]. From these previous
study results, we took the approach of using spectrogram as and input and will pursue the
end-to-end methods in the future research work.

3. Proposed Architecture

The proposed architecture is presented in three steps. First, we introduced a novel
dilated dense block that combines the dilated block [33] with the dense block of DenseNet.
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The dilated dense block was integrated into the multi-scale DenseLSTM (MDenseLSTM)
architecture [31] to create a multi-scale dilated time-frequency DenseLSTM (MDilDenseL-
STM). Finally, we combined multiple MDilDenseLSTM covering different frequency bands
into the proposed architecture, MMDilDenseLSTM.

3.1. DenseNet and Dilated Dense Block

The dilated dense block architecture had the dilated block on the left and the dense
block on the right, as shown in Figure 1. The dilated block can consider a wide receptive
field and the dense block outputs a feature map containing more accurate target information
while passing through several layers. Therefore, we placed the dense block after the dilated
block in order to naturally inherit the influence considering the wide receptive field. The
dense block of DenseNet concatenates the output feature maps, which is the output of the
CNN filter convolving with the input data [39,40], as shown in the right block of Figure 1
in order to exploit the advantage of efficient information transmission in the feed-forward
and error back-propagation processes. The dense block is composed of several composite
functions [36], and the composite function consists of a sequence of batch normalization
(BN) [41], rectified linear unit (ReLU) [42], and 3× 3 convolution (Conv). The equation
below represents the concatenation of the dense block.

x` = H`([x0, x1, . . . , x`−1]), (1)

where x` represents the output of the ` layer, and H` represents the composite function.
[x0, x1, . . . , x`−1] indicates concatenating all the feature map from the 0 to `− 1 layer.
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Figure 1. The architecture of dilated dense block. The [frequency, time] denotes the kernel size
and dilation rate. BN: batch normalization, ReLU: rectified linear unit, FDConv: frequency dilated
convolution, TDConv: time dilated convolution.

The purpose of the dilated block is to increase the receptive field more effectively
with down-sampling and up-sampling on a spectrogram. The dilated block is an archi-
tecture in which the frequency dilated convolution (FDConv), time dilated convolution
(TDConv), and 3× 3 standard convolution are configured in parallel after BN and ReLU, as
shown in the left block of Figure 1. The dilated convolution [34] was used for the FDConv
and TDConv, and the kernel size and dilation rate were adjusted appropriately to the
frequency and time axes, as shown in Figure 1 [33]. In the image task, the dilation rate
of dilated convolution changes the horizontal and vertical axes at the same ratio because
the size of the target image changes at the same ratio in width and height according to
the distance [34]. However, in the spectrogram, since the acoustic characteristics of the
time axis and the frequency axis changes with independent influences, the FDConv and
TDConv are arranged in parallel. For example, the speech rate affects the time axis, and
the gender-dependent pitch affects the frequency axis. The FDConv broadens the receptive
field of the frequency axis, and the TDConv broadens the receptive field of the time axis.
The dilated block is located in front of the dense block, and this whole architecture is called
a dilated dense block. The number of output feature maps in the dilated block is m0 + 3k,
and the number of output feature maps in the dilated dense block is m0 + (3 + L)k. m0 is
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the number of input feature maps, k is the growth rate, and L is the number of composite
functions [36].

3.2. Multi-Scale Dilated Time-Frequency DenseLSTM

MDilDenseLSTM is an architecture consisting of the dilated dense block (DDB), com-
pression block (“Compr.”), LSTM block, down-sampling, and up-sampling, as shown in
Figure 2. MDilDenseLSTM has four down-sampling (DS) and four up-sampling (US). The
down-sampling used 2× 2 average pooling and the up-sampling used 2× 2 transposed
convolution. The LSTM block is placed before the up-sampling, which makes scale 1 and
the up-sampling located at the smallest scale. The advantage of the information and error
transmission is further enhanced through an inter-block skip connection that connects
outputs of the same size to each other during encoding and decoding [25]. The compression
block compresses the information of many feature map into a small number of feature
maps. The down-sampling and up-sampling reduces or increases the time-frequency size
of the compressed feature map. The LSTM block, which is located between the compres-
sion block and up-sampling, outputs the target sequence information along the time axis.
MDilDenseLSTM is a CRNN architecture by combining a CNN-based dilated dense block
and an RNN-based LSTM block and is suitable when the input is an image and time series
data such as a spectrogram.
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Figure 2. The architecture of multi-scale dilated time-frequency DenseNet with LSTM (MDilDenseL-
STM). This architecture is in the full band of multi-band MDilDenseLSTM (MMDilDenseLSTM). The
red dashed box represents the recurrent neural network (RNN)-based architecture. DDB: dilated
dense block, LSTM: long short-term memory.

The compression block [36] consists of the BN, ReLU, and 1× 1 convolution, and is
placed behind the dilated dense block to appropriately limit the number of output feature
maps from the dilated dense block and compress information at the same time. In the
dilated dense block, which is a DenseNet-based architecture, since the output feature maps
of each layer are concatenated, the number of output feature maps increases by the product
of the number of layers. The compression rate θ has a value of 0 < θ ≤ 1. The number
of output feature maps by placing a compression block behind the dilated dense block
can be expressed as (m0 + (3 + L)k)× θ, and when θ = 1, the number of feature maps is
maintained without compression.

As shown in Figure 3, the LSTM block consists of a sequence layer of a 1× 1 con-
volution, BLSTM, and FCNN, and has an architecture in which the input feature map is
concatenated to the output feature map. The LSTM block makes the CNN-based DenseNet
architecture into a CRNN architecture. In the CRNN architecture, a feature is firstly ex-
tracted with the CNN, and then the RNN using time series information extracts features
and classifies the input into the target class [28]. Since the feature maps obtained from
the spectrogram retain the time series information as it is, adding the RNN architecture
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can reflect the time series information for all frames on the time axis. In addition, the
receptive field can be widened on all frames of the time axis. The 1× 1 convolution makes
the number of input feature maps to 1 and puts them into the BLSTM layer. Since the
frequency dimension of the output feature map varies according to the number of nodes in
the BLSTM layer, the FCNN adjusts the number of frequency dimensions in the output
feature map to be the same as the number of frequency dimensions in the input feature map.
Since the input feature maps and the output feature map in LSTM block are concatenated,
the number of output feature maps in the dilated dense block, compression block, and
LSTM block can be expressed as (m0 + (3 + L)k)× θ + 1.
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3.3. Multi-Scale Multi-Band Dilated Time-Frequency DenseLSTM

The proposed architecture, MMDilDenseLSTM, has the advantage of having a wide
receptive field in the time axis as well as the frequency axis of the spectrogram by combining
the dilated block designed in the previous study [33] with the MMDenseLSTM introduced
in [31]. In addition, the model used in our previous study, based on a CNN architecture,
had limitations in utilizing time series information in spectrograms. MMDenseLSTM
extracts CNN features from dense blocks and then extracts features considering time series
information from LSTM blocks. We can extract a CNN feature considering a wider range by
adding a dilated block to the dense block, and then the LSTM block takes over the influence
by using the CNN feature as the input. It is an architecture in which the spectrogram is
divided into three bands and MDilDenseLSTM is arranged in parallel in each band and the
full band, as shown in Figure 4. Since we used the audio sampled at 16 kHz as our dataset,
we used a spectrogram with a frequency range of 8 kHz as input. Therefore, the frequency
band was divided by the boundary of 2 kHz and 4 kHz, and the ratio was equal to that
of MMDenseLSTM [31]. Moreover, 0~2 kHz is a low band, which is a frequency band
where the speech signals mainly exist, 2~4 kHz is called the middle band, and 4~8 kHz is
called the high band. The output of each MDilDenseLSTM is combined into one tensor,
and a mask of the same size as the input is outputted through the dilated dense block, the
compression block, and the last 3× 3 convolution.
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DS2 1/4, 11 1/4, 10 1/4, 9 1/4, 11 

DDB and CP3 1/4, 11 1/4, 9 1/4, 7 (8) 1/4, 12 
DS3 1/8, 11 1/8, 9 - 1/8, 12 

DDB and CP4 1/8, 12 (128) 1/8, 10 (32) - 1/8, 13 
DS4 - - - 1/16, 13 

DDB and CP5 - - - 1/16, 14 (128) 
US4 and CC4 - - - 1/8, 27 
DDB and CP6 - - - 1/8, 16 
US3 and CC3 1/4, 23 1/4, 19 - 1/4, 28 

Figure 4. Proposed architecture for speech enhancement.
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For each MDilDenseLSTM, the growth rate and the number of composite functions
in the dilated dense block, and the number of LSTM blocks were applied differently.
Table 1 shows the detailed architecture of MMDilDenseLSTM. The growth rate, the num-
ber of composite functions, and the scale of each band, which are hyper-parameters of
MMDilDenseLSTM, were referred to MMDenseLSTM [31]. Since the low frequency band is
important due to the characteristics of the acoustic signal, the growth rate k and the number
L of the composite function in the low band and full band, which include low frequency
band, were applied more than other bands. In addition, the LSTM block in the low and
full band was applied before the up-sampling, which makes scale 1 and the up-sampling
located at the smallest scale. However, the LSTM block in the high and middle band was
applied only before the up-sampling located at the smallest scale. In full band, since the
input size is more than twice that of other bands, the receptive field must be large; therefore,
the scale is lower than that of other bands. In order to combine the output feature maps
along the frequency axis from each MDilDenseLSTM except for the full band, the number
of output feature maps must be the same; therefore, the number of output feature maps is
made the same by adjusting the compression rate applied to each band.

Table 1. Details of the proposed architecture (scale, the number of output feature map). If the
bidirectional long short-term memory (BLSTM) layer was applied, the number of nodes was indicated
in parentheses. The “L” of full band is shown in Figure 2. The lack of values indicates no architecture.
Therefore, DDB and CP4 of the low band is connected to US3 and CC3. k: growth rate, L: the number
of the composite function, θ: compression rate, DDB: dilated dense block, CP: compression block, DS:
down-sampling, US: up-sampling, CC: concatenation.

Layer
Band (k,L,θ) Low

(15, 5, 0.095)
Middle

(4, 4, 0.25)
High

(2, 1, 0.4)
Full

(7, -, 0.2)

3× 3 Conv 1, 32 1, 32 1, 32 1, 32

DDB and CP1 1, 13 1, 15 1, 16 1, 14

DS1 1/2, 13 1/2, 15 1/2, 16 1/2, 14

DDB and CP2 1/2, 11 1/2, 10 1/2, 9 1/2, 11

DS2 1/4, 11 1/4, 10 1/4, 9 1/4, 11

DDB and CP3 1/4, 11 1/4, 9 1/4, 7 (8) 1/4, 12

DS3 1/8, 11 1/8, 9 - 1/8, 12

DDB and CP4 1/8, 12 (128) 1/8, 10 (32) - 1/8, 13

DS4 - - - 1/16, 13

DDB and CP5 - - - 1/16, 14 (128)

US4 and CC4 - - - 1/8, 27

DDB and CP6 - - - 1/8, 16

US3 and CC3 1/4, 23 1/4, 19 - 1/4, 28

DDB and CP7 1/4, 12 1/4, 11 - 1/4, 15

US2 and CC2 1/2, 23 1/2, 21 1/2, 16 1/2, 26

DDB and CP8 1/2, 13 (128) 1/2, 12 1/2, 9 1/2, 14 (128)

US1 and CC1 1, 26 1, 27 1, 25 1, 28

DDB and CP9 1, 13 1, 13 1, 13 1, 14

Concatenation 1, 27

DDB and CP10 (Parameter: k = 12, L = 3, θ = 0.2) 1, 19

2× 1 Conv 1, 1
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To learn the proposed architecture, the following loss function was used.

L(X, Y) = ‖Y− X
⊙

M̂‖1 (2)

where X is the magnitude spectrogram of the input data, Y is the magnitude spectrogram
of the reference data,

⊙
is element-wise multiplication, M̂ is a mask estimated by neural

network, and ‖.‖1 is 1-norm. The estimated M̂ is multiplied by the input spectrogram X to
estimate clean speech data, and the difference from Y is obtained by 1-norm.

4. Experiments

In order to find out how well the proposed architecture separated the music and speech
signals with different characteristics, we conducted experiments for music and speech,
respectively. In the speech experiment, when speech, noise, and music were mixed, clean
speech signals were estimated, and then a speech recognition experiment was performed
using the estimated speech signals. In the music experiment, when mixed music and speech
were extracted from broadcast contents of various genres, a music signal was separated
out, and then a music identification experiment was performed using the separated music
signal. Section 4.1 describes the speech domain experiment, and Section 4.2 describes the
music domain experiment.

4.1. Speech Experiment
4.1.1. Dataset for Speech Experiment

For the speech enhancement experiment, we mixed the music and noise signal with
the speech signal. We used 115 noises database (DB) [43], ESC-50 [44], and NOISEX-92 [45]
as the noise DB, WSJ1 [46] as the speech DB, and MUSDB [47] as the music DB.

The speech, music, and noise DB is organized, as shown in Table 2. MUSDB is already
divided into training, validation, and test datasets, and NOISEX-92 is composed of 6 noise
types (babble, destroyer engine, destroyer operation, factory1, factory2, m109). WSJ1, a
speech DB, is already divided into the training, validation, and test datasets. For the test
dataset of speech DB, the eval93 dataset, which is the “si_et_h1” folder, in WSJ1 was used.

Table 2. Dataset configuration for speech experiment.

DB
Noise Music Speech

115 Noise ESC-50 NOISEX-92 MUSDB WSJ1

Training 2.3 h
(165 types) Not used 5 h

(86 songs)

30 h
(57 utterances
× 284 speakers)

Validation 30 min
(165 types) Not used 1 h

(14 songs)

5 h
(35 utterances
× 60 speakers)

Test Not used 18 min
(6 types)

3.5 h
(50 songs)

30 min
(284 utterances
× 10 speakers)

Remark Used for training
and validation Used for test Different song for

each dataset

Independent
speaker for
each dataset

Since the size of the public noise DBs is small, several public noise DBs were used.
To cope with various noise types, the deep learning model used 115 noise DB and ESC-50
DB with many noise types for training, while the remaining NOISEX-92 DB was used for
the test. Because the public noise DB and music DB have less data than the target speech
DB, they are repeatedly mixed. Since speech DB is used only once, the mixed signals are
different. Of course, it would be nice if the amount of noise and music DB was as large as
the speech DB, but it is not easy to collect noise and music data as much as the speech DB.



Appl. Sci. 2021, 11, 789 9 of 19

Mixed training, validation, and test datasets are created by using each training, valida-
tion, and test datasets of music, noise, and speech databases. The training data mixes the
noise and music signals to have a random signal-to-noise ratio (SNR) and signal-to-music
ratio (SMR) from −10 to 20 dB based on the speech signal. The validation data mixes
through the same process as training. To create the test dataset for each SNR and SMR
combination, the music is mixed with an SMR of −10, −5, 0, 5, 10, 20, and 30 dB, and the
noise is mixed with an SNR of −10, 0, and 10 dB. As a result, the total training dataset and
validation dataset were 30 h and 5 h, respectively. In addition, the test dataset for each SNR
and SMR combination is 30 min.

4.1.2. Setup for Speech Experiment

We used the spectrogram magnitude of the 16 kHz single-channel audio signal as
the model input. Spectrograms can be obtained through a short-time Fourier transform
(STFT) with Hanning window of 320 samples and 50% overlap. The number of frames
in the input spectrogram is 256. The learning rate was 0.001 and the optimizer used
Adam [48]. The batch size was 16 and the number of epochs was 20. The validation
dataset was tested at every epoch and the model with the best signal-to-distortion ratio
(SDR) [49] was finally selected and tested. To evaluate speech enhancement performance,
we performed a subjective speech quality test. In addition, we also calculated objective
measures. As objective measures, SDR, which is the signal separation performance, and
perceptual evaluation of speech quality (PESQ) [50], which is performance related to speech
quality, and short-time objective intelligibility (STOI) [51], normalized-covariance measure
(NCM) [52], coherence-based speech intelligibility index (CSII) [53], which are speech
intelligibility measures, were computed. PESQ ranges from −0.5 to 4.5, STOI, NCM, and
CSII range from 0 to 1, and SDR had no fixed range. Larger values of the performance
evaluation indicators represented better performance. In addition, to evaluate speech
recognition performance, we used the nnet3 (chain) model of the Kaldi toolkit [54]. The
Kaldi speech recognition model was trained with the WSJ1’s clean speech, the SI-284
training dataset. The speech recognition performance is computed by word error rate
(WER), and lower WER indicates better performance.

4.1.3. Experimental Results of the Subjective Quality Measure for Speech Enhancement

We tested four models for speech enhancement: GRN [35], MMDenseLSTM [31],
DilDenseNet [33], and the proposed architecture. In several recent studies [55,56], GRN
proposed for speech enhancement was experimented for performance comparison. Deep
learning models were implemented by ourselves because there was no open code. In
DilDenseNet which we designed in the previous experiment [33], we did not reverse the fea-
ture map in the multi-band block for speech enhancement and deleted the multi-band block
in the decoding process. In addition, dividing the band at 2 kHz and 4 kHz was equally
applied to DilDenseNet, MMDenseLSTM, and proposed architecture. It was confirmed by
experiments that these modifications showed better performance in speech enhancement.

For the subjective listening evaluation of the speech quality, we conducted a relative
preference test [57] targeting GRN, MMDenseLSTM, DilDenseNet, and the proposed archi-
tecture. From the four models, we obtained six combinations of model for comparison. The
subjects participated in a total of 18 conditions (six combinations of model for comparison,
three different noise and music levels). Each condition had five pairwise comparisons
and the subject performed a total of 90 pairwise comparisons. To prevent subjects from
predicting information, such as the condition and speech material of each sample, we
provided the condition and speech material in random order, and the sample length used
for each preference test was 2–3 s. In addition, each subject independently conducted the
subjective evaluation in order not to share their opinions with each other. In each pairwise
comparison, a mixture and pairs of enhanced speech samples, which resulted from the
comparison models, were provided, and the mixture was always heard first.
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As a total of 30 subjects participated in the subjective listening test, 150 preference
results were obtained for each condition. The listeners had the ability to select a preferred
sample (1 score) or “can’t decide” (0.5 score), and the preference score and significance
were calculated by combining the preference results of all listeners. We determined the
preference score by applying the average to the preferred frequency. In addition, we
calculated the one-tailed significance of the binomial test.

Table 3 shows the preference scores of the subjective speech quality listening test for the
proposed architecture and other deep learning architectures. In the subjective evaluation,
the speech quality of the proposed architecture was evaluated better than DilDenseNet,
MMDenseLSTM, and GRN. DilDenseNet and MMDenseLSTM were evaluated to have
the same speech quality. GRN was evaluated to have the lowest speech quality among
deep learning architectures. In addition, the comparisons including GRN showed high
significance in all conditions, which indicated that the difference in performance from other
deep learning structures was clear. Likewise, “Total” results of all comparisons other than
the DilDenseNet and MMDenseLSTM comparisons showed high significance and thus
represent reliable results.

Table 3. Result of subjective listening test. “Hard” indicates an environment that music and noise
are mixed at 0 dB, “Medium” mixed at 5 dB, and “Easy” mixed at 10 dB (“n.s.”: not significant,
“∗”: p < 0.05, “∗∗”: p < 0.01, “∗ ∗ ∗”: p < 0.001).

Model Comparison

Environment
Hard Medium Easy Total

Proposed > DilDenseNet 0.60 (∗∗) 0.60 (∗) 0.59 (∗) 0.60 (∗ ∗ ∗)
Proposed > MMDenseLSTM 0.61 (∗∗) 0.67 (∗ ∗ ∗) 0.62 (∗∗) 0.63 (∗ ∗ ∗)

Proposed > GRN 0.89 (∗ ∗ ∗) 0.79 (∗ ∗ ∗) 0.71 (∗ ∗ ∗) 0.80 (∗ ∗ ∗)
DilDenseNet >

MMDenseLSTM 0.57 (n.s.) 0.51 (n.s.) 0.42 (n.s.) 0.50 (n.s.)

DilDenseNet > GRN 0.79 (∗ ∗ ∗) 0.79 (∗ ∗ ∗) 0.68 (∗ ∗ ∗) 0.76 (∗ ∗ ∗)
MMDenseLSTM > GRN 0.88 (∗ ∗ ∗) 0.82 (∗ ∗ ∗) 0.88 (∗ ∗ ∗) 0.86 (∗ ∗ ∗)

4.1.4. Experimental Results of the Objective Measures for Speech Enhancement
and Recognition

In speech recognition after speech enhancement, objective indicators (PESQ, SDR,
STOI, NCM, SCII, and WER) were measured for GRN, MMDenseLSTM, DilDenseNet, pro-
posed architecture, and MMDenseLSTM+, which increased only the number of parameters
in MMDenseLSTM. Table 4 shows the number of parameters for each architecture. The
proposed architecture had 50% more parameters than MMDenseLSTM because it is an
architecture in which dilated blocks are added to MMDenseLSTM. Since the performance
may be improved simply by increasing the parameters of MMDenseLSTM, we designed
MMDenseLSTM+ having almost the same number of parameters as the proposed architec-
ture to confirm this. MMDenseLSTM+ has the same architecture as MMDenseLSTM, and
the hyper-parameter (growth rate, compression rate, the number of composite function)
was properly adjusted.
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Table 4. Number of parameters for each architecture in this experiment.

Architecture The Number of Parameters (×106)

GRN 3.11

MMDenseLSTM 0.98

MMDenseLSTM+ 1.51

DilDenseNet 0.47

Proposed 1.49

Figure 5 compares the results of PESQ, SDR, STOI, NCM, SCII, and WER for each
deep learning architecture and an unprocessed mixture signal in 0 dB SMR and SNR
environments. MMDenseLSTM+ showed the best performance among the deep learn-
ing architectures in SDR results and showed the same or better performance than MM-
DenseLSTM in PESQ, STOI, and CSII, but showed lower NCM, WER performance than
MMDenseLSTM, DilDenseNet, and the proposed architecture. Therefore, we can see that
simply increasing the parameter did not improve the performance. In addition, GRN
had more than twice the parameters of the proposed architecture but showed the lowest
performance among deep learning architectures. Lastly, the proposed architecture showed
lower performance than MMDenseLSTM and MMDenseLSTM+ in SDR, but it had the best
performance in other results. In particular, the proposed architecture in WER showed a
relatively 14.4% improvement in performance compared to MMDenseLSTM, and it showed
the best performance compared to other deep learning architectures. Overall, PESQ, STOI,
CSII, and NCM performance showed a higher correlation with WER results than SDR
performance, and especially NCM had the highest correlation. The matched pairs sentence-
segment word error test [58] using the NIST speech recognition scoring toolkit (SCTK)
(https://github.com/usnistgov/SCTK) was performed to confirm the statistical signifi-
cance in the WER results of Figure 5. In the comparison between the proposed architecture
and DilDenseNet, the p-value was less than 0.01, and in the comparison between the pro-
posed architecture and other deep learning architectures, the p-value was less than 0.001 in
all cases. Therefore, in the WER results of Figure 5, the difference in performance between
the proposed architecture and other deep learning architectures was statistically significant.

Figure 6 shows the speech recognition results for the unprocessed mixture signal
and signals enhanced by the deep learning models. Figure 6a–c show the WER results
with SNR of −10, 0, and 10 dB, respectively. In Figure 6a, MMDenseLSTM+ shows the
best performance. However, Figure 6b,c shows how the performance of MMDenseLSTM+
deteriorated more and more in an environment with higher SNR. GRN showed the lower
overall performance than others, and then MMDenseLSTM and DilDenseNet showed
good performance in order. The proposed architecture showed the best performance after
MMDenseLSTM+ at−10 dB SNR, but the difference of performance from MMDenseLSTM+
was not large, and it showed the best performance in 0 dB and 10 dB SNR environments,
as can be seen in Table 5.

Table 5. Average word error rate (WER) over the entire signal-to-music ratio (SMR) at each signal-to-
noise ratio (SNR). Lower WER indicates better performance.

Architecture
SNR −10 0 10

GRN 87.26 44.04 24.89

MMDenseLSTM 84.01 37.79 21.91

MMDenseLSTM+ 79.24 41.51 23.01

DilDenseNet 82.26 35.54 20.77

Proposed 79.55 32.83 19.20

https://github.com/usnistgov/SCTK
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4.2. Music Experiment

We experimented with the proposed architecture in the previous task [33]. Figure 7
shows the overall structure of the music experiment. The mixture of music and speech was
separated into a clean music signal in the music separation model, and music identification
was attempted using the separated music signal. Speech collected from broadcast contents
were mixed with music at −30~0 dB music-to-speech ratio (MSR), and then the mixed
signal was used as the input and the music signal was used as the target to train the music
separation model.
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Fingerprints were extracted from all the songs used for evaluation and then stored
in the fingerprint database. The fingerprint of the separated music signal was extracted
and matched with all the songs in the fingerprint database to find matching music. For the
fingerprint, the landmark-based audio fingerprinting method [59] was used. The landmark-
based fingerprint was created by first extracting peak points from the spectrogram of the
query sample in consideration of density and then connecting the peak points [59]. It will
be an important point to determine the music identification performance that the peak
points of the estimated music signal are well preserved. In addition, in a deep learning
model that divides the frequency band of the spectrogram, it is necessary to examine how
the boundary of the frequency band affects the fingerprint.

4.2.1. Dataset for Music Experiment

Table 6 shows the configuration of training, validation, and test datasets for the music
experiment. The music DB had 9118 popular songs from various countries and genres.
The speech DB had 12 h of broadcast contents of various genres (drama, entertainment,
documentary, and kids). The training data were mixed at a random MSR between −30
and 0 dB, considering the characteristics of broadcast content in which the speech signal
was mixed in a larger volume than the music signal. Test data were mixed at −10 dB, 0 dB
MSR. There were 14,590 query samples per MSR case. When creating the training and test
dataset, the speech was randomly selected and mixed with the music because the speech
data was smaller than the music data. Both speech and music data were recorded with
44,100 Hz sampling.
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Table 6. Dataset configuration for music experiment. The sample length is 12 s.

DB Music Speech Remark

Training
extracted 1 sample

in each song
(1673 songs, 5 h 30 min)

1673 samples
(5 h 30 min)

Used for the training
and validation of the

separation model

Validation
extracted 1 sample

in each song
(150 songs, 30 min)

150 samples
(30 min)

Test
extracted 2 samples

in each song
(7295 songs, 48 h)

1823 samples
(6 h)

Used for measuring
the separation and

identification
performances

All 9118 songs 3646 samples

4.2.2. Setup for Music Experiment

We used a mono signal down-sampled to 16 kHz for the experiment. The input of the
deep learning architectures is a spectrogram using 1024-point STFT with Hanning window
and 75% overlap size. The spectrogram estimated from the deep learning algorithm was
reconstructed as a waveform and used as an input for the identification program. For
music identification, the landmark-based identification program (https://github.com/
dpwe/audfprint) was used. For the Wave-U-Net architecture, we used the open-source
(https://github.com/f90/Wave-U-Net) that the author provided. Other deep learning
architectures were implemented directly for the experiment by ourselves.

4.2.3. Experimental Results for Music Signal Separation and Identification

In order to compare the objective performance differences of deep learning archi-
tectures, we performed music signal separation and music identification experiments of
several deep learning architectures in the same environment. The separation performance
was SDR and was expressed using median and mean statistics. The music identification
performance was the identification accuracy. The performance of other deep learning
architectures except the proposed architecture was the same as the previous study [33]. In
addition, we analyzed the fingerprint used in the music identification system. Since the
fingerprint was composed of indexes, it could be plotted overlapped on the spectrogram,
which helped intuitive interpretation.

Table 7 shows the separation performance. The proposed architecture improved
the separation performance of MMDenseLSTM, and it showed the best performance
compared to other deep learning architectures. Table 8 shows the music identification
(MI) performance and the average number of matched fingerprints (MF) in the identified
queries. Likewise, the proposed architecture in which the dilated block was added to
MMDenseLSTM improved the identification performance of MMDenseLSTM by 16.9%
at 0 dB MSR and 10.5% at −10 dB MSR, relatively, and it showed the best performance
compared to the existing deep learning architecture. The statistical significance test was
confirmed through the SCTK toolkit in the MI results of Table 8. The proposed architecture
showed the p-value less than 0.001 in all comparisons with other deep learning architectures.
In the 0 dB,−10 dB MSR environment, the difference in performance between the proposed
architecture and other deep learning architectures was statistically significant. Apart from
the identification performance, MF showed how well the peaks were estimated. Overall,
MF has correlation with the identification performance. However, at 0 dB MSR, the MF
for the unprocessed signal was quite high considering the identification performance. This
showed that the landmark-based fingerprinting scheme was robust to noise at 0 dB MSR.
The proposed architecture showed the largest MF except Oracle at 0 dB and −10 dB MSR.

https://github.com/dpwe/audfprint
https://github.com/dpwe/audfprint
https://github.com/f90/Wave-U-Net
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Table 7. Music separation performance measured in signal-to-distortion ratio (SDR) (dB) on broadcast
contents. MSR: music-to-speech ratio.

Architecture
0 dB MSR −10 dB MSR

Median SDR Mean SDR Median SDR Mean SDR

U-Net 6.24 6.19 3.18 3.11

Wave-U-Net 6.33 6.22 2.97 2.86

MDenseNet 6.98 6.86 3.84 3.67

MMDenseNet 7.15 7.10 4.04 3.91

MMDenseLSTM 7.40 7.38 4.13 4.05

DilDenseNet 7.72 7.63 4.44 4.32

Proposed 7.69 7.65 4.54 4.40

Table 8. MI accuracy (%) and the average number of matched fingerprints (MF) in the identified
queries.

Architecture
0 dB MSR −10 dB MSR

MI Accuracy MF MI Accuracy MF

Unprocessed 43.38 20.2 4.59 11.8

U-Net 42.33 16.0 19.38 11.8

Wave-U-Net 54.77 19.1 26.89 12.4

MDenseNet 52.57 19.1 28.44 13.2

MMDenseNet 49.66 17.4 26.67 12.3

MMDenseLSTM 67.94 22.0 44.96 14.9

DilDenseNet 71.91 23.8 48.03 15.5

Proposed 73.35 25.0 50.75 16.1

Oracle 95.92 72.6 95.92 72.6

Figure 8 shows the fingerprints of the separated music signal from the MMDenseLSTM
and the proposed architecture. In both results, the proposed architecture had a larger
number of matched fingerprints than the MMDenseLSTM. This means that the peak points
of the estimated music signal were better preserved in the proposed architecture than in
MMDenseLSTM. In Result 1, the matched fingerprints of the low band were the same in the
MMDenseLSTM and the proposed architecture, and more fingerprints were matched in the
middle and high bands of the proposed architecture. In Result 2, the proposed architecture
showed more matched fingerprints in wider areas of the middle and high bands than
the MMDenseLSTM.

In the previous study, we found that distortion occurs at the frequency band boundary
of the output spectrogram when the deep learning architecture was designed by indepen-
dently placing excessive parameters in each frequency band of the input spectrogram [33].
We investigate whether such distortion interferes with fingerprint extraction and how
much such distortion occurs in each deep learning architecture as the quantitative indicator.
To express the effect of this distortion as the quantitative indicator, the average number
of all fingerprints across the frequency boundaries (AcrAF) and the average number of
matched fingerprints across the frequency boundaries (AcrMF) were measured as shown
in Table 9. In our experiment, deep learning architectures in which many parameters
were placed independently in each frequency band were MMDenseNet, MMDenseLSTM,
and the proposed architecture, and the frequency band boundaries were 2 and 4 kHz.
MMDenseNet had the smallest value in these two indicators, which could explain why
MMDenseNet showed higher separation performance than Wave-U-Net and MDenseNet
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but had lower music identification performance. In the identification performance, AcrMF
represented matched fingerprints and was more important than AcrAF index. Which
represented all fingerprints. The proposed architecture had more AcrMF value than other
deep learning architectures.
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Table 9. The average number of all fingerprints across the frequency boundaries (AcrAF) and the
average number of matched fingerprints across the frequency boundaries (AcrMF).

Architecture
0 dB MSR −10 dB MSR

AcrAF AcrMF AcrAF AcrMF

Unprocessed 32.0 2.9 27.0 1.6

U-Net 29.7 2.1 25.1 1.6

Wave-U-Net 33.7 2.6 30.4 1.7

MDenseNet 25.7 2.6 21.6 1.8

MMDenseNet 23.7 2.0 20.1 1.5

MMDenseLSTM 31.0 2.9 26.4 1.9

DilDenseNet 30.3 3.1 25.8 2.0

Proposed 30.7 3.3 26.6 2.1

Oracle 33.6 9.5 33.6 9.5

5. Conclusions

We proposed an MMDilDenseLSTM for speech recognition or music identification
after audio source separation. MMDilDenseLSTM is a CRNN-based MMDenseLSTM and it
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has a dilated block that effectively increases the receptive field in consideration of acoustic
characteristics in the spectrogram.

In the speech recognition experiment after speech enhancement, subjective evalu-
ation was performed on the enhanced speech, and various objective indicators (PESQ,
SDR, STOI, CSII, NCM, and WER) were measured. Encoder-decoder style architectures,
MMDenseLSTM, DilDenseNet, and the proposed architecture showed better performance
with fewer parameters than GRN. In addition, it was confirmed that simply increasing the
number of parameters did not improve performance. The speech recognition performance
of WER had a highest correlation with NCM than with other indicators, and the proposed
architecture in the preference score, PESQ, STOI, CSII, NCM, and WER showed the best
performance compared to other deep learning architectures.

In the music identification experiment after music signal separation, the performance
of separation was measured using SDR. Although SDR and identification accuracy did not
have a correlation in all deep learning architectures, the proposed architecture showed the
best performance compared to other deep learning architectures in SDR performance and
identification performance. In addition, when the fingerprints of the query and reference
were plotted overlapped, it was confirmed that more fingerprints are matched over wider
areas in the proposed architecture than in the MMDenseLSTM.

In conclusion, the proposed architecture greatly improved the performance of MM-
DenseLSTM in all experiments for speech and music signals, and it showed the best
performance compared to other deep learning architectures. In addition, it was shown
that the separation performance was not quite well correlated with the overall system
performance. When determining the architecture of the separation model, the character-
istics of the system to which the separated signal was to be applied should be taken in
consideration. Based on these results, we expected that the proposed architecture could
be successfully applied to music identification and speech recognition systems in noisy
environments, e.g., speech recognition in cars or automatic music identification in stores.
However, there were clear limitations in deep learning models operating in the spectrum
domain as in our proposed method because the phase information of the mixture causes
distortion in the signal restoration process. In future work, we plan to alleviate this problem
by taking a model operating in the waveform domain as baseline.
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