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Abstract: In the non-free-field, with the effect of reflection sounds from the reflection boundary, the
vibration character of a submerged structure often changes, which may have significant influences
on the measurement system configurations. To reduce the engineering cost in low-frequency sound
prediction of a submerged structure with finite depth, two methods based on the theory of acoustic
radiation mode (ARM) are proposed. One is called the vibration reconstruction equivalent source
method (VR-ESM), which utilizes the ARM to reconstruct the total vibration of the structure, and
the sound prediction is completed with the equivalent source method (ESM); the other is called the
compressed modal equivalent source method (CMESM), which utilizes the theory of compressive
sensing (CS) and the ARM to reinforce the sparsity of source strengths. The sound field separation
(SFS) technology is combined with the above two methods for constructing the ARMs accurately in
the non-free field. Simulations show that both methods are efficient. Compared with the traditional
method based on the structural modal analysis, the methods based on the ARM could efficiently
reduce the scale of the measurement system. However, the measurement point arrangement should
be optimized to keep the prediction results accurate. In this paper, the optimization process is
completed with the efficient independence (EFI) method. In addition, some factors that may affect
the prediction accuracy are also analyzed in this paper. When the submerge depth is large enough,
the process of contrasting ARMs could be further simplified. The results of the paper could help in
saving engineering costs to predict the low-frequency sound radiation of submerged structures in
the future.

Keywords: structure with finite submerge depth; sound prediction; ARM; SFS; EFI

1. Introduction

The sound prediction method of underwater structures has been widely concerned
by scholars in various countries as it could provide important prior information for self-
noise monitoring and active noise controlling of submerged vehicles. Especially, the
sound radiation of underwater vehicles does not often satisfy the free-field condition,
which means that the reflection sounds from boundaries and scattering sounds could
make a significant contribution to the sound radiation, according to the study of Chen [1].
As analytical methods could hardly be applied for complex structures and acoustical
environments, several numerical calculation methods have been developed to be applied
for the sound prediction in non-free fields, such as the finite element method (FEM), the
boundary element method (BEM), the combination of FEM and BEM (FEM–BEM), and the
element radiation superposition method (ERSM) [2–6]. However, the methods have their
own disadvantages, which are analyzed sufficiently in the study of Wang [7]. For example,
the details of excitation force are required in advance for FEM and FEM–BEM, which is
impractical in engineering applications. Though BEM could accomplish the prediction with
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measurement data, the singular integrals could be an obstacle for fast prediction. Though
ERSM has an obvious advantage in computational efficiency, its usage could hardly be
flexible in complex acoustic environments.

Koopmann et al. first proposed the equivalent source method (ESM) to calculate the
sound radiation of structure [8]. Li and Huang et al. analyzed the stability of the equivalent
source method and the factors affecting the calculation accuracy of ESM and found that
ESM not only avoids the problem of singular integral, but also has higher computational
efficiency compared with the commonly used numerical methods such as BEM [9,10].
Using the complex vector radius method, Xiang et al. found that the non-uniqueness of the
solution of ESM at singular frequencies could be avoided, which broadens the application
of ESM [11]. Moreover, by modifying the transfer function, scholars have studied the
sound field prediction of structures in the non-free field, and obtained many significant
conclusions [12–14]. When ESM is used to predict the sound field of structure, the input
is often chosen to be the vibration of the structure surface. In the study of [15], Shang
combined ESM with FEM to solve the difficulty of obtaining the vibration of the structure in
a complex environment, and the sound prediction of an elastic cylindrical shell in idealized
waveguide is completed. However, there was no further study on the measurement point
arrangement in the above research. Most previous studies chose uniform measurement
point arrangement for convenience. The denser the measurement points, the higher the
prediction accuracy and the computational cost [7]. In the studies of Wang and Tao et al.,
they found that the measurement point arrangements are closely linked with the structural
vibration mode (SVM) [7,16]. Zhang proposed a method based on the dominantly radiated
structural mode (DRSM) to calculate the sound power of a cylindrical shell [17]. As the
mutual coupling among the modes at low frequencies could be ignored, the number of
measurement points could be reduced. However, the method is only efficient in predicting
the sound power of the structure. Meanwhile, for a structure with a complex shape or big
size, the structural vibration mode could be quite complex, which limits the application of
SVM.

Photiadis and Borgiotti put forward the concept of the acoustic radiation mode
(ARM) [18,19]. From the perspective of sound power, the sound pressure in the sound
field is expressed as a set of orthogonal basis functions. Each order of ARM is independent,
without coupling among SVMs. Therefore, the control and calculation of sound power
could be very simple. In the studies of [20–24], scholars designed a series of basis functions
of ARMs using the radiated sound power matrix and completed the calculation of ARMs
and the reconstruction of the sound field. Nie and Zhan et al. introduced ESM into the
application of ARM and conquered the difficulty of solving the radiation sound impedance
on the vibrating bodies [25,26]. The theory of ARM is widely used in the nearfield acoustic
holography (NAH), source localization, and sound field reconstruction. Efren, Bi, and
J�rgen et al. have proven that the expansion coefficients of the orthogonal bases may
have high sparsity when combining ARM with ESM [27–29]. Based on the theory of
compressed sensing (CS), the sound field reconstruction of structural sound source can
be accomplished with sparse measurement points. Li, Su, and Mao et al. discussed the
optimization methods of measurement systems based on ARM and found that, with non-
uniform distribution of measurement points, the accuracy of sound reconstruction could
be higher [30–32]. However, all the above studies were carried out in the free field. The
studies in the non-free-field deserve more attention. With the maturity of the sound field
separation technology (SFS), the sound reconstruction and prediction in the non-free-field
are more convenient. In the NAH theory based on ESM, several methods could be applied
to separate the real sources from the disturbed sources such as the double-layer sound
pressure measurement method, double-layer particle velocity measurement method, and
single-layer sound pressure-particle velocity measurement method. In fact, in the non-free-
field, the strengths of real sources could also be obtained with SFS based on the structural
vibration [1,33]. Thus, the discussion about the optimization of measurement system in
non-free-field could be completed.
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In this paper, two methods based on the theory of ARM are proposed to predict
the sound radiation of an elastic structure with finite submerge depth. SFS is used to
construct the ARMs accurately when the reflection sounds have a significant influence on
the structural vibration. Generally, the measurement point arrangement should change as
the existence of the reflection sounds changes the details of SVM. Regretfully, the quantity
of measurement points still is limited by the Nyquist sampling rule. However, according to
the good convergence of ARM, the quantity of measurement points could be invariant and
further reduced. In spite of this, the ill-condition problem of the sensing matrices may lead
to large prediction errors and should be avoided. With the help of EFI, the measurement
point arrangement could be optimized by reducing the condition numbers of the sensing
matrices and the accuracy of prediction could be improved. Furthermore, some other
factors such as the frequency, the signal–noise ratio (SNR), and the submerged depth,
which may affect the prediction accuracy, are analyzed in the paper. When the submerged
depth is large enough, the process of prediction could be simplified with a ‘quick case’
because the effect of reflection sounds on the structural vibration could be neglected. In
order to illustrate the paper more clearly, a flowchart is given out as Figure 1.
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finite element method; BEM, boundary element method.

In Section 2, the theoretical bases of the prediction methods such as ESM, CMESM,
and VR-ESM will be presented. The method of SFS will also be introduced to apply for the
sound prediction in the half-space. Then, in Section 3, some numerical simulations will
be carried out to manifest the efficiency of CMESM and VR-ESM. The results of ESM are
regarded as the references to highlight the advantages of CMESM and VR-ESM to enhance
the sparsity of the measurement system. Meanwhile, the necessity of EFI to optimize the
measurement system will be confirmed. In Section 4, some factors that could affect the
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prediction results will be discussed briefly. Finally, the conclusions of the paper will be
given out in Section 5.

2. Theoretical Basis
2.1. Equivalent Source Method (ESM)

Considering an arbitrarily-shaped complex structure submerged in homogenous fluid
medium, the pressure p and the particle velocity v at any field point r could be represented
as the superposition of sound field generated by a series of point sources distributed on a
virtual surface inside the structure [8]:

p(r) = jρ0Ω0

N

∑
i=1

q(ri)g(ri, r) (1)

where ρ0 is the density of the medium; j =
√
−1, Ω0 is the angular frequency; N is the

number of equivalent sources; and q(ri) is the strength of the ith equivalent source, which
is located at the position of ri. Xiang et al. indicated that the form of a single equivalent
source could be various, such as monopole, dipole, or the combination of monopole and
dipole [11]. However, using monopole as the form of equivalent source has an obvious
advantage because the transfer function could be obtained easily even in a non-free field.
g(ri, r) is the transfer function (Green’s function), given by the following:

g(ri, r) =
exp(−jk0|ri − r|)

4π|ri − r| (2)

where k0 is the wavenumber. If the structure is submerged in the water with finite depth,
the reflection sounds from the water–air boundary should not be ignored. Thus, the
expression of g(ri, r) could be rewritten as follows:

g′(ri, r) = exp(−jk0|ri−r|)
4π|ri−r| + η

exp(−jk0|r′i−r|)
4π|r′i−r| (3)

where η is the reflection coefficient of the boundary and r′i is the mirror of the equivalent
source located at the position of r′i. Generally, the water–air boundary is regarded as a soft
boundary and η = −1. Moreover, the normal velocity on the surface of the structure could
be reconstructed by the equivalent sources:

v(rs) =
N

∑
i=1

q(ri)
∂g(ri, r)

∂ns
(4)

where ns is the normal vector on the surface node located at rs. The matrix expression of
Equation (4) is as follows:

v = DQ (5)

where D is referred to as the dipole matrix, D = ∂g(ri, r)/∂ns. Given that there are L
measurement points on the surface of the structure, v = [v(rs1), v(rs2), . . . , v(rsL)]

T is
the column vector that contains the normal velocities at the L measurement points, and
Q = [q(r01), q(r02), . . . , q(r0N)]

T is the column vector that contains the N equivalent source
strengths. D is not a square matrix and L ≥ N is satisfied in ESM. Thus, the Moore–Penrose
pseudoinverse is necessary to perform the matrix inversion. Once the equivalent sources
are configured, the strength of equivalent sources could be obtained with Equation (5).

Q = D+v (6)

where the superscript ‘+’ denotes the Moore–Penrose pseudoinverse, D+ =
[
DHD

]−1DH ,
and the superscript ‘H’ denotes the Hermite transposition. Equation (6) describes the solu-
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tion of overdetermined equations. Thus, the approximate solution of the unknown source
strength vector is often solved with minimum `2-norm via the minimization problem [34]:

argQmin‖Q‖2 subject to v = DQ (7)

When the interference of noise could not be ignored, the Tikhonov regularization
is usually chosen to avoid the ill-posed inverse problem, which is caused by the poorly
conditioned dipole matrix [35]. Thus, Equation (7) could be rewritten as follows:

argQmin‖v−DQ‖2 + Λ‖Q‖2
2 (8)

where Λ is the regularization parameter. It is essential to acquire accurate equivalent source
strengths for sound prediction with high efficiency. Particularly, the reflection sounds
could make a significant contribution to the structural vibration in the non-free-field, which
makes the solution of equivalent source strengths computationally costly [36]. In the
work [1], Chen proposed a method to separate the normal velocity on the surface of the
structure, which could make a contribution to the radiation sound field. With the method,
the ‘useful’ strength of equivalent sources could be calculated with the normal derivative
of free Green’s function, which simplifies the computation.

2.2. Sound Field Separation Technology Based on Vibration Measurement

When a structure is located in the non-free-field, the reflection sounds could change
the vibration of the structure. In NAH based on ESM, the interference of the reflection
sounds must be excluded to obtain the ‘useful’ strength of equivalent sources in the free
field. Most relevant studies chose double sound pressure holographic layers, double
particle velocity holographic layers, or single sound pressure-particle velocity holographic
layer to complete the process of SFS [36–38]. However, with the above methods, the scale
of the measurement system would be quite enormous. In this section, the separation of
normal velocity on the structural surface based on SFS will be introduced [1].

Suppose that the structure is submerged in the water with a finite depth. In that
case, only the reflection sounds from the water–air boundary need to be considered. The
schematic diagram of the ESM in half-space could be shown in Figure 2.
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In the figure, S0 is the surface of the structure, SR is the ‘image surface’ of the virtual
structure, Ω is the surface of equivalent sources, while Ω′ is the surface of image equivalent
sources. The measured normal velocity on the structural surface v consists of three parts:
the normal velocity in the free field v0, the normal velocity caused by reflection sounds vR,
and the normal velocity related to the scattering sounds vs:

v = v0 + vR + vs (9)

Obviously, the radiated sounds and scattering sounds are the components that radiate
outwards, while the reflection sounds radiate inwards. The strength of equivalent sources
Q could be also divided into three parts, which are related to the above three vibration
components: q0, qR, and qS. As ESM is based on the Huygens’ principle, which has been
proven to be equivalent to the Helmholtz integral Equation [7], it could be easily concluded
that vR does not make contribution to the radiated sound field:

‹
SR

[
G(r, rR)vR(rR)−

∂G(r, rR)

∂ns
pR(rR)

]
dSR = 0 (10)

where rR is the location of the node on SR and pR is the sound pressure variation caused
by reflection sounds on S0. Thus, to precisely predict the radiated sound of a structure in
half-space, vR should be separated from the measured normal velocity v. For simplicity,
the normal derivative is rewritten as ∇n(.). With Equations (5) and (9), the vibration
components could be written as follows:{

v0 + vs = (∇nG(r0, rs))(q0 + qs)
vR = (∇nG(r1, rs))qR

,
(
r0 ∈ Ω, r1 ∈ Ω′, rs ∈ S0

)
(11)

The relationship between vR and v0 + vs is as follows:

vR = η
(
∇nG(r1, rs)(∇nG(r0, rs))

+
)
(v0 + vs) (12)

Then, the ‘useful’ normal velocity v0 + vs could be separated from v to calculate the
strength of the equivalent sources:

(v0 + vs) =
[
E + η.∇nG(r1, rs)(∇nG(r0, rs))

+
]−1

v (13)

where E is an identity matrix with N dimensions. With the technology of SFS, it is not
necessary to solve the normal derivative of non-free Green’s function to obtain the ‘useful
strength’ of equivalent sources q0 + qs. Thus, the process of calculation could be simplified.

2.3. The Sound Prediction Based on ARM

From Equation (7), it could be seen that, when calculating the equivalent source
strength in the ESM, the measurement points should not be less than the equivalent sources.
Considering the engineering cost, it is important to reduce the quantity of measurement
points for the sound prediction. As the ARM has been proven to have good convergence
with the increase of ARM order, it offers possibility to reduce the scale of the measurement
system [31]. Based on the theory of ARM, two methods could be designed to apply for the
sound prediction. One is combined with the theory of compressed sensing (CS), which
is called the CMESM [28]. The other is combined with the reconstruction of structural
vibration, which is called the VR-ESM for convenience. Both methods are modified with
the SFS to construct the ARMs more accurately when the influences of reflection sounds on
the structural vibration could not be neglected.
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Firstly, the theory of ARM should be introduced briefly. ARM explain the sound
radiation of a structure from the perspective of sound power W. In the work [38], Liu gave
out the relationship between the sound power and the equivalent source strengths:

W = QHRQ (14)

where R is the power resistance matrix and the expression of R in free field is as follows:

R =


1 sinc(kr12) . . . sinc(kr1N)

sinc(kr21) 1 . . . sinc(kr2N)
. . . . . . . . . . . .

sinc(krN1) sinc(krN2) . . . 1

 (15)

where sinc(.) is the sinc function and sinc(α) = sin α/α, rij is the distance between the
ith and the jth equivalent sources. Obviously, R is a real symmetric matrix. Using the
eigenvalue decomposition, R0 could be expressed as follows:

R0 = THΛT (16)

where Λ is a real diagonal matrix of the eigenvalues that are listed in descending order,
and T is an orthogonal matrix composed of eigenvectors that contains an orthogonal basis
of N-dimensional space. The column vectors of T are regarded as the equivalent source
ARMs. Bi proposed the CMESM to reduce the scale of the measurement system on the
holographic surface [28]. The usage of ARM in the theory of CMESM enhances the sparsity
of equivalent source strengths and makes the sparsity of measurement points possible. Still,
it could break through the limit of Nyquist sampling law. CMESM is able to reconstruct
the sound field generated by a sound source with arbitrary shape and has less limitation to
the sparsity of true source distribution.

The power resistance R could be different for the half-space from the free field when
the effect of reflection sounds could not be neglected. As R derives from the interactions
among the equivalent sources [25], it could fall to three categories: the power resistance
related to the equivalent sources inside the real structure R0, the power resistance related
to the image equivalent sources inside the virtual structure Ri, and the mutual power
resistance related to the interactions among the equivalent sources and their mirrors Rm.
Thus, the total radiated sound power W consists of four components:

W0 = (q0 + qs)
HR0(q0 + qs)

Wi = qH
R RiqR

Wm1 = (q0 + qs)
HRmqR

Wm2 = qH
R Rm(q0 + qs)

(17)

where W0 is the sound power derived from the equivalent sources inside the structure, Wi
is the sound power derived from the image equivalent sources inside the virtual structure,
and Wm1 and Wm2 are the sound power components derived from the interactions among
the equivalent sources and their images. According to the Helmholtz integral, when the
sound source is not inside a closed surface, the integral of the source strength on the surface
makes no contribution to the total sound field [1]. It is easy to find that, in Equation
(17), Wm1 and Wm2 are the components that make no contribution to the sound radiation.
Therefore, when reconstructing or predicting the sound field, only W0 and Wi need to be
considered. Meanwhile, R0 is equal to Ri because of the mirror–image relationship. The
strength of equivalent sources could be expanded by the orthogonal basis:

q0 + qs = Tβ0 =
N
∑

i=1
tiβ0i

qR = Tβ1 =
N
∑

i=1
tiβ1i

(18)
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where the vector ti is the ith equivalent source ARM and β0i and β1i are the expansion
coefficients for the ith ARM. When the measurement points are sparse, Equation (18) could
be solved with the minimum `1-norm [28]:

argβmin‖β‖1 , s.t ‖vre f −Ψβ‖2
2 ≤ ε (19)

where Ψ = DT is the sensing matrix with the dimension of L× N, and it is possible that
L� N. Equation (19) is the basic formulation of CMESM; the sparse basis T is used here to
compress the equivalent source strengths for reinforcing the sparsity of the solution. Thus,
the measurement points could be far less than the equivalent sources. In the study [39],
Chardon defined ε as a function of the hologram norm, and ε = ε‖vre f ‖2, and the optimal
value of ε is determined by the cross-validation method.

If the structure is located in the half-space, according to the SFS, D could be separated
into two parts: D0, which is related to the equivalent sources inside the structure, and
D1, which is related to the mirror equivalent sources. Equation (19) could be rewritten as
below:

argβmin‖β‖1 , s.t ‖vre f −Ψ′β‖2
2 ≤ ε (20)

where Ψ′ = (D0 + ηD1)T. Equation (20) is a convex optimization problem solved with the
CVX package in this paper [40] and ε is a parameter related to the sound–noise ratio. The
sound pressure in the sound field could be expressed by the ARMs [25]:

p(r) = jρ0Ω0g(ri, r)Tβ (21)

It should be noted that the ill-condition problem of D0 and D1 could be quite severe,
which may lead to the ill-condition problem of the sensing matrices. Therefore, even
a tiny change of ε could lead to obvious variation to the solution of β. Bi solved the
problem by arranging the measurement randomly, where blindness exists in engineering
applications. Moreover, the ill-condition problem could be improved by increasing the
quantity of measurement points, which weakens the advantage of the method [28]. Thus,
when the quantity of measurement points is fixed, the measurement arrangement should
be optimized to avoid the ill-condition problem of sensing matrices. As the CMESM is not
able to present the ARM form of the normal velocities, the VR-ESM is put into effect for
establishing the ARMs of normal velocity. Meanwhile, the EFI is used for optimization of
the measurement system.

With Equations (5) and (14), the sound power of could be rewritten as follows:

W = vHCv (22)

where C =
(
D+
)HRD+. For the half-space, the expression of C is as follows:

C =
[
(D0 + ηD1)

+
]H

R(D0 + ηD1)
+ (23)

where C is a positive definite Hermite matrix whose real part Rv is a real symmetric matrix,
which could be expressed as the form of eigenvalue decomposition according to the study
of Zhan et al. [26], Rv = ΦHΛvΦ. Unitary matrix Φ is composed of a series of orthogonal
column vectors, which are regarded as velocity ARMs and sorted by the eigenvalues.
Therefore, v could be expressed as follows:

{v}L×1 = [Φ]L×L{c}L×1 (24)

where c is the expansion coefficient column vector of ARMs. As Equation (24) has good
convergence with the increase of ARM order, it could be rewritten as follows: {v}L×1 ≈
[Φ̃]L×L1{c̃}L1×1, where L1 is the ARM truncation number. In the process, L ≥ N should be
guaranteed. Suppose that only L2 points could be regarded as measurement points from
the L measurement points to be selected, the normal velocities at these points could be
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expressed as follows: {v′}L2×1 = [Φ̂]L2×L1{c̃}L1×1. Generally, the quantity of measurement
points should not be less than the truncation number, L2 > L1. Thus, the relationship
between v and v′ could be written as follows:

v ≈ Φ̃Φ̂+v′ (25)

It should be noted that the column vectors of Φ̂ are not orthogonal any more. Equation
(25) means that total vibration of the structure could be reconstructed by the vibration
measured at sparse points. If the total vibration is reconstructed accurately enough, the
prediction of sound field is also accurate with the ESM. However, Equation (20) is an
inverse problem and the condition number of the sensing matrix Φ̂ should be limited to
avoid the ill-condition problem. Su proposed a method based on the EFI to optimize the
measurement point arrangement [31]. A matrix ED for measuring the linear-independence
contribution of the measurement points to the sensing matrix is defined as follows:

ED = Φ̃
(

Φ̃TΦ̃
)−1

Φ̃T (26)

Each diagonal entity of ED is related to a measurement point on the structural surface.
For selecting the optimum locations for measurement points from a set of candidate points
to maximize the orthogonality property of Φ̂, an iterative process is established. Within each
iteration, ED is computed, the measurement point that corresponds to the lowest diagonal
value is eliminated from the candidate set, and the corresponding row of Φ̂ is eliminated.
The elimination process continues until the number of the remaining measurement points
is equal to number of points requested to be identified by the optimum search process. In
the above process, it could be found that the selection of measurement points does not
depend on the actual normal velocity distribution on the structural surface, as v does not
enter into the computations associated with the derivation of the dipole matrices and the
power resistance matrix. Regularization methods are applied for Equations (23) and (25) to
keep the computation processes stable.

It is worth mentioning that the truncation number of ARMs L1 should be selected
carefully as it could have a significant influence on the prediction accuracy. When L1 is too
small, the computation may not reach the convergence. On the contrary, with the increase
of L1,the condition number of the sensing matrix also increases, which could reinforce the
prediction errors. In the study [31], Su proposed a method to select the optimal L1, which
could be given as below. Choose L3 measurement points as the test points from the L
measurement points to be selected. Add the test points to the original measurement group
and the velocities at these points will be reconstructed with the target L2 points. Then,
update L1 from 1 to L2. During every time of iteration, obtain the reconstruction error
εv = (‖v′r − v′0‖2/v′02)× 100% at the test points, where v′r is the reconstructed velocity and
v′0 is the reference velocity. When the reconstruction error comes to the minimum, the
corresponding L1 is regarded as the optimal value. Moreover, the method could be applied
for the determination of the ARM truncation number in CMESM.

3. Numerical Simulations

The acoustic information of the structure such as sound pressures and normal veloci-
ties are acquired in the simulations, and the process could be accomplished in COMSOL
Multiphysics (a commercial software based on FEM). The sound radiation model for a
structure in the free field and half-space are shown in Figure 3. The non-reflecting bound-
ary condition is simulated by the technology of the perfect matched layer (PML), and the
thickness of every layer should not be larger than 1/15 of the wavelength.
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The vibration of the structure should be acquired in advance as the input of the
prediction methods. Meanwhile, the vibration information of the structure could be
regarded as the references of vibration reconstruction in VR-ESM. However, it is often
difficult to obtain the vibration of a structure in the fluid, especially when reflection
boundaries exist to reinforce the acoustic–solid coupling effect. Luckily, in COMSOL, it is
convenient to solve the problem as the FEM algorithm is the basic of the software. Especially,
at low frequencies, the vibration could be obtained via FEM with a tiny computational cost.

To acquire the vibration of the structure when the parameters of the fluid, the structure,
and the excitations are given out in advance, the structural FEM equation and the acoustical
FEM equation should be solved simultaneously. The coupling relationship between the
two equations is expressed by the continuity of the structural normal velocity and the
particle velocity of the fluid on the structural surface. Then, the structural vibration and
the sound field could be computed easily in the solution domain as all the computational
processes are completed inside the software. Moreover, the structural modal analysis could
also be carried out with FEM. The development of the method is introduced in detail in the
study [15].

As FEM–BEM is a mature algorithm for sound prediction, the prediction results of
FEM–BEM are considered as the references of the other prediction methods in the following
extent. The computational process of FEM relies on the meshing of structure and the fluid
domain, making it computational costly to complete the sound prediction at a long distance
with FEM. Therefore, scholars take advantage of BEM in saving computation to complete
the sound prediction at arbitrary positions in the sound field [7]. BEM is based on the
Helmholtz integral equation as Equation (27):

C(P)p(P) =
ˆ

S

[
P(PS)

∂G(P, PS)

∂ns
− jρ0Ω0vnG(P, PS)

]
dS (27)

where C(P) is a coefficient that is related to the position with the sound field point P. When
P is outside the structure, C(P) = 1. PS represents the integral points on the structural
surface and vn is the normal velocity at PS [3]. It could be found that P(PS) and vn has been
obtained in the process of FEM. Thus, the computation of BEM could be completed. From
the above introductions, FEM could be combined with BEM to utilize the advantages of
the two methods. As the acoustical input of the other prediction methods such as ESM,
CMESM, and VR-ESM is the normal velocities on the structure, the operation is the same
as the abovementioned introduction.
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3.1. The Measurement Point Arrangement Determined by SVM

When designing the measurement points on the surface of the structure, the measure-
ment points are usually distributed on the structural surface uniformly in conventional
strategies. In the theory of BEM, the interval between two adjacent measurement points
should not be larger than one-sixth of the wavelength [16]. However, the criterion is not
universal, especially when the frequency is quite low. Because the sound radiation at low
frequencies is more of a concern in this paper, the theory of SVM should be adopted to
be the guidance. In the work [7], Wang pointed out that the vibration sampling interval
is closely linked with the structural wavenumber, orientations of the observation points,
and the target prediction error. Take a cylindrical shell with finite length as the example,
the numbers of vibration sampling points along the axial direction and the circumferential
direction obey different rules. It could be mainly summed up that, for most observation
points in the sound field, no matter whether along the axial direction or the circumferential
direction, the vibration sampling points should at least satisfy the Nyquist sampling law,
and the number of measurement points should not be less than twice the modal order in
this direction. Especially in the axial direction, the measurement points are usually denser.
The number of axial measurement points is nearly directly proportional to the axial modal
order, Ma ≈ A0errna. Ma is the axial measurement points and na is the axial modal order.
A0err is a coefficient related to the level of intended prediction error and is given in Table 1.

Table 1. Values of A0err with respect to the intended prediction errors.

Intended Error (dB) 0.1 0.2 0.4 0.8 1 2 3

A0err 6.0 4.24 3.0 2.12 1.94 1.36 1.12

According to the study of Wu [37], the value of A0err is usually chosen to be 3~4 in
engineering to ensure the accuracy of sound prediction.

Suppose that the structure is a cylindrical shell with fixed ends. The length of the
cylindrical shell is 10 m, the radius is 1 m, and the thickness is 0.01 m. The material of
the shell is steel, with a density of 7800 kg/m3, Young’s modulus of 2.06× 1011 Pa, and
Poisson’s ratio of 0.3. The detail of structural modes could be calculated by COMSOL
Multiphysics. When at different frequencies, the modal response could be extremely
different. Even with the same excitation frequency, the existence of the reflection boundary
could change the added mass of water to the structure. Thus, the natural frequency
of the structure for every structural mode may change, which means that the modal
response could change. Some modes are given out in Table 2. In the pictures, a dark
color corresponds to a large displacement. In the study [17], Zhang pointed out that the
low-order modes have an obvious characteristic of overall vibration in a large area, which
leads to their higher sound radiation efficiency. However, in Table 2, it could be found
that, at higher-order modes, the radiation efficiency could still not be neglected as the
large displacement areas occupy most of the radiation surface. According to the theory
of modal superposition, the displacement of the shell could be expressed in the form of
modal superposition. In order to complete the sound prediction accurately, all the vibration
modes should be collected with the measurement system. Therefore, the mode with the
highest order determines the criterion of vibration sampling, which means that the intervals
between two adjacent measurement points depend on the structural wavenumbers along
the certain directions.
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Table 2. Some low-order modes and modal natural frequencies in different acoustical environments.

Mode
(na,nc) (1,5) (3,6) (3,7)

Shape
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Modal
Frequency

(Hz)

Free
Field hU = 0.2 m hU = 4 m Free

Field hU = 0.2 m hU = 4 m Free
Field hU = 0.2 m hU = 4 m

31.06 31.56 31.07 50.98 51.49 50.98 72.53 73.11 72.56

In Table 2, hU is the submerged depth of the structure. The modal natural frequency
is fn and the order of structural mode is (na, nc). It could be seen that, with the existence
of reflection boundary, the modal natural frequency of every mode could change. When
the structure is quite close to the boundary that is considered to be ‘soft’, the modal natu-
ral frequency for the certain mode increases because the added mass of water decreases.
Conversely, the modal natural frequency is close to the free-field-case when the structure is
not close to the boundary. For example, when hU = 0.2 m and the excitation frequency is
31.4 Hz, mode (1, 5) is not included. However, in the free field, mode (1, 5) should be in-
cluded in the total modes. In other words, when in the half-space and the submerged depth
is quite small, the variations of SVM details make it necessary to adjust the measurement
point arrangement to meet the practical requirements.

The sound prediction is accomplished with ESM. The quantities of equivalent sources
and the measurement points are determined with the rule presented in the study [13].
The equivalent source surface and the structure are conformal and the Recess ratio of the
equivalent source is chosen to be 0.6~0.8 to avoid the ill-condition problem of the dipole
matrix [9]. The coordinate system and the measurement points on the structure are shown
in Figure 4.
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Figure 4. (a) The coordinate system for the structure; (b) the measurement points on the structural
surface.

Define f0 as the excitation frequency. For example, when f0 = 71 Hz, if the structure
is in free field, the highest order for the axial mode is 6, while it is 7 for the circumferential
mode. However, when hU = 0.2 m, the highest order for both the axial mode and the
circumferential mode is 6. In other words, with the effect of reflection boundary, the highest
circumferential mode changes. According to the theory of SVM, the vibration measurement
along the circumferential direction should change with the modal variation.

To verify the theory of SVM, a prediction plane composed of observation points is
set. The coordinates of the observation points are defined as follows: x = −5 m ∼ 5 m,
z = −15 m ∼ −5 m, and y = 50 m (the interval between two adjacent points is 0.2 m).
In the predictions of FEM–BEM, the measurement points are sufficiently dense (axial: 80;
circumferential: 80) to ensure the accuracy of sound prediction. In order to quantitively
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evaluate the performance of the prediction methods, the prediction error of sound pressure
amplitude is defined as pE = 20lg

(
pi − p′i

)
, the prediction error of sound pressure phase is

defined as ϕE = ϕi − ϕ′i, pi and ϕi are prediction results of sound pressure amplitude and
phase, and p′i and ϕ′i are the references of sound pressure amplitude and phase computed
by FEM–BEM.

The prediction errors by ESM with sparse measurement points are shown in Figure 5
when the structure is in the free field. The number of measurement points is 270 (axial:
18; circumferential: 15), which has been proven to not be able to be reduced in either
direction. The shell is excited with a point force of 50 N, which is located at (0,1,0) in
Cartesian coordinates. Random noise with a signal–noise ratio (SNR) of 30 dB is added
to the measured normal velocity to simulate the actual measurement. The medium is
homogenous, with the density of 1000 kg/m3 and sound speed of 1500 m/s.
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It could be seen in Figure 5 that, with the measurement points determined by SVM,
using ESM, the prediction results could still be precise as the error of sound pressure level
is always lower than 2 dB, while the error of sound pressure phase is always lower than
0.3 rad/s. Prediction errors with the levels are quite low such that they could meet the
engineering requests.

When the reflection boundary exists, the number of measurement points turns out
to be 234 (axial: 18; circumferential: 13). The prediction results are shown in Figure 6. It
could be seen that, with a tiny amount of measurement points, the sound prediction result
in the half-space could also be accurate enough on the whole prediction plane. When the
reflection boundary exists, the quantity of measurement points may change with the modal
variation.
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Thus, it could be seen that, if the detail of vibration modes could be obtained in
advance, SVM could be an effective guidance to the design of the measurement system.
The above simulations confirmed the possibility of sound prediction with a small-scale
measurement system. However, it is difficult to acquire the exact detail of SVM in engi-
neering via vibration measurement. Instead, the vibration modes could only be analyzed
with numerical methods. Thus, it is often computationally costly to design the measure-
ment system. Moreover, when the size of the structure is quite large or the excitation is
complex, the details of structural vibration could be very complex, which means that an
enormous quantity of measurement points are in need according to the theory of SVM [7].
Therefore, the method based on SVM could hardly be regarded as the optimal strategy of
the measurement point arrangement.

3.2. The Sparse Measurement Point Arrangement Based on the Theory of ARM

A. The Results of CMESM
To illustrate the good convergence of ARM with the increase of order, the attenuation

curves of ARM eigenvalues with the increase of the ARM order at different excitation
frequencies are shown in Figure 7a. According to Section 2.3, a set of orthogonal basis R
is presented to give another expression of the equivalent source strengths. To verify that
CMESM could enhance the sparsity of the equivalent source strengths, the normalized
modal expansion coefficients with CMESM and ESM are shown in Figure 7b. In the
simulation, the quantity of equivalent sources is 168. Meanwhile, 135 measurement points
are uniformly distributed on the surface of the cylindrical shell in Section 3.1 (axial: 9;
circumferential: 15).
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It could be seen in Figure 7a that the eigenvalues of ARMs decrease rapidly with the
increase of ARM order. At the higher excitation frequency, the eigenvalues decrease more
slowly. Still, the big losses of ARM eigenvalues indicate that only the first few orders of
ARMs contribute to the sound field. In Figure 7b, it could be seen that, compared with
ESM, the modal expansion coefficients for CMESM are much sparser. Thus, though equiv-
alent source strengths for the structure may not be sparse enough, the modal expansion
coefficients of ARMs could be quite sparse, which allows sparse vibration measurement.
Before the sound prediction, the sparsity of the modal expansion coefficient vector should
be guaranteed to keep the prediction result accurate.

Repeat the simulations in Section 3.1. The quantity of measurement points is reduced
to 90 (axial: 6, circumferential: 15), which is far less than in Section 3.1. Define γ as the
condition number of the sensing matrix, γ = cond(Ψ). The variation of γ versus the ARM
order is shown in Figure 8. The prediction results are shown in Figure 9. Several values of
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γ at different orders are given in Table 3. According to the study of Li [30], it is essential to
reduce the value of γ for computing ARMs more stably. Otherwise, the poorly conditioned
sensing matrix will give rise to large prediction errors.
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Table 3. Different acoustic radiation mode (ARM) truncation numbers in compressed modal equivalent source method
(CMESM) for 90 measurement points.

Case\Order 10 30 50 70 90 110 130 168

Free Field 2.28 4.55 569.70 1.17 × 103 1.17 × 105 5.08 × 103 2.51 × 103 1.59 × 103

Half-Space 2.52 5.12 210.89 480.98 1.06 × 104 1.17 × 103 894.51 721.23

In Figure 8 and Table 3, it could be seen that, with the increase of ARM order, γ in-
creases rapidly. After reaching the maximum, γ begins to decrease. Meanwhile, the values
of γ at high orders are still much higher than those for the lower orders. Therefore, it is not
appropriate to fix the ARM truncation number as high as possible. If γ is extravagantly
large, the sensing matrix needs regularization [32]. In addition, it is not difficult to find that
γ reaches the maximum when L1 = L.

As shown in Figure 9, it could be seen that, with uniform measurement point arrange-
ment, the sound prediction results are not satisfying. Though the prediction error of sound
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pressure amplitude could be quite low after adjusting ε, the prediction error of the sound
pressure phase could still be awful as the ill-condition problem of sensing matrices may be
inevitable when the measurement points are uniformly arranged and excessively sparse.
Though regularization methods are introduced to solve the ill-condition problem of the
sensing matrices, the result of sound prediction is still limited. Meanwhile, when the value
of ε is quite low, the solutions of β may not exist as the solutions of underdetermined
equations could hardly have extravagantly high accuracy. Increasing the value of ε could
help in obtaining a solution of β, but the accuracy of the ARMs could not be guaranteed.

The quality of the prediction could be improved via increasing the quantity of mea-
surement points [31]. Therefore, increasing the measurement point quantity to 135, the
variation of γ with the increase of ARM order is shown in Figure 10. Several values of γ at
different orders are given in Table 4.
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Table 4. Different ARM truncation numbers in CMESM for 135 measurement points.

Case\Order 10 30 50 70 90 110 130 168

Free Field 2.67 4.75 7.87 20.02 44.96 853.99 7.48 × 105 1.68 × 1010

Half-space 2.78 5.02 8.99 21.05 46.99 482.14 2.76 × 104 7.44 × 104

Compared with Table 3, it could be found in Table 4 that, when the quantity of
measurement points increases to 135, the values of γ could also be quite low at high orders,
which is beneficial to find the balance between computation convergence and prediction
robustness. Repeating the simulation in Section 3.1, the prediction errors are shown in
Figure 11. It could be seen that, with more measurement points, the prediction results
become much better because it is easy to obtain optimal solutions of β that satisfy the
sparsity and the penalty terms. Meanwhile, it is not necessary to change the quantity
of measurement points when the reflection boundary exists, which breaks through the
limitation of the SVM.

However, the expansion of the measurement system scale will definitely increase the
engineering cost. Bi and Li indicated that, with a fixed scale of the measurement system, a
non-uniform system could have better performance in sound prediction than a uniform
system [28,30]. However, the optimization method was not introduced in those works.
Therefore, the EFI could be applied for optimizing the measurement system. With the help
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of the EFI, the measurement points contributing most to the ARMs are picked out from the
candidate set.
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B. The Results of VR-ESM
Repeat the simulations in Section 3.1. The quantity of measurement points is fixed

at 90. The optimal values of L1 are 42 and 35, which are determined by the method in
Section 2.3. Define γ′ as the condition number of, γ′ = cond

(
Φ̂
)

. The variation of γ′

versus the ARM order is shown in Figure 12a. The reconstruction errors versus the ARM
order are shown in Figure 12b. A total of 32 measurement points are selected as test
points, whose arrangement is shown in Figure 12c. For observing the measurement point
arrangement conveniently, the shell is spread into the planar form along the circumferential
direction as Figure 12c.
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From Figure 12a, it could be seen that, although γ′ increases with the increase of ARM
order, the value of γ′ is quite low. Thus, the reconstruction of vibration could be quite
robust. As shown in Figure 12b, the tendencies of εv versus the ARM order are similar for
test points and total points, which manifests the efficiency of the reconstruction method.
It could be seen that, with the increase of ARM order, εv decreases at the first L1 orders
to reach the minimum, which means that the computations reach the convergence when
L1 orders are used. However, when the ARM order continues to increase, εv begins to
increase because γ′ also increases, which means that the prediction errors caused by the
noise could be reinforced. Thus, it is still necessary to select the optimal L1 to keep the
prediction accurate. The prediction results and the measurement point arrangements are
shown in Figures 13 and 14. The truncation numbers of ARMs are selected to be 42 and
35 for the free field and half-space, respectively.
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It could be seen that the prediction results are enough accurate with VR-ESM though
the measurement points are quite sparse, which verifies the efficiency of VR-ESM. When
the quantity of measurement points is fixed, compared with the uniform measurement
point arrangement in CMESM, more accurate prediction results could be obtained with
the VR-ESM when the measurement point arrangement is optimized with the EFI, as the
independence among the measurement points is reinforced by minimizing the condition
number of the sensing matrix.

To verify the necessity of the optimization process with EFI, the prediction results of
VR-ESM with uniform measurement points (axial: 6; circumferential: 15) are shown in
Figure 15. The optimal L1 are determined by minimizing εv.
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It could be seen that, with uniform and sparse measurement points, the prediction
results are not accurate. The phenomenon could be explained by the ill-condition problem
of the sensing matrices. The condition numbers of the sensing matrices are given in Table 5.
It could be seen that the ill-condition problem of the sensing matrices could be severe
without the optimization of the EFI. Thus, though the values of L1 are determined after
minimizing the reconstruction errors, the prediction results could still be unsatisfying. On
the contrary, after the optimization of the EFI, the ill-condition problem could be improved.
Therefore, it is necessary to optimize the measurement point arrangement with EFI to
improve the prediction accuracy.

Table 5. Different values of γ′ in vibration reconstruction equivalent source method (VR-ESM) with
90 measurement points. EFI, efficient independence.

Uniform Measurement (Without EFI) Optimal Measurement (With EFI)

Free field 5783.4 (L1 = 66) 2.749 (L1 = 42)
Half-space 582.3 (L1 = 75) 3.24 (L1 = 35)

4. Discussion

According to the simulations in Section 3.2, the effect of EFI on improving the pre-
diction accuracy of VR-ESM is obvious. Meanwhile, whether the optimal measurement
system obtained with the EFI is appropriate for the CMESM is of interest to be discussed.
In the following simulation, the measurement systems are the same as Figures 13b and 14b,
the sound predictions are completed by CMESM, and other simulation parameters remain
unchanged. The results are shown in Figure 16.
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From Figure 16, it is interesting to find that, with the optimal measurement system
obtained with the EFI, the prediction results of CMESM are also acceptable. It could also
be explained by the ill-condition problem of the sensing matrices. The values of γ with
different types of measurement systems are given in Table 6.

Table 6. Different values of γ in CMESM with 90 measurement points.

Uniform Measurement (Without EFI) Optimal Measurement (With EFI)

Free field 663.13 (L1 = 55) 41.62 (L1 = 42)
Half-space 628.17 (L1 = 62) 58.52 (L1 = 35)

Generally, for structures with regular shapes, the velocity ARMs usually have good
spatial symmetry, which will reinforce the ill-condition problem of sensing matrices for
uniform measurement point arrangement [30]. Though the optimal measurement system
obtained with the VR-ESM and EFI is not necessarily optimal for the CMESM, the ill-
condition problem of sensing matrices could also be limited efficiently, which allows more
accurate and robust solutions of β. Thus, the quality of sound predictions could also be
improved.

From the above analyses, the sound prediction based on sparse vibration measurement
has been proven to be efficient. However, there still exist some factors that could affect
the prediction, such as the submerged depth hU and the signal–noise ratio. Meanwhile,
whether the method could be applied for other compute frequencies has not been discussed
yet. Thus, the above factors will be discussed in the following content. To save space,
when evaluating the prediction accuracy, define the average prediction errors of sound
pressure amplitude and phase as follows: εp = ∑

Np
i=1

[(
‖pi − p′i‖2/‖p′i‖2

)
/Np

]
× 100%,

εϕ = ∑
Np
i=1

[(∣∣ϕi − ϕ′i
∣∣)/Np

]
, where Np is the quantity of field points on the plane.

A. Sound Prediction with Different Frequencies

Repeat the simulation in Section 3.1, hU = 0.2 m, and select 21 frequency points
ranging from 200 Hz to 500 Hz. The measurement systems are optimized with the EFI
and the quantity of measurement points is 90. The prediction errors versus frequency are
shown in Figure 17.
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From Figure 17, it could be seen that, at different frequencies, both the CMESM and
the VR-ESM could be well applied for the sound prediction. If the measurement system
is designed with the SVM, the scale of the measurement system will definitely change
with the variation of the SVM. On the contrary, the quantity of measurement points could
remain invariant in a particular frequency band, which highlights the advantage of the
methods based on the theory of the ARM.
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B. The Influence of SNR
Furthermore, the influence of SNR on the prediction results is also investigated.

Figure 18 shows the prediction errors of the two methods based on the ARM with the
variation of SNR at 300 Hz when 90 measurement points are used. The submerged depth
is 0.2 m and the measurement system is optimized with the EFI.
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It could be seen that the prediction qualities of VR-ESM and CMESM become better
with the increase of SNR. When the SNR is high enough, the prediction errors tend to be
invariant. As the SNR is usually high enough in the real measurement of normal velocity,
the method could be efficient in engineering.

C. The Influence of Submerged Depth
In the above content, the submerged depth of the source is quite small, such that the

influence of reflection sounds on the structural vibration could not be neglected. Thus,
when decomposing the power resistance matrix Rv, the half-space Green function has
to be used in the construction of dipole matrix D0 + ηD1 to eliminate the disturbance
of reflection sounds, which leads to extra computation. However, with the increase of
submerged depth, the influence of D1 is weakened. When D1 could be neglected, the
dipole matrix is approximated to D0 and almost half of the computation is saved. To verify
the conclusion, a simulation is proposed when f0 = 300 Hz. Define the prediction where
D0 + ηD1 is the dipole matrix as the SFS case and the prediction where D0 is the dipole
matrix as the Quick case. The prediction errors with the variations of hU/Rc are shown in
Figure 19, where Rc is the radius of the structure.
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It could be seen that, in the SFS case, the prediction result could be accurate at an
arbitrary submerged depth. However, in the Quick case, the prediction errors are quite
large at a small submerged depth because the ARMs could not be calculated accurately
when the influence of D1 could not be neglected. When the submerged depth increases, the
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prediction results become more accurate. In the above simulation, when hU/Rc exceeds 5,
the prediction results in the Quick case could also be acceptable. In fact, for a real elastic
structure, the influence of reflection sounds on the structural vibration depends on many
factors such as shape, size, thickness, material, and frequency. It is a complex problem that
involves fluid–solid coupling, scattering, and sound propagation. Because of the limited
space, only the influence of submerged depth is discussed in this paper. Because all the
ARMs derive from the equivalent sources inside the structure, suppose that the maximum
dimension of the structure is Dm, the mean distance between S0 and Ω is usually less than
Dm/2. In contrast, the mean distance between S0 and Ω′ is more than 2hU . According
to the attenuation rule of monopole and Equation (11), it is easy to conclude that vR is
an order of magnitude less than (v0 + vs) when 2hU > 10(Dm/2) is satisfied. In other
words, when the submerged depth is large enough, D0 could be used as the dipole matrix
instead of D0 + ηD1 and the Quick case goes into effect. There are two advantages of using
the Quick case when the application condition is satisfied. Firstly, it is not necessary to
compute D1 and almost half of the computation is reduced, which is beneficial for fast
prediction. Secondly, the stability of the prediction is reinforced without the participant of
D1, as the condition number of D1 is usually large such that the regularization process is
necessary.

5. Conclusions and Prospects

In this paper, two methods of predicting the sound field of submerged structure with
sparse measurement points are proposed. It has been proven that the method could be
applied for a structure located in the half-space. With some simulations, several significant
conclusions could be obtained as below:

(a) When arranging measurement points on the surface of the source, the traditional
method based on the SVM should at least obey the Nyquist sampling rule. In other
words, the quantity of measurement points mainly depends on the highest order of
the vibration modes in every direction. When the reflection boundary exists and is
quite close to the structure, the details of SVM may change and the measurement point
arrangement should change at some special frequencies. However, to compute the
exact detail of SVM is computationally costly, especially when the size of the structure
is large, the shape of the structure is irregular, the coupling effect of reflection sounds
could not be neglected, and so on. Therefore, the measurement point arrangement
based on SVM could hardly be regarded as the optimal arrangement.

(b) With the theory of ARM, the quantity of measurement points could be much smaller
than for the SVM, as the sound field could be expressed well with only few ARMs.
However, the ill-condition problem of the sensing matrices affects the prediction
accuracy. Though arranging measurement points uniformly is easy and convenient
in engineering, it could hardly be regarded as the optimal arrangement as the ill-
condition problem could be severe to reinforce prediction errors. Adding more
points to the measurement set could improve the prediction accuracy as well as
increase the computation. Therefore, with a fixed quantity of measurement points, the
arrangement should be optimized to avoid the ill-condition problem of the sensing
matrices. With the optimization of the EFI, the condition number of the sensing matrix
is limited and the stability and accuracy of prediction could be guaranteed.

(c) Some factors that may affect the prediction accuracy are also analyzed in this paper,
such as the truncation number of ARMs L1, SNR, computer frequency f0, and the
submerged depth hU . Some conclusions could be given as below:

• The proposed method could be well applied for different frequencies. However,
the arrangement of measurement points could have a significant influence on
the prediction result. It is still necessary to manage the arrangement with EFI to
reduce the prediction errors.

• The prediction accuracy could be satisfying when the SNR is high enough.
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• When the ARM truncation number is either excessively small or excessively big,
the prediction errors are remarkable. Thus, the optimal truncation number of
ARMs should be selected appropriately according to the prediction errors at the
test points.

• When the submerged depth is quite small such that the structural vibration is
obviously affected by the reflection sounds, it is necessary to use SFS to maintain
the accuracy of the prediction result. However, when the submerged depth is
large enough, the dipole matrix for the free field could be used to construct the
ARMs and the prediction results could also be accurate. The benefit is that not
only the computation is reduced, the stability of the prediction is also reinforced.

Though there was no experimental result in this paper because it is difficult for the
researchers to acquire satisfying experimental conditions in the laboratory, the method of
carrying out experimental research could still be designed as in the following steps:

a. Choose an appropriate experimental environment. To simulate a structure with finite
submerged depth, the experiment should be carried out in open water to avoid the
effect of reflection sounds from the horizontal direction. Meanwhile, the depth of the
water should be enough large that the reflection sounds from the bottom could be
neglected.

b. Design the distribution of equivalent sources according to the shape of the structure
and calculate the dipole matrices D0 and D1, and the power resistance matrix R.

c. Optimize the measurement point arrangement in advance with EFI and dispose of
vibration transducers at these points.

d. Construct ARMs with VR-ESM and CMESM and complete the sound prediction. To
verify the effectiveness of the methods, the measurement results in the sound field
could be regarded as the references.

The methods proposed in this paper could help in optimizing measurement systems
for submerged vehicles with a large size, especially in non-free fields. On the premise of
ensuring the prediction accuracy, it saves engineering cost compared with the traditional
method based on the SVM. Meanwhile, the combinations with the SFS broaden the appli-
cations of the methods. However, there still exist some complicated conditions such as
waveguide and irregular structural shape that are not discussed in this paper because of
space constraints. In further studies, we anticipate discussions about more complicated
conditions to better meet engineering requirements.
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