
applied
sciences

Article

General Environment Description Language

Krzysztof Zatwarnicki 1,* , Waldemar Pokuta 1 , Anna Bryniarska 1 , Anna Zatwarnicka 1 , Andrzej Metelski 2

and Ewelina Piotrowska 1

����������
�������

Citation: Zatwarnicki, K.; Pokuta, W.;

Bryniarska, A.; Zatwarnicka, A.;

Metelski, A.; Piotrowska, E. General

Environment Description Language.

Appl. Sci. 2021, 11, 740. https://

doi.org/10.3390/app11020740

Received: 19 November 2020

Accepted: 10 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland;
w.pokuta@po.edu.pl (W.P.); a.bryniarska@po.edu.pl (A.B.); a.zatwarnicka@po.edu.pl (A.Z.);
e.piotrowska@po.edu.pl (E.P.)

2 Department of Mathematics and IT Applications, Opole University of Technology, Proszkowska 76,
45-758 Opole, Poland; A.Metelski@po.edu.pl

* Correspondence: k.zatwarnicki@gmail.com

Abstract: Artificial intelligence has been developed since the beginning of IT systems. Today there
are many AI techniques that are successfully applied. Most of the AI field is, however, concerned with
the so-called “narrow AI” demonstrating intelligence only in specialized areas. There is a need to
work on general AI solutions that would constitute a framework enabling the integration of already
developed narrow solutions and contribute to solving general problems. In this work, we present a
new language that potentially can become a base for building intelligent systems of general purpose
in the future. This language is called the General Environment Description Language (GEDL). We
present the motivation for our research based on the other works in the field. Furthermore, there is
an overall description of the idea and basic definitions of elements of the language. We also present
an example of the GEDL language usage in the JSON notation. The example shows how to store the
knowledge and define the problem to be solved, and the solution to the problem itself. In the end, we
present potential fields of application and future work. This article is an introduction to new research
in the field of Artificial General Intelligence.

Keywords: intelligent systems; autonomous systems; collective intelligence; computers and INFOR-
MATION processing; knowledge management; artificial intelligence; software agents; agent-based
modeling; autonomous agents; intelligent agents; knowledge engineering; knowledge representation

1. Introduction

For a long time, engineers have been using different techniques to control systems
without directly supervising them. Various types of mechanical control systems were
perfected by their creators, obtaining the highest forms as windmills, steam machines,
locomotives, cars and entire factories. As a result of the development of science, however,
new technical possibilities have emerged, enabling the creation of decision-making systems,
e.g., using biological, chemical, quantum and electronic systems. Advanced information
processing capabilities mean that we are not currently dealing only with simple control
systems, but very complex systems, having the ability to acquire information, collect it,
transform it into knowledge and even process the knowledge. The indicated capabilities
allow us to create more and more advanced systems, such as banking advisory systems,
autonomous cars, robots cooking meals or vacuum cleaners cleaning our apartments
automatically. Currently, developed and manufactured systems are designed to support
very specific tasks with a relatively narrow spectrum of applications. Those systems often
use deep learning techniques that achieve very good results, e.g., in image recognition,
creation of artificial images or text.

The challenge now is to create general-purpose systems that would enable both
learning about the environment in an autonomous manner and the performance of com-
missioned tasks in a diverse environment. The implementation of general-purpose systems

Appl. Sci. 2021, 11, 740. https://doi.org/10.3390/app11020740 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6156-6030
https://orcid.org/0000-0002-5842-061X
https://orcid.org/0000-0002-3839-459X
https://orcid.org/0000-0002-5879-9156
https://orcid.org/0000-0002-9692-3939
https://doi.org/10.3390/app11020740
https://doi.org/10.3390/app11020740
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020740
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/740?type=check_update&version=2

Appl. Sci. 2021, 11, 740 2 of 36

would not be possible without the development of systems that perform specific tasks,
since they are the basis for the correct interpretation of the data flowing from the sensors,
and they make it possible to perform the activities that make up the entire large task.

However, it can be stated that technological progress is already at such a high level
that it will be possible to develop an intelligent general-purpose autonomous system
and implement it into practical solutions. The use of such systems would, of course, be
extensive, starting with home applications, in which the robot would perform simple
operations such as cooking and cleaning, continuing with applications in industry and
agriculture, and ending with applications in the space industry.

Work on general-purpose artificial intelligence has been going on for over 20 years.
However, it should be noted that despite the fact that the new proposals and solutions
are emerging in this area, unfortunately, no significant and noticeable breakthrough has
been made that would enable widespread implementation of the proposed technologies.
The vast majority of the AI field today is concerned with what might be called “narrow
AI”—concentrated on creating programs that demonstrate intelligence in one specialized
area [1]. There is still a need to work on general solutions that would constitute a framework
enabling, on the one hand, the integration of already developed “narrow AI” solutions,
and on the other hand, general problem-solving.

In the following article, a new proposal in the field of general-purpose artificial
intelligence is discussed. We present a new language that may be used to describe almost
any environment in which robots or agents can potentially work. In addition, the presented
language makes it possible to give meaning to objects observed in the environment and to
plan tasks using the objects.

1.1. Literature Review

At first, the definition of artificial intelligence was very much identified with the
intelligence present in humans or animals. It was referred to as self-awareness, i.e., having
thoughts, feelings, worries, understanding the situation. However, such a definition of
artificial intelligence causes its immeasurability (e.g., some systems can imitate human
emotions very well through their behavior). Definitions of artificial intelligence are evolving
with the emergence of new systems. To assess whether a new system will be considered
intelligent or not, we can use the Universal Evaluation of Behavioral Features [2]. Another
approach, which assumes that the definition should be simple and lead to fruitful research,
states that it is “adaptation with insufficient knowledge and resources” [3]. In other
publications, it is important to distinguish intelligent systems according to the specific
criteria—general and narrow, individual and collective, biological and artificial, new and
old, dispersed and centralized [4]. In yet another approach, artificial intelligence should
work with human intelligence in order to complement it [5].

Many solutions concerned with artificial intelligence focus on solving one type of task
(e.g., image recognition, creating music, driving a vehicle, etc.). In addition to such partially
intelligent systems, there are attempts to develop artificial intelligence of general-purpose.
The problem in this approach is the integration of many more straightforward solutions
using one Artificial General Intelligence (AGI) tool [1]. Sometimes, however, in order to
solve a complex problem, there is a need to integrate many smaller systems. One can then
talk about General Collective Intelligence [6–9]. AGI should be able to anticipate certain
behaviors or actions that should be taken to achieve the expected result [10]. Another
essential feature of AGI is adapting to changing conditions, i.e., using new environmental
features while not forgetting what has been developed in previous situations (cumulative
learning) [11]. Understanding natural language (drawing conclusions, learning) is also one
of the directions of AGI research [12].

Creating an intelligent system to solve any problem can be difficult, which is why
systems are designed to address a particular group of tasks, e.g., playing games [13]. A
special framework for testing agents (game players) has been created. New rules of the
game can be described using the Game Description Language (GDL) in this environment.

Appl. Sci. 2021, 11, 740 3 of 36

In this way, tournaments are played between agents to determine the algorithm that best
solves the problems with changing rules [14].

Another area in which AGI is used is automatic planning. The issues of automated
planning have widened from toy problems to real applications. Automatic planning is
difficult—we need to know the structure of the problem. Automatic planners do not
provide good results in many areas. An overview of research on automated planning can
be found in the literature [15,16]. The issue of planning in business is a specific subgroup
of algorithms for planning. The objective is to find a procedural way of working for a
system that is declaratively described, while optimizing performance measures [17,18].
This can be achieved using Formal State Transition Systems [19]. Automatic planning is
used in robotics, production, logistics, transport and spaceflight. In an intelligent plan,
attention needs to be paid to the analysis phase because the systems can identify and
redefine variables, so the accuracy of the model (generated by automatic planners) can be
increased [20].

The use of the Non-Axiomatic Reasoning System (NARS) is an interesting proposition
in the field of AGI. It assumes that the system should be finished and open, work in real-
time and adapt with insufficient knowledge or resources. A language that has semantics
based on experience has been introduced. According to this, the value of truth of the
judgment is determined on the basis of the previous experience, and the meaning of a term
depends on its relationship with other terms [21–23].

Sometimes, systems have limitations related to the way of recording knowledge about
the surrounding environment. They are too limited or too complicated. The recording
method, which is not general enough, causes the system to be dedicated to one task only.
Therefore, an important part of these systems is the way to record knowledge about the
environment in which the job must be solved. The system environment can be a world
discovered by a robot using sensors. It can also be a policy environment in strategic games
or a production facility operation. Many publications have introduced languages that
could describe specific contexts in which AGI applications will run.

The game description language is a language to describe the rules of the game [24].
The language consists of concepts such as term, atomic sentence, literal, datalog rule,
dependency graph, model and satisfaction. By defining these statements, it is possible
to set the rules of the game. An agent (player) operating in this environment must, by
following these principles, demonstrate better adaptation to new conditions than the other
agents.

Many agent description languages have been created in recent years, e.g., Q [25],
JADL [26], ADL [27], JADEL [28]. Q describes the interaction scenarios between agents and
users based on external policies. External rules describe the environment in which agents
move. These rules can be changed, e.g., in the event of an emergency and evacuation.
The “JADL” language (JIAC Agent Description Language) is a language of description in
which the Agent environment is defined by means of a goal to be achieved and rules [26].
Rules are implemented quite simply, consisting of a condition and two actions, one of
which is executed when the condition becomes true and the other when the condition
becomes false. In Architectural Description Language (ADL), the behavioral model consists
of eight main project units: agent, knowledge base purpose, ability, beliefs, plan, events,
activities and services [27]. An agent needs knowledge of his environment to make good
decisions. The knowledge is stored in the agent in the form of one or many knowledge
bases making its information state. The knowledge base consists of a set of beliefs that
the agent has about his environment. A belief represents the view of the agent’s current
environment. JADEL (JADE Language) was created as a way to reduce the complexity of
building systems based on Java Agent Development framework (JADE), providing support
during the implementation of agents, behaviors and ontologies. JADEL is to enable agents
to be used as components [28].

Among the languages that use non-axiomatic knowledge, we can distinguish NARS-
ESE [29], NARS [30], ALAS [31,32]. NARSESE and NARS, that are languages used to build

Appl. Sci. 2021, 11, 740 4 of 36

a system with learning ability. The system is able to acquire problem-solving skills based
on experience, it also is adaptive, and able to distinguish between the external environ-
ment and internal knowledge. The following elements are defined in these languages: a
judgment—an expression with the value true at the input, which is a representative of a
piece of knowledge that the system learns or checks; a question—which the system answers
in accordance with the beliefs of the system; a goal—an expression to be implemented
by performing certain operations in accordance with the beliefs of the system. The ALAS
language uses non-axiomatic logic for distributed inference for agents.

Planning is a branch of artificial intelligence (AI) that attempts to automate reasoning
about plans and, above all, reasoning that serves to formulate a plan needed to achieve a
specific goal in a given situation. Planning for artificial intelligence is model-based: the
planning system takes the description of the initial situation as input, the activities available
for its change and the condition of the goal to create a plan consisting of those activities
that will achieve the goal after execution from the initial situation. Planning languages
include Planning Domain Definition Language (PDDL) [33,34] and Stands for Stanford
Research Institute Problem Solver (STRIPS) [35,36] for multi-agent environments. PDDL
aims to express the “physics” of the domain, that is, what the predicates are, what actions
are possible, what the structure of complex operations is and what the effects of actions
are. Most planners also require some kind of “advice” or annotation including information
which activities should be used in order to achieve one of the goal, or in what complex
actions, under which circumstances. The PDDL language does not provide such advice,
making it a neutral tool that can be used in various places. As a result of this neutrality,
almost all planners need to expand notation, but this can be done in different ways. The
STRIPS language works in a multi-agent environment; each agent tries to achieve its own
goals, usually leading to a conflict of objectives. However, there is a group of problems
with conflicting goals that can be met at the same time. Such problems can be modeled as a
STRIPS system. If the STRIPS planning problem is reversible, planning under uncertainty
methodology can be used in order to solve the inverted problem, and then find a plan that
solves the problem with multiple agents.

Language grounding is another important issue in the context of language creation
for intelligent systems. Grounding means connecting linguistic symbols to perceptual
experiences and actions [37]. These issues can be particularly useful e.g., in the communi-
cation of people with robots [38]. Robots can learn to correlate natural language with the
physical world being sensed and manipulated [39,40]. There are publications concerned
with teaching robots to recognize objects by their names and attributes, and demonstrating
their learning action [41,42].

1.2. Motivation and Goals

The main objective of the following work is to present a new General Environment
Description Language (GEDL) that may describe almost any environment in which robots
or programs can potentially operate independently.

The proposed language differs from the languages and solutions described in this
subsection A. GEDL can be treated more like a frame that determines the way of perceiving
reality and organizing the data and knowledge. We believe that the presented language
should use AI techniques developed so far and also presented in subsection A. For example,
PDDL or STRIPS languages could potentially be used by individuals using GEDL to solve
problems. Likewise, other artificial intelligence techniques and tools, such as deep learning
libraries TensorFlow [43], Keras [44], PyTorch [45] or fuzzy logic [46] can be a part of GEDL
based autonomous system devoted to building intelligent general-purpose individuals.

It is assumed that individuals using our language will have unlimited resources, in-
cluding memory and computing power. This assumption is the opposite of that commonly
used in the agent systems discussed above. We believe that individuals (robots, programs)
using the language will have access to cloud computing or will use future technologies.

Appl. Sci. 2021, 11, 740 5 of 36

The use of concepts that give meaning to the observed elements is a novelty, signifi-
cantly differentiating the proposed language from similar languages previously described
in the literature. The manner of describing the actions that individuals can take is also of
great importance. We do not define the manner of their implementation, but only the state
of the system before and after execution.

1.3. Paper Organization

The paper is structured in the following way: in Section 2, the overall concept of
the proposed GEDL language is introduced. Sections 3–7 contain notation, definitions
and examples of the elements of this language. In Section 8, an exemplary individ-
ual knowledge with problem solution is presented. The conclusions are presented in
Section 10.

2. Introduction to GEDL Language

In this chapter, the general assumptions of the GEDL language are described. It is
presented how the elements are included in the GEDL language and how they are further
interpreted. It is necessary to be able to define the individual elements of this language
later.

Humans are intelligent beings who are able to build conceptual systems in their minds,
learn from mistakes, save knowledge, and transfer it to other individuals. Trying to develop
a general language for describing the environment that could be used in autonomous
general-purpose robots, an attempt can be made to model ourselves by observing our
understanding of the environment and behavior. In some ways, we are also doomed in our
considerations to recreate our understanding. It is because, in most cases, we are not able
to understand other ways sufficiently, e.g., represented by animals.

The presented General Environment Description Language helps to describe the
environment, and thus also save knowledge about the environment for the needs of
autonomous systems that make decisions and perform tasks in the environment. This
language makes it possible to systematize uncertain, vague, and sometimes not fully
defined knowledge.

The environment can be a fragment of the physical world in which we live or another
reality in which information is processed, for example, a computer game.

There are individuals in the environment, i.e., individuals who possess and collect
individual knowledge. Individuals acquire knowledge using a cognitive mechanism. The
mechanism may not provide full knowledge, or this knowledge may not be accurate. There-
fore, it should be noted that in the described approach, the environment with its objects is
distinguished from the knowledge of the environment possessed by the individual. Each
individual may have utterly different knowledge of the environment. In extreme cases,
when individual knowledge will be empty, the individual will find that the environment
does not exist. The way the individual perceives the environment is presented in Figure 1.

An individual in the environment can distinguish an object that is an element of the
environment. The individual decides on distinguishing or perceiving the element. To
distinguish it, the individual must need it, and the cognitive mechanism must be able
to do it. An element called an instance in individual knowledge is the equivalent of an
object in the environment. The instance is the knowledge about the objects and it contains
features subjectively distinguished by an individual. Features can have values, e.g., color
can be green, tastiness can be unpalatable. Instances may also be in relationships with
other instances and they may perform actions. It should be noted that an individual is also
an instance having its own features, relationships and actions.

An instance can change over time by changing the configuration of its features, rela-
tionships and actions. The values of features and relationships of an instance, at a particular
moment, are called a state.

Appl. Sci. 2021, 11, 740 6 of 36

Figure 1. The environment with objects and perception of individuals.

Two objects with the same characteristics should be distinguished in the individ-
ual knowledge as two independent instances, in which attributes will be assigned in-
dependently. Such an approach can, however, be problematic when making decisions
autonomously because a large number of ungrouped instances would be in the individual
knowledge then. In connection with the above, we are introducing a new approach in
the field of environment description languages, called an instance concept. The instance
concept is a set of all instances with features that have assigned values from a specific
range. For example, let us take the knife concept, i.e., sets of all instances in which we
can distinguish a blade having a length of 1 to 25 cm. At the same time, some instances
belonging to the knife concept may belong to the cutlery concept, and others may belong
to the concept of a hunting knife.

The idea of the instance concept can also help to formulate problems to be solved by
autonomous systems and to improve the communication of these systems with people.
Let’s consider the following example: the robot is to make pancakes from edible ingredients
including flour and eggs. Edible ingredients, flour and eggs, are concepts of instances. To
perform the task, the robot has wheat flour and lime flour (used in construction) available.
Both types of flour belong to the concept of flour, which has the following features: they
combine well with water, form a sticky mass when mixed with water, are white, form
dust, etc. However, in the concept of edible ingredients, it is indicated that the instance
should have an eatable feature. In this way, the robot will easily be able to classify instances
and choose wheat flour, having the eatable feature as opposed to lime flour. A properly
developed decision-making mechanism could also ensure that it would not be necessary to
indicate that the ingredients of the pancake are edible because the pancake itself is edible.
The mechanism can “guess” that an inedible ingredient cannot be used there.

As it was mentioned earlier, we can also distinguish the relationships between in-
stances, e.g., instance 1 is above instance 2 or instance 1 is a mother of instance 2. In order
to create a relationship between instances, the individual should notice the relationship
between objects in the environment, or it must result from logical premises in the individual
knowledge. We also distinguish the concept of a relationship that gives the meaning of a
relationship.

Instances can perform actions that can change a fragment of the environment and,
more precisely, change the instance states, e.g., by changing existing objects. Actions are
performed by instances, and other instances may also be used in their performance. For
example, a robot can do laundry at home using a washing machine. Actions are attributed
only to those instances that are able to carry out a specific action autonomously (they make
decisions on their own). For example, a kitchen knife is used for chopping, but it cannot

Appl. Sci. 2021, 11, 740 7 of 36

perform the chopping on its own. This can be done, however, by a human or possibly by
an autonomous robot, and a knife is only a tool when performing actions. The performance
of actions by an individual does not always mean that the goal of carrying out actions will
be achieved in the environment, e.g., making pancakes may fail for several reasons, often
even independently of the quality of the decisions made.

For a set of similar actions, regardless of the instances that implement them, concepts
of action can be distinguished. The action concept is a set of all actions that transform
instances in such a way that they finally obtain instances being in a similar state. Thanks
to the action concept, it will be possible to find all instances being able to perform similar
actions. For example, a robot that will be given the task of doing laundry will search, at
home or in a wider available environment, for all instances that can wash clothes.

Actions are atomic, and smaller indirect activities are not distinguished for them, al-
though they may consist of such. Actions can be implemented using advanced subsystems,
such as artificial neural networks. In this case, we act similarly to biological systems, when,
for example, we have to squeeze an object by hand, we do not think which muscles should
be used, we just do it.

Actions are used in problem solutions. The solution may consist of a group of actions
carried out in a specific order, in parallel or concurrently. An individual can solve the
problem by developing several solutions, choosing the best, and implementing it. Devel-
oping solutions is time-consuming, which is why they should be stored in the individual
knowledge and used when a new similar problem appears.

As it was mentioned earlier, each individual perceives and learns the environment on
their own, perhaps without even understanding that there are other individuals in that
environment. However, since there may be many individuals in the environment with
similar cognitive capabilities, e.g., several robots of the same type, we should consider
sharing the individual knowledge or fragments of this knowledge. This would significantly
accelerate knowledge growth and enable us to share previously-found solutions. In the
humans’ world, such knowledge sharing is called education.

Precise definitions of the ideas and concepts outlined above will be presented in the
further sections.

3. Notation Used in GEDL Language

The GEDL language allows an individual to describe the environment in which the
individual acts. The JSON notation [47] was chosen for storing knowledge according to
the GEDL. The JSON has many advantages, including the universality of applications,
numerous implementations, ease of storing data in databases. It is easy for humans to read
and write, and also easy for machines to parse, generate and interpret. The JSON allows us
to use universal data structures and most of the modern programming languages support
it. Thanks to this, it would be potentially possible to exchange or even share knowledge by
individuals constructed using various technologies. However, it should be mentioned that
other notations, such as XML, could also be used to store data according to the GEDL.

The definitions presented in further chapters indicate the meanings of the terms used.
They also present the way of storing individual knowledge using the JSON notation. It is
worth mentioning that JSON objects are surrounded by curly braces “{}” and are written in
key/value pairs. Arrays are surrounded by square braces “[]”. Keys must be strings (text)
and values must be valid JSON data types: string, number, another JSON object, array,
boolean or null defined according to [47]. Besides, in the GEDL language, some of the
JSON strings contain a source code written in a programming language. This approach is
sometimes used in JSON [48,49], and in our case, it makes the language more flexible in
the way of expression.

Further, the JSON objects are defined according to the following example:
An element S is a JSON object constructed in the following way:

Appl. Sci. 2021, 11, 740 8 of 36

1 "SName": {
2 "name1": JO1,
3 ...
4 "namen": JOn,
5 ...
6 "nameN": JON
7 }

In the example, S, JO1, JO2, ..., JON denote certain structures according to the JSON no-
tation, while the elements ”SName”, ”name1”, ..., ”nameN” indicate the place in the structure
of the object and the order of individual elements. They are also human-understandable.

As a part of the description of elements of the GEDL language, the mathematical
notation is introduced to clarify the presented definitions. According to the notation, S is a
Cartesian product S = JO1 × ...× JOn× ...× JON , where N ∈ N, and JO1, JO2, ..., JON are
sets constructed in accordance with its definitions, and JOn = {JOo

n1, ..., JOo
nm, ..., JOo

nM},
where n = 1, . . . , N, N ∈ N, m = 1, . . . , M, M ∈ N and JOo

nm is an element (a JSON object
or another JSON structure). A subset of occurrences of JSON objects (relation) is marked
in the following way SW ⊆ S, SW = {So

1, ..., So
K}, where K is the number of existing JSON

objects. The object So is defined as a series So = (JOo
1, ..., JOo

n, ..., JOo
N), So ∈ SW , JOo

n ∈
JOn, n = 1, . . . , N. The presented approach is similar to the approach used in the database
theory [50].

The upper index o indicates the occurrence of an element built according to the
presented definitions of JSON objects or another element constructed according to the
JSON notation (e.g., So, So

1, JOo
n). The lower index is added in the case of references to

specific elements of sets or series (e.g., JOo
n is the n-th element of So). The lack of a lower

index indicates any element of the set or a series (e.g., So is an example of any element of
the set SW).

We denote the JSON array [Jo
1 , ..., Jo

p, ..., Jo
P] in the mathematical notation as series

aSo = (Jo
1 , ..., Jo

p, ..., Jo
P), where P ∈ N, Jo

p ∈ J, J is the JSON object or another JSON structure.
We use the following definitions:

• Let SW ⊆ JO1 × ... × JOn × ... × JON , where n = 1, ..., N, N ∈ N be any relation.
A projection of the SW on the set JOn is denoted as πJOn(SW) and defined in the
following way:

πJOn(SW) = {JOo
n : ∃JOo

1...∃JOo
n−1∃JOo

n+1...∃JOo
N(JOo

1, ..., JOo
n, ..., JOo

N) ∈ SW}. (1)

• Let SW ⊆ JO1× ...× JOn× ...× JON , be a relation and So = (JOo
1, ..., JOo

n, ..., JOo
N), So ∈

SW , where n = 1, ..., N, N ∈ N. The function elem is defined as follows:

elem(So, JOn) = JOo
n, (2)

where JOn ∈ {JO1, ..., JON}.
For example:
SW ⊆ JO1 × JO2 × JO3, So ∈ SW , So = (1, 2, 3), elem(So, JO2) = 2.

• Let So be a series So = (JOo
1, ..., JOo

n, ..., JOo
N), where n = 1, . . . , N, N ∈ N. The function

pos is defined as follows:
pos(So, n) = JOo

n, (3)

where JOo
n ∈ {JOo

1, ..., JOo
n, ..., JOo

N}.
For example: So = (3, 8, 5), pos(So, 2) = 8.

• Let So be a series So = (JOo
1, ..., JOo

n, ..., JOo
N), where n = 1, ..., N, N ∈ N. The set of

values of the series So is defined as follows:

Ŝo = {JOo
1, ..., JOo

n, ..., JOo
N}. (4)

Appl. Sci. 2021, 11, 740 9 of 36

Due to a large number of definitions describing the language, they are divided into
four sections presenting:

• environment and the individual building the knowledge of the environment,
• a conceptual system storing concepts of elements which can potentially occur in the

environment,
• occurrences of observed elements of the environment,
• experience of the individual containing problems to solve and the solutions.

The elements describing the GEDL language are complex, and there are many con-
nections and dependencies between them, making it impossible to arrange the definitions
from the simplest to the most complex one. The order of definitions is arranged in this way
to facilitate reading and understanding of the text.

4. Environment and Individual

This chapter defines basic elements used in the GEDL language: the environment, the
individual and the individual knowledge.

Definition 1. An environment is a set E = {O1, ..., Om, ..., OM} containing objects Om, m =
1, ..., M, M ∈ N. The environment can be a fragment of the physical world, information space (e.g.,
computer game, computer network, stock exchange) or mixed physical and information space.

Definition 2. An individual IND is an entity building knowledge about the environment or
having such knowledge about a fragment of the environment that is in its sphere of interest, and/or
learning about it, and/or performing tasks in the environment. The individual can be an object Om
in the environment or can only observe it.

Definition 3. Any individual knowledge IK is a systematized knowledge about the environment
possessed by an individual. Individual knowledge can be built using various techniques:

• an observation with the usage of sensors,
• an adaptation that is the improvement of knowledge about the environment which is the effect

of subsequent observations or activities that bring new information,
• obtaining information stored outside the individual, e.g., previously collected by other individ-

uals,
• a deduction or inference (knowledge, in this case, can be uncertain),
• other.

The IK contains the following elements:

1 {
2 "conceptualSystem": oCS,
3 "occurrences": oOC,
4 "experiences": aE
5 }

• oCS—is a JSON object containing a conceptual system defined in Definition 4,
• oOC—is a JSON object containing occurrences of instances and relationships, defined in

Definition 12,
• aE—is a JSON array containing a finite set of solved problems oE, defined in Definition 22,

aEo = (oEo
1, ..., oEo

j),

IK = oCS× oOC× aE.

The individual knowledge IKo ∈ IK can change over time. We distinguish moments
of time t1, ..., tn, ..., tN , N ∈ N, when the knowledge is updated, and in this way, we get
a series (IKo

t1, ..., IKo
tn, ..., IKo

tN) of subsequent versions of knowledge. In the definitions
presented further in the article, we consider only one version of the knowledge IKo

tn in one
moment tn.

Appl. Sci. 2021, 11, 740 10 of 36

5. Conceptual System and Its Elements

The conceptual system of the GEDL language is presented. Later, all elements of
this system are described. Firstly, features and feature sets are introduced. Then, there
are definitions of the instance, relationship, state and action concepts. Additionally, the
instance concept variable definition is presented.

Definition 4. A conceptual system oCS is a JSON object containing concepts of entities, concepts
of relationships, concepts of activities. The conceptual system is:

1 "conceptual system": {
2 "features": aF,
3 "featureSets": aFS,
4 "instanceConcepts": aIC,
5 "relationshipConcepts": aRC,
6 "actionConcepts": aAC
7 }

• aF—is a JSON array containing a finite set of elements of the following type: feature oF,
aFo = (oFo

1 , ..., oFo
K),

• aFS—is a JSON array containing a finite set of feature sets oFS, aFSo = (oFSo
1, ..., oFSo

L),
• aIC—is a JSON array containing a finite set of instance concepts oIC, aICo = (oICo

1, ..., oICo
M),

• aRC—is a JSON array containing a finite set of relationship concepts oRC, aRCo = (oRCo
1,

..., oRCo
N),

• aAC—is a JSON array containing a finite set of action concepts oAC, aACo = (oACo
1, ..., oACo

O),

oCS = aF× aFS× aIC× aRC× aAC, where, oF is defined in Definition 5, oFS is defined
in Definition 6, oIC is defined in Definition 7, oRC is defined in Definition 8, and oAC is defined
in Definition 11.

5.1. Features

Definition 5. A feature oF is a JSON object representing a distinguished property of an object in
the environment. The feature is:

1 {
2 "name": oFName,
3 "description": oFDescription,
4 "domain": oFDomain,
5 "default": oFDefault,
6 "unit": oFUnit,
7 "normalizationFunction": oFNormalizationFunction,
8 "initFunction": oFInitFunction
9 }

where:

• oFName—a JSON string containing the name of a feature uniquely identifying the feature,
• oFDescription—a JSON string containing the description defining the meaning of the feature

(optional),
• oFDomain—a JSON object describing a set of values that the feature can take. The domain

contains:

1 {
2 "set": oFDSet,
3 "min": oFDMin,
4 "max": oFDMax
5 },

where:

Appl. Sci. 2021, 11, 740 11 of 36

– oFDSet—a set of values:

* for measurable values (quantitative) it can be a JSON string containing the name of
an earlier defined set, for example: real, integer, float numbers etc.,

* for non-measurable values it can be a JSON array containing a set of acceptable
values of the feature, where aFDSet is a finite set of values used as a dictionary, for
example for a blood type aFDSeto = (‘0′, ‘A′, ‘B′, ‘AB′).

– oFDMin—a JSON string or number containing a minimal value of this feature (op-
tional),

– oFDMax—a JSON string or number containing a maximal value of this feature (op-
tional),

oFDomain = oFDSet× oFDMin× oFDMax.
Let oFDomaino = (oFDSeto, oFDMino, oFDMaxo) and oFDomaino ∈ oFDomain. A set
of values oFDoFDomaino is defined by oFDoFDomaino = {x : x ∈ oFDSeto ∧ x ≥ oFDMino ∧
x ≤ oFDMaxo}. If oFDMino and oFDMaxo are not fixed (defined), then oFDoFDomaino =
{x : x ∈ oFDSeto}.

• oFDefault—a JSON string or number containing a default value of the feature if it is not
specified (optional),

• oFUnit—a JSON string containing a unit of the value (optional),
• oFNormalizationFunction—a JSON string containing a source code written in a program-

ming language, containing a normalization function that returns a normalized value of the
feature; it can be useful while choosing the optimal solution (optional),

• oFInitFunction—a JSON string containing a source code written in a programming lan-
guage, containing a function that can calculate the value of a feature, based on the value of
signals from an individual sensor or based on the value of other features (optional).

oF = oFName × oFDescription × oFDomain × oFDe f ault × oFUnit ×
oFNormalizationFunction× oFInitFunction,

oFo ∈ oF, oFo ∈ âFo, aFo = elem(oCSo, aF), oCSo = elem(IKo, oCS), IKo ∈ IK.

Examples of two features—tastiness and bloodGroup:

1 {
2 "name": "tastiness"
3 "description": "the sensation of flavour perceived in the

mouth
4 and throat on contact with a substance",
5 "domain":{
6 "set": "Real",
7 "min": 0,
8 "max": 1,
9 }

10 "default": 0
11 },
12 {
13 "name": "bloodGroup"
14 "description": "any of various classes into which human blood
15 can be divided according to immunological compatibility, based
16 on the presence or absence of specific antigens on red blood
17 cells.",
18 "domain":{
19 "set": ["0", "A", "B","AB"]
20 },
21 "default": "0"
22 }

Appl. Sci. 2021, 11, 740 12 of 36

5.2. Feature Sets

Definition 6. A feature set oFS is a JSON object grouping a collection of features under one name.
The feature set groups features. It can be written:

1 {
2 "name": oFSName,
3 "features": oFNames
4 }

where:

• oFSName—a JSON string containing the name of the feature set uniquely identifying the
feature set,

• oFNames—is a JSON array containing a finite ordered set of feature names oFName, aFNameso

= (oFNameo
1, ..., oFNameo

m, ..., oFNameo
M), the feature having the name oFName has to be

defined in the conceptual system, ∀oFNameo ∈ ̂aFNameso ∃oFo : aFNameso = elem(oFSo,
aFNames) ∧oFSo ∈ âFSo ∧ aFSo = elem(oCSo, aFS)∧ oCSo = elem (IKo, oCS) ∧oFo ∈
âFo ∧ aFo = elem(oCSo, aF) ∧ oFNameo = elem (oFo, oFName) ∧IKo ∈ IK,

oFS = oFSName× aFNames.

For example:

1 {
2 "name": colour,
3 "features": [
4 "red",
5 "green",
6 "blue"
7]
8 }

5.3. Instance Concepts

Definition 7. An instance concept oIC is a JSON object defining a set of all instances that are
similar in some aspects. The instance concept is defined as follows:

1 {
2 "name": oICName,
3 "features": oICFeatures,
4 "relationshipConcepts": oICRelationshipConcepts,
5 "actionConcepts": oICActionConcepts,
6 "instanceConcepts": oICInstanceConcepts,
7 }

where:

• textbfoICName—a JSON string containing the name of an instance concept uniquely identify-
ing the concept,

• oICFeatures—a JSON array containing a set of elements called a oICFeature (oICFeatures
is optional).
The oICFeature is a JSON object defining a narrowed set of values for the existing feature oF.
The object is constructed as follows:

Appl. Sci. 2021, 11, 740 13 of 36

1 {
2 "name": oFName,
3 "range": oICFRange,
4 }

where:

– oFName— is a JSON string containing a name of an existing feature, ∃oFo : oFNameo =
elem(oFo, oFName)∧ oFo ∈ âFo ∧ aFo = elem(oCSo, aF)∧ oCSo = elem(IKo, oCS)
∧IKo ∈ IK,

– oICFRange—is a JSON object defining a range of values from the domain of the feature
to which a value of an instance feature has to belong to be in the set of the instance
concept,

1 {
2 "set": oICFRSet,
3 "min": oICFRMin,
4 "max": oICFRMax,
5 }

* oICFRSet—is a JSON string or an array defining a set of values from the domain
of the feature (optional),

* oICFRMin—is a JSON string or decimal containing a minimal value of the range
(optional),

* oICFRMax—is a JSON string or decimal containing a maximal value of the range
(optional),

oICFRange = oICFRSet× oICFRMin× oICFRMax
Let oICFRangeo = (oICFRSeto, oICFRMino, oICFRMaxo), moreover oICFRangeo ∈
oICFRange.
A set of values oICFRoICFRangeo is defined as oICFRoICFRangeo = {x : x ∈ oICFRSeto ∧
x ≥ oICFRMino ∧ x ≤ oICFRMaxo}.If oICFRMino and oICFRMaxo are not fixed, then
oICFRoICFRangeo = {x : x ∈ oICFRSeto}.

• oICRelationshipConcepts—is a JSON array containing a set of elements oICRC,
oICRelationshipConceptso = (oICRCo

1, ..., oICRCo
P).

The oICRC is a JSON object indicating a relationship concept. The instance belonging to the
instance concept should be in a relationship belonging to the relationship concept. The object is
constructed as follows:

1 {
2 "relationshipConcept": oICRName,
3 "role": oICRRole
4 }

where:

– oICRName—is a JSON string containing a name of an existing relationship concept
(defined in Definition 12) to which a relationship should belong, in which there is an in-
stance belonging to the instance concept. The following roles should be met: ∀oICRCo ∈

̂oICRelationshipConcepts ∃oRCo : oICRelationshipConceptso = elem(oIC,
oICRelationshipConcepts) ∧ oRCo ∈ âRCo ∧ aRCo = elem(oCSo, aRC) ∧
elem(oICRCo, oICRName) = elem(oRCo, oRCName) ∧ oCSo = elem(IKo, oCS) ∧
IKo ∈ IK,

– oICRRole—is a JSON string containing a role that should have an instance in the
relationship belonging to the relationship concept. Possible values: role1, role2.

oICRelationshipConcepts is optional.

Appl. Sci. 2021, 11, 740 14 of 36

• oICActionConcepts—is a JSON array containing a finite set of oACNames identifying action
concepts (defined in Definition 11). oICActionConceptso = (oACNameo

1, ..., oACNameo
R).

An instance belonging to a given instance concept must contain actions belonging to all action
concepts with identifiers contained in oICActionConcepts.
∀oACNameo ∈ ̂oICActionConceptso ∃oACo : oACo ∈ âACo ∧ aACo = elem(oCSo,
aAC) ∧oACNameo = elem(oACo, oACName) ∧ oCSo = elem(IKo, oCS) ∧ IKo ∈ IK.
oICActionConcepts is optional.

• oICInstanceConcepts—is a JSON array containing a finite a set of oICName identifying
other instance concepts to which an instance has to belong to be in a given instance concept.
oICInstanceConceptso = (oICNameo

1, ..., oICNameo
S), ∀oICNameo ∈

̂oICInstanceConceptso ∃oICo : oICo ∈ âICo ∧ aICo = elem(oCSo, aIC) ∧ oICNameo =
elem(oICo, oICName) ∧ oCSo = elem(IKo, oCS) ∧ IKo ∈ IK. The set of oICNames in-
dicates the instance concept that narrows down a set of instances belonging to the given
instance concept.

oIC = oICName × oICFeatures × oICFeatures × oICRelationshipConcepts
× oICActionConcepts× oICInstanceConcepts, oCSo = elem(IKo, oCS), IKo ∈ IK.

The instance concepts group instances that are similar in some way or belong to the same
kind. It can be said that the instance is in the instance concept when the instance is in the set ICM
defined in Definition 18. In order to distinguish concept names from instance names, all concept
names start with a prefix c. Definition 18 accurately determined the belonging of instance to the
instance concept.

For example:

1 {
2 "name": "c_apple",
3 "features":[
4 {
5 "name": "tastiness",
6 "range":{
7 "min": 0.3,
8 "max": 1
9 }

10 },
11 {
12 "name": "red",
13 "range":{
14 "min": 100,
15 "max": 255
16 }
17 },
18 {
19 "name": "green",
20 "range":{
21 "min": 100,
22 "max": 255
23 }
24 },
25 {
26 "name": "blue",
27 "range":{
28 "min": 100,
29 "max": 255
30 }
31 }

Appl. Sci. 2021, 11, 740 15 of 36

32]
33 }

The concept can also be narrowed down to another concept, for example:

1 {
2 "name": "c_tastyApple",
3 "oICInstanceConcepts": ["c_apple"],
4 "features":[
5 {
6 "name": "tastiness",
7 "range":{
8 "min": 0.3,
9 "max": 1

10 }
11 }]
12 }

5.4. Relationship Concepts

Definition 8. A relationship concept oRC is a JSON object defining a set of all relationships
that have the same meaning. The relationship concept represents relationships between instances
belonging to two instance concepts. The concept gives meaning to the relationship. It can be defined
as follows:

1 {
2 "name": oRCName,
3 "description": oRCDescription,
4 "role1": oRCRole1,
5 "role2": oRCRole2,
6 "conditionsEstablishingRelation":

oRCConditionsEstablishingRelation,
7 "conditionsRemovingRelation": oRCconditionsRemovingRelation
8 }

The concept of a relationship includes:

• oRCName—is a JSON string containing a name uniquely identifying the relationship con-
cept,

• oRCDescription—is a JSON string containing a description of the meaning of the relation-
ship (optimal),

• oRCRole1—is a oFName identifying the name of the first instance concept to which instances
being a part of a relationship belong,
∃oICo : aICo = elem(oCSo, aIC)∧ oIC ∈ âICo ∧ oRCRole1o = elem(oICo, oICName)∧
oCSo = elem(IKo, oCS) ∧ IKo ∈ IK,

• oRCRole2—is a oFName identifying the name of the second instance concept to which
instances being a part of a relationship belong,
∃oICo : aICo = elem(oCSo, aIC)∧ oIC ∈ âICo ∧ oRCRole2o = elem(oICo, oICName)∧
oCSo = elem(IKo, oCS) ∧ IKo ∈ IK,

• oRCconditionsEstablishingRelation—is a JSON string containing a set of conditions
that have to be fulfilled in order to build a relationship according to the relationship concept.
Conditions should be written in a source code in a programming language (optional),

• oRCconditionsRemovingRelation—is a JSON string containing a set of conditions that
have to be fulfilled to remove a relationship built according to the relationship concept. Condi-
tions should be written in a source code in a programming language (optional).

Appl. Sci. 2021, 11, 740 16 of 36

The relationship concept describes a one-direction relation (but it is not the relationship itself)
between the first element (oRCRole1o) and the second one (oRCRole2o). The order of those two
parameters of the relationship is important.

oRC = oRCName × oRCDescription × oRCRole1 × oRCRole2 ×
oRCConditionsEstablishingRelationship × oRCConditionsRemovingRelationship, oRCo ∈
oRC, oRCo ∈ âRCo, aRCo = elem(oCSo, aRC), oCSo = elem(IKo, oCS), IKo ∈ IK.

Examples of two relationship concepts c_liesOn and c_isMother:

1 {
2 "name": "c_liesOn",
3 "description": "First thing lies on the second thing",
4 "role1": "c_thing",
5 "role2": "c_thing",
6 "conditionsEstablishingRelation":[{
7 "role1.y>role2.y"
8 }],
9 "conditionsRemovingRelation":[{

10 "role1.y<role2.y"
11 }]
12 },
13 {
14 "name": "c_isMother",
15 "describtion": "first person is a woman and parent of the

second
16 person, represent the relation (parent -> child)",
17 "role1": "c_person",
18 "role2": "c_person",
19 "conditionsEstablishingRelation":[{
20 "role1.age >role2.age"
21 }]
22 }

Definition 9. An instance concept variable oICV is a JSON object representing an exemplary
instance (not existing in occurrences in IK) about which we do not have any knowledge besides the
knowledge about belonging to instance concepts. It consists of the following elements:

1 {
2 "name": oICVName,
3 "instanceConcept": oICName
4 }

• oICVName—is a JSON string containing a name uniquely identifying the instance concept
variable,

• oICName—is the oICName identifying an existing instance concept,

∃oICo : aICo = elem(oCSo, aIC)∧ oIC ∈ âICo ∧ oICNameo = elem(oICo, oICName)∧
oCSo = elem(IKo, oCS) ∧ IKo ∈ IK, oICV = oICVName× oICName.

Definition 10. A state concept oSC is a JSON object describing the possible state of the fragment
of the IK. It consists of the following elements:

1 {
2 "name": oSCName,
3 "instanceConceptVariables": oSCInstanceConceptVariables,
4 "relationships": oSCRelationships

Appl. Sci. 2021, 11, 740 17 of 36

5 }

• oSCName—is a JSON string containing a name uniquely identifying the state concept
(optional),

• oSCInstanceConceptVariables—is a JSON array containing a finite set of instance concept
variables oICV (optional),
oSCInstanceConceptVariableso = (oICVo

1 , ..., oICVo
M),

• oSCRelationships—is a JSON array containing a finite set of relationship oR (Definition 17)
occurring between instance concept variables indicated in instanceConceptVariables (optional),
oSCRelationshipso = (oSCRelationshipo

1, ..., oSCRelationshipo
N),

∀oSCRelationshipo ∈ ̂oSCRelationshipso∃oRCo : oSCRelationshipo ∈ oR ∧
oSCRelationshipso = elem(oSCo, oSCRelationships) ∧ oSCo ∈ oSC ∧ oRCo ∈ âRCo ∧ aRCo

= elem(oCSo, aRC)∧ elem(oSCRelationshipo, oRCName) = elem(oRCo, oRCName)∧ oCSo

= elem(IKo, oCS) ∧ IKo ∈ IK.
oSC = oSCName× oSCInstanceConceptVariables× oSCRelationships.

Example of a state concept:

1 {
2 "instanceConceptVariables": [
3 {
4 "name": "thing1",
5 "instanceConcept": "c_thing"
6 },
7 {
8 "name": "thing2",
9 "instanceConcept": "c_thing"

10 }],
11 "relationships": [
12 {
13 "concept": "c_liesOn",
14 "role1": "thing1",
15 "role2": "thing2"
16 }]
17 }

5.5. Action Concepts

Definition 11. An action concept oAC is a JSON object defining a set of actions, each of which can
transform a specified state of a fragment of the IK into another specified state of a fragment of the IK.

1 {
2 "name": oACName,
3 "initialStateConcept": oACinputStateConcept,
4 "finalStateConcept": oACoutputStateConcept
5 }

The action concept consists of:

• oACName—is a JSON string containing a name that uniquely identifies the action concept,
• oACinputStateConcept—a state concept oSC before the start of the action, regarding in-

stances to be transformed as a part of the implementation of the action,
• oACoutputStateConcept—a state concept oSC expected to be after completion of the action,

regarding instances to be transformed as a part of the implementation of the action,

oAC = oACName× oACinputStateConcept× oACoutputStateConcept, oACo ∈ oAC,
oACo ∈ âACo = elem(oCSo, aAC), oCSo = elem(IKo, oCS), IKo ∈ IK.

Appl. Sci. 2021, 11, 740 18 of 36

The action concept can be compared to the abstract method or interface in the pro-
gramming language like C# or Java.

Example of the action concept:

1 {
2 "name": "putOn",
3 "initialStateConcept": {
4 "instanceConceptVariables": [
5 {
6 "name": "thing1",
7 "instanceConcept": "c_thing"
8 },
9 {

10 "name": "thing2",
11 "instanceConcept": "c_thing"
12 }
13],
14 "relationships": []
15 },
16 "finalStateConcept": {
17 "instanceConceptVariables": [
18 {
19 "name": "thing1",
20 "instanceConcept": "c_thing"
21 },
22 {
23 "name": "thing2",
24 "instanceConcept": "c_thing"
25 }],
26 "relationships": [
27 {
28 "concept": "c_liesOn",
29 "role1": "thing1",
30 "role2": "thing2"
31 }]
32 }
33 }

6. Occurrences in GEDL Language

In this section, the following elements of the GEDL language are defined: occurrences,
the feature usage, the feature set usage, the action, the instance, the relationship, and the
instance concept membership.

Definition 12. Occurrences oOC—is an JSON object containing a finite set of instances and
relationship occurrences observed by the individual. Occurrences include:

1 {
2 "instances": aIN,
3 "relationships": aRS
4 },

• aIN—is a JSON array containing a finite set of instances oI aINo = (oIo
1 , ..., oIo

J),
• aRS—is a JSON array containing a finite set of relationships oR, aRSo = (oRo

1, ..., oRo
K),

where oI is defined in Definition 16, and oR is defined in Definition 17.

Appl. Sci. 2021, 11, 740 19 of 36

oOC = aIN × aRS, oOCo = elem(IKo, oOC), IKo ∈ IK.

Definition 13. A feature usage oFU is an JSON object representing values assigned to the existing
feature oF of the instance oI. The oFU is composed of the following elements:

1 {
2 "name": oFName,
3 "value": oFUValue,
4 }

where:

• oFName—is a JSON string representing the name of the feature oF existing in the conceptual
system oCS,
∃oFo : oFNameo = elem(oFo, oFName) ∧ oFo ∈ âFo ∧ aFo = elem(oCSo, aF) ∧ oCSo =
elem(IKo, oCS), IKo ∈ IK.

• oFUValue—is a JSON value assigned to the feature from the oFDomain of oF,
∃oFo : oFNameo = elem(oFo, oFName) ∧ oFDomaino = elem(oFo, oFDomain)∧
oFUValueo ∈ oFDoFDomaino ∧ oFo ∈ aFo ∧ aFo = elem(oCSo, aF)∧ oCSo = elem(IKo,
oCS) ∧ IKo ∈ IK.

oFU = oFName× oFUValue

The example of the usage of three features is presented below:

1 "features":[{
2 "name": "tastiness",
3 "value": 0.3
4 },
5 {
6 "name": "weight",
7 "value": 50
8 },
9 {

10 "name": "bloodGroup",
11 "value": "A"
12 }]

Definition 14. The feature set usage oFSU is an JSON object representing values assigned to the
existing feature set oFS. The oFSU is:

1 {
2 "name": oFSName,
3 "values": aFSUvalues
4 },

where:

• oFSName—is a JSON string containing a name of the feature set oFS existing in oCS,

∃oFSo : oFSNameo = elem(oFSo, oFSName) ∧ oFSo ∈ âFSo = elem(oCSo, aFS) ∧
oCSo = elem(IKo, oCS) ∧ IKo ∈ IK,

• aFSUvalues—is a JSON array containing an ordered set of values assigned to features in the
feature set,
aFSUvalueso = (oFSUValueo

1, ..., oFSUValueo
p, ..., oFSUValueo

P).
All of the values should belong to the domains of the features,
∀p∈{1,...,P}∃oFo

p∃oFSo : oFo
p ∈ aFo = elem(oCSo, aF) ∧ oFSo ∈ aFSo = elem(oCSo, aFS)

∧ oFSNameo = elem(oFSo, oFSName) ∧ oFNameo
p ∈ aFNameso = elem(oFSo,

aFNames)∧ oFNameo
p = elem(oFo

p , oFName)∧ oFDomaino
p = elem(oFo

p , oFDomain)∧

Appl. Sci. 2021, 11, 740 20 of 36

oFUValueo
p ∈ oFDoFDomaino

p ∧ oCSo = elem(IKo, oCS) ∧ IKo ∈ IK, where P =

card(̂aFSUvalueso), function card() return number of elements of a set.

oFSU = oFSName× aFSUvalues.

The example of the feature set usage is presented below:

1 {
2 "name: "color",
3 "values": [255, 20, 60]
4 }

Definition 15. An action oA is a JSON object containing a description of an action, which can be
potentially performed by the instance to which it is assigned, and result in a change in the state of
the fragment of IKo. An instance uses its own capabilities to carry out an action. It can also use
other instances and their actions. The action consists of:

1 {
2 "name": oAName,
3 "actionConcept": oACName,
4 "parameters": oAParameters,
5 "initialConditions": oAInitialConditions,
6 "successProbability": oASuccessProbability
7 }

• oAName—is a JSON string containing a name uniquely identifying the action,
• oACName—name oACName of the existing action concept oAC that precisely defines

the transformation of the concepts of states within the action, ∃oACo : oACNameo =

elem(oACo, oACName) ∧ oACo ∈ âACo ∧ aACo = elem(oCSo, aAC) ∧ oCSo =
elem(IKo, oCS) ∧ IKo ∈ IK,

• oAParameters—is a JSON array containing instances, values, relationships and any infor-
mation necessary for the action accomplishment. The parameters can contain, for example,
instances that are necessary tools or instances changed while taking the action (optional).

• oAInitialConditions—is a JSON array containing strings built of a source code written
in a programming language, having initial conditions specifying what must be fulfilled to
perform the action (optional). The conditions must relate to the instances and the environment
in which the action operates. The conditions include:

– a state concept of a fragment of the IK which has to be attained to start the action,
– ranges of the feature values (except the values indicated in the instance concepts) for the

instances,
– relationships to which instances must belong or not.

• oASuccessProbability—is a JSON number containing probability of success. It determines
how likely it is that the activity will be carried out correctly in the environment (optional).
oASuccessProbability ∈ R, oASuccessProbability ∈ [0, 1].

oA = oAName× oACName× oAParameters× oAInitialConditions×
oASuccessProbability

Actions are assigned only to those instances which are able to perform actions au-
tonomously. For example, a chopping knife will not have a slice action because it cannot
carry out operations autonomously. However, a bread slicer machine, automatically cutting
bread, will have a slicing action only if, after starting the operation, it can make its own
decision to end the action.

Actions are atomic and we do not specify any sub-actions for them. Complex actions
are problems with their solutions.

Example of an action:

Appl. Sci. 2021, 11, 740 21 of 36

1 {
2 "name": "putOn",
3 "actionConcepts": "c_putOn",
4 "parameters": [
5 {
6 "name": "thing1", "instanceConcept": "c_thing"
7 },
8 {
9 "name": "thing2", "instanceConcept": "c_thing"

10 }
11],
12 "initialConditions": [
13 {"return {concept: c_liesOn,
14 role1: thing1,
15 role2: thing2
16 } not in relationships"}
17]
18 }

Definition 16. An instance oI is the knowledge about an object observed and distinguished in the
environment by the individual. The instance consists of the following elements:

1 {
2 "name": oIName,
3 "features": oIFFeatures,
4 "featureSets": oIFFeatureSets
5 "actions": oIActions
6 }

• oIName—a JSON string containing the name of an instance oI uniquely identifying the
instance (optional),

• oIFFeatures—is a JSON array containing a finite set of features usage oFU (optional),
oIFFeatureso = (oFUo

1 , ..., oFUo
R),

• oIFFeatureSets—is a JSON array containing a finite set of feature sets usage oFSU (optional),
oIFFeatureSetso = (oFSUo

1 , ..., oFSUo
S),

• oIActions—is a JSON array containing a finite set of actions oA distinguished for the instance
by the individual (optional), oIActionso = (oAo

1, ..., oAo
T).

oI = oIName× oIFeatures× oIActions,
oIo ∈ oI, oIo ∈ âINo = elem(oOCo, aIN), oOCo = elem(IKo, oOC), IKo ∈ IK.

Example of an instance apple:

1 {
2 "name": "apple",
3 "features":[
4 {
5 "name": "tastiness",
6 "value": 0.9
7 }
8],
9 "featureSets":[

10 {
11 "name": "color",
12 "values": [255, 20, 60]

Appl. Sci. 2021, 11, 740 22 of 36

13 }
14]
15 }

As it was mentioned in Definition 2, the individual is also an instance and can have
all of the attributes belonging to the instance. The name of the instance representing the
individual is “myself”.

Definition 17. A relationship oR is a JSON object representing a connection distinguished by the
individual between two instances oI. The relationship includes:

1 {
2 "relationshipConcept": oRCName,
3 "role1": oRRole1,
4 "role2": oRRole2
5 }

where:

• oRCName—is a JSON string containing a name of an existing relationship concept oRC.

The relationship concept defines the relationship. ∃oRCo : oRCo ∈ âRCo ∧ aRCo =
elem(oCSo, aRC) ∧ oRCNameo = elem(oRCo, oRCName) ∧ oOCo = elem(IKo, oOC) ∧
IKo ∈ IK,

• oRRole1—is a JSON string containing oINameo of oIo which is the first parameter in
this relationship. The instance has to belong to the first instance concept oICo, which name
oRCRole1o is indicated in the relationship concept,
∃oIo∃oRCo∃oICo : oRRole1o = elem(oIo, oIName) ∧ oRCo ∈ âRCo ∧ aRCo =
elem(oCSo, aRC) ∧ oRCNameo = elem(oRCo, oRCName) ∧ oOCo = elem(IKo, oOC) ∧
oRCRole1o = elem(oRCo, oRCRole1) ∧ aICo = elem(oCSo, aIC) ∧ oICo ∈ âICo ∧
oRCRole1o = elem(oICo, oICName) ∧ oIo ∈ ICM(oICo) ∧ IKo ∈ IK, where function
ICM() is defined in Definition 18.

• oRRole2—is a JSON string containing oINameo of oIo which is the second parameter in
this relationship. The instance has to belong to the second instance concept oICo, which name
oRCRole2o is indicated in the relationship concept,
∃oIo∃oRCo∃oICo : oRRole2o = elem(oIo, oIName) ∧ oRCo ∈ âRCo ∧ aRCo =
elem(oCSo, aRC) ∧ oRCNameo = elem(oRCo, oRCName) ∧ oOCo = elem(IKo, oOC) ∧
oRCRole2o = elem(oRCo, oRCRole2) ∧ oICo ∈ âICo ∧ aICo = elem(oCSo, aIC) ∧
oRCRole2o = elem(oICo, oICName) ∧ oIo ∈ ICM(oICo) ∧ IKo ∈ IK,

oR = oRCName× oRRole1× oRRole2,
oRo ∈ âRSo = elem(oOCo, aRS), oOCo = elem(IKo, oOC), IKo ∈ IK.

For example:

1 {
2 "relationshipConcept": "c_isMother",
3 "role1": "Anna",
4 "role2": "Peter"
5 },
6 {
7 "relationshipConcept": "c_isCitizen",
8 "role1": Andrew,
9 "role2": Poland

10 }

Definition 18. Let oICo ∈ oIC. An instance concept membership set ICM(oICo) of the instance
concept oICo is a set defined as follows:

Appl. Sci. 2021, 11, 740 23 of 36

ICM(oICo) = {oIo ∈ oI : ∀oICFeatureo ∈ oICFeatureso = elem(oICo,
oICFeatures)∃oFNameo∃oFUValueo∃oFUo∃oFSUo∃oFSo[(oFUo ∈ ̂oIFFeatureso =

elem(oIo, oIFFeatures) ∧ oFNameo = elem(oFUo, oFName) ∧ oICFeatureo ∈ ̂oICFeatureso

∧ oFNameo = elem(oICFeatureo, oFName)∧ oICFRangeo = elem(oICFeatureo, oICFRange)
∧ oFUValueo = elem(oFUo, oFUValue) ∧ oFUValueo ∈ oICFRoICFRangeo)
∨
(oIFFeatureSetso = elem(oIo, oFSU) ∧ oFSUo ∈ ̂oIFFeatureSetso ∧ aFSUvalueso =

elem(oFSUo, aFSUvalues) ∧ oFSo ∈ âFSo = elem(oCSo, aFS ∧ elem(oFSUo, oFSName) =
elem(oFSo, oFSName ∧ ∃u ∈ {1, ..., card(aFSUvalueso)}(oFNameo = pos(elem(oFSo,
aFNames), u) ∧ oFUValueo = pos(elem(oFSUo, aFSUvalues), u)) ∧ oFNameo =
elem(oICFeatureo, oFName)∧ oICFRangeo = elem(oICFeatureo, oICFRange)∧ oFUValueo

∈ oICFRoICFRangeo)]
∧
∀oICRCo ∈ ̂oICRelationshipConceptso = elem(oICo, oICRelationshipConcepts)
∃oICRNameo∃oICRRoleo∃oRo[oICRNameo = elem(oICRCo,
oICRName) ∧ oICRRoleo = elem(oICRCo, oICRRole) ∧ oRo ∈ âRSo = elem(oOCo, aRS) ∧
oICRNameo = elem(oRo, oRCName) ∧ ((oICRRoleo =′ role1′ ∧ elem(oRo, oRRole1) =
elem(oIo, oIName)) ∨ (oICRRoleo =′ role2′ ∧ elem(oRo, oRRole2) = elem(oIo, oIName))]
∧
∀oACNameo ∈ ̂oICActionConcepts = elem(oICo, oICActionConcepts)∃oAo

[OAo ∈ ̂oIActionso = elem(oIo, oIActions) ∧ oACNameo = elem(oAo, oAActionConcept)]
∧
∀oICNameo∃oICo[oICNameo ∈o ICInstanceConceptso = elem(oICo, oICInstanceConcepts)
∧ oICo ∈ oIC ∧ oICNameo = elem(oICo

k , oICName ∧ oIo ∈ ICM(oICo)]}

The defined set ICM(oICo) allows us to determine whether a particular instance oIo

belongs to the instance concept oICo or not. We check in the definition several conditions
the instance oIo has to fulfill in order to belong to the set ICM(oICo). At first, values of
the features and feature sets of oIo are checked in order to determine whether they are
within the ranges of features and feature sets of the instance concepts oICo or not. Then, it
is checked if the oIo has relationships belonging to appropriate relationship concepts. Next,
actions of the oIo are tested. In the end, we check if the oIo is in the ICM() sets of other
listed instance conceps.

7. Experience in GEDL Language

The experiences in the IK contain problems and their solutions. A solution to the
problem is composed of actions performed by an individual or other instances used as tools.

Definition 19. A problem oP is a JSON object containing a description of a complex task that
the individual should perform. The problem may be ordered to be solved by an entity that is
not represented in the IKo. The problem must be formulated using terms understandable to the
individual, i.e., those belonging to the IKo. The problem consists of:

1 {
2 "name": oPName,
3 "individualKnowledgeFragment": oPIndividualKnowledgeFragment,
4 "initialStateConcept": oPInitialStateConcept,
5 "finalStateConcept": oPFinalStateConcept,
6 "goalFunction": oPGoalFunction
7 }

• oPName—is a JSON string containing a name uniquely identifying the problem (optional),
• oPIndividualKnowledgeFragment—is a JSON array containing names of instances from

occurrences oOC in IK which can be used to solve the problem oP,

Appl. Sci. 2021, 11, 740 24 of 36

oPIndividualKnowledgeFragmento = (oIo
1 , ..., oIo

N),
̂oPIndividualKnowledgeFragmento ⊆ âINo,

aINo = elem(oOCo, aIN), oOCo = elem(IKo, oOC), IKo ∈ IK,
• oPInitialStateConcept—is a state concept oSC before solving the problem,

oPInitialStateConcepto ∈ oSC,
• oPFinalStateConcept—is a state concept oSC after solving the problem,

oPFinalStateConcepto ∈ oSC,
• oPGoalFunction—a goal function oGF (optional).

oP = oPName × oPIndividualKnowledgeFragment × oPInitialStateConcept ×
oPFinalStateConcept× oPGoalFunction.

Section 8 contains an example of a problem and a solution to the problem.

Definition 20. A problem solution oPS is a JSON object containing a solution to a given problem.
The solution contains a list of actions to be performed in a specific order or concurrently/parallelly,
and instances that are used to enable the transition from the initial state concept to the final
state concept.

The problem solution oPS is constructed in the following way:

1 {
2 "name": oPSName,
3 "actions": aPSActions,
4 "goalFunctionValue": oPSGoalFunctionValue
5 }

• oPSName—is a JSON string containing a name uniquely identifying the problem solution,
• oPSActions—is a JSON array containing strings built of a source code written in a pro-

gramming language, containing actions oA of a given individual or other instances indicated
in oPIndividualKnowledgeFragment. Values of parameters or objects should be added to the
listed actions. An exemplary code written in an object language may look as follows:

1 myself.putOn(gumdropSnake,cake)

• goalFunctionValue—is a JSON number containing a value of the performed goal function
oGF for a given solution.

A problem can have many solutions. A description of the implementation of the
action can be made in a specific programming language. The implementation may consist
of actions of the myself instance or actions of other instances used in the solution.

oPS = oPSName× oPIndividua× oPSActions× oPSGoalFunctionValue

Definition 21. A goal function oGF takes the form of JSON strings built of a source code written
in a programming language and contains a method for calculating a value eval ∈ R that enables
the evaluation of solutions to the problem, oGFo(oPSo) = eval. The bigger the eval is, the better
the solution is evaluated.

Definition 22. An experience oE is a JSON object containing problems and solutions developed
by the individual. The experience is defined as follows:

1 {
2 "problem": oEProblem,
3 "problemSolutions": oEProblemSolutions,
4 "bestSolution":oEBestSolution
5 }

where:

Appl. Sci. 2021, 11, 740 25 of 36

• oEProblem—a problem oP, oEProblemo ∈ oP,
• oEProblemSolutions—is a JSON array containing a finite set of different problem solutions

oPS, oEProblemSolutionso = (oPSo
1, ..., oPSo

K),
• oEBestSolution—is a oPSName of the best solution to the problem, for which the goal

function obtains the highest rated value, oEBestSolutiono = elem(oPSo
p, oPSName), where

oEProblemSolutionso = elem(oEo, oEProblemSolutions), p = maxk = 1KoGFo(oPSo
k),

oPSo
p = pos(oEProblemSolutionso, p), K = card(̂oEProblemSolutionso).

oE = oEProblem× oEProblemSolutions× oPSActions× oEBestSolution, oEo ∈ âEo, aEo =
elem(IKo, aE), IKo ∈ IK.

8. Exemplary Individual Knowledge

This chapter presents an exemplary content of the IK. It can be divided into three
sections: conceptualSystem oCS, occurrences oOC and experience aE.

8.1. The Conceptual System

The conceptual system oCS is the first part of the IK. The listing below presents a part
of the IK containing the oCS. At the beginning, feature definitions (their possible ranges
and default values) and feature sets are introduced. Next, definitions of concepts: instance
concepts, relationship concepts, and action concepts, are presented based on previously
defined features and feature sets. These concepts are a part of the IK, which helps to
understand the surrounding environment and how to influence it.

1 {
2 "conceptualSystem":{
3 "features": [
4 {
5 "name": "sweetness",
6 "description": "Describes how sweet the thing is",
7 "domain":{
8 "set": "Real",
9 "min": 0,

10 "max": 1
11 },
12 "default": 0
13 },
14 {
15 "name":"edible",
16 "description": "Determines if the item is edible",
17 "domain":{
18 "set": [true,false]
19 },
20 "default": false
21 },
22 {
23 "name": "solid",
24 "description": "Describes how solid thing is",
25 "domain":{
26 "set": "Real",
27 "min": 0,
28 "max": 1
29 },
30 "default": 0
31 },
32 {

Appl. Sci. 2021, 11, 740 26 of 36

33 "name": "red",
34 "description": "Intensity of red color",
35 "domain":{
36 "set": "Integer",
37 "min": 0,
38 "max": 255
39 },
40 "default": 0
41 },
42 {
43 "name": "green",
44 "description": "Intensity of green color",
45 "domain":{
46 "set": "Integer",
47 "min": 0,
48 "max": 255
49 },
50 "default": 0
51 },
52 {
53 "name": "blue",
54 "description": "Intensity of blue color",
55 "domain":{
56 "set": "Integer",
57 "min": 0,
58 "max": 255
59 },
60 "default": 0
61 },
62 {
63 "name": "beauty",
64 "description": "Describes the beauty",
65 "domain":{
66 "set": "Real",
67 "min": 0,
68 "max": 1
69 },
70 "default": 0
71 },
72 {
73 "name": "softness",
74 "description": "Describes the softness of material,
75 1 means very soft",
76 "domain":{
77 "set": "Real",
78 "min": 0,
79 "max": 1
80 },
81 "default": 0
82 }
83],
84 "featureSets":[
85 {
86 "name": "color",

Appl. Sci. 2021, 11, 740 27 of 36

87 "features":[
88 "red",
89 "green",
90 "blue"
91],
92 "featureSets":[]
93 }
94],
95 "instanceConcepts": [
96 {
97 "name": "c_sweets",
98 "features": [
99 {

100 "name": "sweetness",
101 "range": {
102 "min": 0.7,
103 "max": 1
104 }
105 },
106 {
107 "name": "edible",
108 "range": {
109 "set": [true]
110 }
111 }
112]
113 },
114 {
115 "name": "c_thing",
116 "features": [
117 {
118 "name": "solid",
119 "range": {
120 "min": 0.6,
121 "max": 1
122 }
123 }
124]
125 },
126 {
127 "name": "c_solidSweets",
128 "contain": [
129 "c_sweets",
130 "c_thing"
131]
132 },
133 {
134 "name": "c_sweetDecoration",
135 "contain": [
136 "c_solidSweets"
137],
138 "features":[
139 {
140 "name": "beauty",

Appl. Sci. 2021, 11, 740 28 of 36

141 "range": {
142 "min": 0.6,
143 "max": 1
144 }
145 }
146]
147 }
148],
149 "relationshipConcepts": [
150 {
151 "name": "c_liesOn",
152 "description": "First thing lies on second thing",
153 "role1": "c_thing",
154 "role2": "c_thing"
155 }
156],
157 "actionConcepts": [
158 {
159 "name": "c_putOn",
160 "initialStateConcept": {
161 "instanceConceptVariables": [
162 {
163 "name":"thing1",
164 "instanceConcept": "c_thing"
165 },
166 {
167 "name":"thing2",
168 "instanceConcept": "c_thing"
169 }
170],
171 "relationships": []
172 },
173 "finalStateConcept": {
174 "instanceConceptVariables": [
175 {
176 "name":"thing1"
177 "instanceConcept": "c_thing"
178 },
179 {
180 "name":"thing2"
181 "instanceConcept": "c_thing"
182 }
183],
184 "relationships": [
185 {
186 "concept": "c_liesOn",
187 "role1": "thing1",
188 "role2": "thing2"
189 }
190]
191 }
192 },
193 {
194 "name": "c_boilWater",

Appl. Sci. 2021, 11, 740 29 of 36

195 "initialStateConcept": {
196 "instanceConceptVariables": [
197 {
198 "name":"myWater",
199 "instanceConcept": "c_water"
200 }
201]
202 },
203 "finalStateConcept": {
204 "instanceConceptVariables": [
205 {
206 "name":"myWater",
207 "instanceConcept": "c_boilingWater"
208 }
209]
210 }
211 }
212]
213 },

The conceptual system oCS contains instance concepts (c_sweets, c_thing, c_solidSweets,
and c_sweetDecoration). These concepts have features with restrictions on the range of their
values. The individual classifies the observed instances based on their features. If a given
instance has the given features and their values are within certain ranges, then according
to the individual knowledge, this instance belongs to this concept. The c_solidSweets
concept contains the c_sweets and c_thing concepts, thus contains all their features with
appropriate ranges of values. If a concept contains features from two other concepts that
have the same features, the resulting feature in this concept has restrictions that are an
intersection of the limits of these two concepts.

The next part of the listing describes the relationship concept c_liesOn. This concept
defines the relationship between two instances. In the beginning, there is a JSON string
with a description of the relationship in a natural language. Then, the two instance concepts
(to which the instances must belong) are defined.

The action concepts (c_putOn and c_boilWater) are placed further in the individual
conceptual system oCS. It should be noted that in their structure there is no description of
how they work. On the input (initialStateConcept), there is a description of a part of the en-
vironment that is found before the action is carried out. On the output (finalStateConcept),
there is a description of the same part of the environment with all the changes made by
this action. Knowledge of the result that should be obtained allows the individual to verify
whether the action has been carried out correctly and to take appropriate steps in case of
failure. The part initialStateConcept lists the instances (and instance concepts to which they
belong) and their relationships. The part finalStateConcept consists of the same concepts
(instance concepts or relationship concepts) that were listed in the part initialStateConcept,
and which will not be liquidated as a result of the action, and also consists of concepts that
will arise as a result of the performed action. For example, the action concept c_putOn
needs two instances belonging to the c_thing concept as input. After completing this action,
these two instances should still exist but should be in the c_liesOn relationship.

8.2. The Occurrences

The next part of IK includes occurrences oOC of instances (chocolateStar, fish, cake,
hotChocolate, gumdropSnake, raisins) and their relationships (currently an empty set).
These are instances representing objects recognized by the individual in the surrounding
environment. Instances have specific features with specific values and may have actions
that can be performed with these instances. In a conceptual system oCS, there may be many
actions that implement the same task, but depending on the instance that implements

Appl. Sci. 2021, 11, 740 30 of 36

it, additional assumptions (initialConditions) or parameters may be needed. One of the
instances is myself—it defines the individual in which the current IK is located. The putOn
action described in the myself instance can be used by the individual to perform the action
by itself.

213 "occurrences":{
214 "instances": [
215 {
216 "name":"myself",
217 "actions": [
218 {
219 "name": "putOn",
220 "actionConcept": "c_putOn",
221 "parameters": [
222 {"name":"thing1", "instanceConcept":"c_thing"},
223 {"name":"thing2", "instanceConcept":"c_thing"}
224],
225 "initialConditions": [],
226 "successProbability" : 0.95
227 }
228]
229 },
230 {
231 "name": "chocolateStar",
232 "features":[
233 {"name": "sweetness", "value": 0.9},
234 {"name": "edible", "value": true},
235 {"name": "solid", "value": 0.9},
236 {"name": "beauty", "value": 0.9}
237],
238 "featureSets":[
239 {"name": "color", "values": [165, 42, 42]}
240]
241 },
242 {
243 "name": "fish",
244 "features":[
245 {"name": "edible", "value": true},
246 {"name": "sweetness", "value": 0.0},
247 {"name": "solid", "value": 1},
248 {"name": "beauty", "value": 0.2}
249]
250 },
251 {
252 "name": "cake",
253 "features":[
254 {"name": "sweetness", "value": 0.8},
255 {"name": "edible", "value": true},
256 {"name": "solid", "value": 0.7},
257 {"name": "softness", "value": 0.7}
258]
259 },
260 {
261 "name": "hotChocolate",
262 "features":[

Appl. Sci. 2021, 11, 740 31 of 36

263 {"name": "sweetness", "value": 0.9},
264 {"name": "edible", "value": true},
265 {"name": "solid", "value": 0.1},
266 {"name": "temperature", "value": 60}
267]
268 },
269 {
270 "name": "gumdropSnake",
271 "features":[
272 {"name": "sweetness", "value": 1},
273 {"name": "edible", "value": true},
274 {"name": "solid", "value": 0.8},
275 {"name": "beauty", "value": 0.7}
276]
277 },
278 {
279 "name": "raisins",
280 "features":[
281 {"name": "sweetness", "value": 1},
282 {"name": "edible", "value": true},
283 {"name": "solid", "value": 1},
284 {"name": "beauty", "value": 0.6}
285]
286 }
287],
288 "relationships": []
289 },

8.3. The Experience

The listing below presents a part of the IK representing experience aE. It consists
of problems to be solved by the individual and solutions. In order to initiate the search
for solutions, the problem should be defined—the part of the environment that can be
used (individualKnowledgeFragment) and the transformation that we want to achieve
(from initialStateConcept to finalStateConcept) must be indicated. To achieve the optimal
solution, the goal function should also be provided.

290 "experience": [
291 {
292 "problem" : {
293 "name" : "Decorate cake",
294 "individualKnowledgeFragment": {
295 "instances": [
296 "chocolateStar",
297 "fish",
298 "hotChocolate",
299 "gumdropSnake",
300 "cake"
301]
302 },
303

304 "initialStateConcept": {
305 "instanceConceptVariables": [
306 {"name":"myCake", "instanceConcept":"c_cake"},
307 {"name":"thing1", "instanceConcept":"c_sweetDecoration"},

Appl. Sci. 2021, 11, 740 32 of 36

308 {"name":"thing2", "instanceConcept":"c_sweetDecoration"}
309],
310 "relationships": []
311 },
312 "finalStateConcept": {
313 "instanceConceptVariables": [
314 {"name":"myCake", "instanceConcept":"c_cake"},
315 {"name":"thing1", "instanceConcept":"c_sweetDecoration"},
316 {"name":"thing2", "instanceConcept":"c_sweetDecoration"}
317],
318 "relationships": [
319 {
320 "concept": "c_liesOn",
321 "role1": "thing1",
322 "role2": "myCake"
323 },
324 {
325 "concept": "c_liesOn",
326 "role1": "thing2",
327 "role2": "myCake"
328 }
329]
330 },
331 "goalFunction":{
332 "function": "{
333 let val=0;
334 for(let i=0; i<relationships.length; i++) {
335 val +=(r.role1.beauty + r.role1.sweetness)/2;
336 });
337 return val/i;
338 }"
339 }
340 },
341 "problemSolution":[
342 {
343 "actions":[
344 "myself.putOn(chocolateStar, cake)",
345 "myself.putOn(raisins, cake)"
346],
347 "goalFunctionValue":"0.85"
348 },
349 {
350 "actions":[
351 "myself.putOn(chocolateStar, cake)",
352 "myself.putOn(gumdropSnake, cake)"
353],
354 "goalFunctionValue":"0.875"
355 },
356 {
357 "actions":[
358 "myself.putOn(raisins, cake)",
359 "myself.putOn(gumdropSnake, cake)"
360],
361 "goalFunctionValue":"0.825"

Appl. Sci. 2021, 11, 740 33 of 36

362 }
363],
364 "bestSolution":{
365 "actions":[
366 "myself.putOn(chocolateStar, cake)",
367 "myself.putOn(gumdropSnake, cake)"
368],
369 "goalFunctionValue":"0.875"
370 }
371 }
372]
373 }

Our objective is to have two sweet decorations on the cake, in other words, we should
have two sweet decorations in the relationship “lies on” with the cake. Therefore, the
individual analyses all action concepts that can lead to the creation of such relationships.
The c_putOn action concept is the only one in this case. Then, the individual checks all
actions in the system that belong to the given action concept. The only action that fulfills
this condition belongs to the myself instance. Therefore, the individual must carry out
this action itself. Then, it analyses the prerequisites needed to perform this action. In
this case, the existence of three instances is the condition—one belonging to the c_cake
concept and two belonging to the c_sweetDecoration concept. In the IK, three instances
belong to the c_sweetDecoration concept: gumdropSnake, chocolateStar, and raisins. They
can be used in potential solutions. The problem has a goal function (goalFunction) that
helps to determine which of the solutions implements the given challenge most effectively.
Although JSON does not allow a string on many lines, the goalFunction is divided into
several lines in the listing for readability reasons. The goal function chooses the best
solution based on the beauty and sweetness of concepts in the presented example. Three
solutions with assessments are the result of the algorithm. As can be seen, the best
solution is to decorate the cake with a chocolate star and a gel snake by performing action
c_putOn twice.

8.4. The More Complex Example

The presented example has a straightforward solution because all the required in-
stances were available and needed only the putOn action. However, we can imagine a
situation in which the instance belonging to the c_sweetDecoration concept is missing, but
there is a sugar instance belonging to the c_sweets concept, cocoaLion instance belonging to
the c_edibleDecoration concept and a sprinkle action that will combine these instances into
one that will meet the requirements of the c_sweetDecoration concept. In this way, a newly
created instance (and a physically made object that has been created in the environment)
can be put together with other cake decorations.

8.5. Summary of the Example

When solving tasks, the individual may decide to perform actions that may change
the properties of the instance, add or remove the relationship between them, or decide
to create a non-existent instance (e.g., making pancake dough or cooking an egg for a
sandwich). There can be many ways to solve the problem.

Many factors can be used to assess a given solution. These may be: expected results,
costs incurred, time of implementation, the uncertainty of receiving the intended solution,
assessment of previous similar actions, or subjective assessment made with the help of
another individual (e.g., a human being).

After the physical execution of the action in the surrounding environment, an attempt
may be made to undertake the final assessment of the task. The assessment can be made
using available sensors. The solution with input and output parameters and the final grade

Appl. Sci. 2021, 11, 740 34 of 36

can be saved in the IK and become the main solution in future tasks. The problem of
evaluation of the adopted solution will be the topic of discussion in future articles.

9. Applications of GEDL Language and Directions of Future Work

The language presented in the article allows an individual possessing a cognitive
mechanism to describe almost any environment. The way the individual will describe the
environment is not imposed in advance, and two individuals of a similar type (e.g., two
identical robots) can build very different IK for the same environment. These differences
may be caused by different initial conditions (different time or place to start work), the
stochastic nature of the environment, or a difference in tasks performed in the environment.

The GEDL language will help to combine various data and knowledge processing
technologies, including artificial intelligence techniques. For example, the cognitive mecha-
nism, apart from sensors, will require the use of techniques that enable data interpretation
so that objects can be distinguished in the environment, and characterized. In this case,
cameras and appropriate image recognition techniques could be used to distinguish objects
and give them features such as color, shape etc.

In addition, the instance can carry out our atomic actions in the GEDL language.
The way the instance processes actions is not precisely defined, and different complex
techniques of artificial intelligence may also be used to carry them out. The description of
actions in the new language consists of a description of the state before and after the action,
so that the way the actions are executed is not narrowed down to the use of strictly defined
techniques for their implementation.

So far, in the article, the definitions forming the basis of the new language have been
presented, and it was shown how it may work on a simple example of IK along with
the problem and its solution. The further articles will include a description of the basic
operation of the product. They will sum up our research into concepts and concept states. It
will be shown how to store historical states of instances (marked as memory aM) in the IK.
In the future, an attempt will be made to deal with the issue of inference based on historical
data. An effective way of storing IK in databases currently used will be presented.

Subsequent publications will also deal with the issue of building a conceptual system
that defines the understanding and perception of the environment by an individual. It is
going to be determined how a conceptual system should be constructed in an individual
that starts their activities in the environment, and how such a system can be developed
automatically. Building an IK shared by a larger number of individuals, so that the
conceptual system remains coherent, is also a separate research problem for the future.

10. Summary

In this article, a new language called the General Environment Description Language
(GEDL) was presented. The language is dedicated to being used in autonomous systems
(robots, programs) working in a diverse environment. It enables the description of the
environment in which the system acts and helps to make autonomous decisions.

According to the adopted conception, the autonomous system called an Individual
collects its knowledge in three sections: Conceptual System, Occurrences and Experience.
The Conceptual System contains concepts which, in a way, group occurrences observed in
the environment. The section Occurrences presents knowledge about objects observed in
the environment. Spotted objects are called instances in the Occurrences. The Experience in
GEDL language section contains problems to be solved and their solutions. The Individual
Knowledge in the GEDL language is described using the JSON notation.

In this article, an example was provided showing how to store the knowledge, define
the problem and find the problem solutions.

In further articles, an attempt will be made to deal with the problem of describing
and solving many issues that were only mentioned. Among other things, methods will be
proposed for optimal problem solving, language grounding, automatic development of the
conceptual system, and others.

Appl. Sci. 2021, 11, 740 35 of 36

Author Contributions: Conception of GEDL language: K.Z., W.P., A.B., A.Z. and E.P.; Matematical
formalization: K.Z., A.M., A.B., and W.P.; Examples: W.P. and K.Z.; Original Draft Preparation: K.Z.,
A.B., W.P., A.M. and A.Z.; Editing: A.B.; Writing Review: A.B. and K.Z.; Supervision: K.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goertzel, B.; Pennachin, C. Artificial General Intelligence; Springer: Berlin/Heidelberg, Germany, 2007.
2. Hernández-Orallo, J. The Measure of All Minds. Evaluating Natural and Artificial Intelligence; Cambridge University Press:

Cambridge, UK, 2017.
3. Wang, P. On Defining Artificial Intelligence. J. Artif. Gen. Intell. 2019, 10, 1–37. [CrossRef]
4. Bhatnagar, S. Mapping Intelligence: Requirements and Possibilities. In 3rd Conference on" Philosophy and Theory of Artificial

Intelligence; Müller, V., Ed.; Springer: Cham, Switzerland, 2018; Volume 44, pp. 117–135.
5. Bassenne, M.; Lozano-Durán, A. Computational Model Discovery with Reinforcement Learning. ArXiv 2019. Available online:

https://arxiv.org/abs/2001.00008v1 (accessed on 10 December 2020).
6. Williams, A. The Relationship Between Collective Intelligence and One Model of General Collective Intelligence. In Proceedings

of the 11th International Conference on Computational Collective Intelligence ICCCI 2019, Hendaye, France, 4–6 September 2019;
Part I, Lecture Notes in Artificial Intelligence; Nguyen, N., Chbeir, R., Exposito, E., Aniorte, P., Trawiński, B., Eds.; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 589–600.

7. Poole, D.; Mackworth, A.K. Artificial Intelligence. Foundations of Computational Agents; Cambridge University Press: Cambridge,
UK, 2010.

8. Poole, D.; Mackworth, A.K. Artificial Intelligence: Foundations of Computational Agents, 2nd ed.; Cambridge University Press:
Cambridge, UK, 2017.

9. Ghallab, M.; Nau, D.; Traverso, P. Automated Planning and Acting; Cambridge University Press: Cambridge, UK, 2016.
10. Hutter, M. Universal Artificial Intelligence: Sequential Decisions Based On Algorithmic Probability. In EATCS Series: Texts in

Theoretical Computer Science; Springer: Berlin/Heidelberg, Germany, 2005.
11. Thórisson, K.R.; Bieger, J.; Li, X.; Wang, P. Cumulative Learning. In Artificial General Intelligence; AGI 2019; Lecture Notes in

Computer Science; Hammer, P., Agrawal, P., Goertzel, B., Iklé, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 11654,
pp. 198–208.

12. Wang, P. Natural Language Processing by Reasoning and Learning. In Artificial General Intelligence, Lecture Notes in Computer
Science; Kühnberger, K.U., Rudolph, S., Wang, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7999, pp. 160–169.

13. Świechowski, M.; HyunSoo, P.; Mańdziuk, J.; Kyung-Joong, K. Recent Advances in General Game Playing. Sci. World J. 2015,
2015, 986262. [CrossRef] [PubMed]

14. Cropper, A.; Evans, R.; Law, M. Inductive general game playing. Mach. Learn. 2020, 109, 1393–1434. do:10.1007/s10994-019-05843-w.
15. Jiménez, S.; Rosa, T.D.L.; Fernández, S.; Fernández, F.; Borrajo, D. A review of machine learning for automated planning. Knowl.

Eng. Rev. 2012, 27, 433–467. [CrossRef]
16. Nau, D.S. Current Trends in Automated Planning. AI Mag. 2007, 28, 43–58.
17. Sohrabi, S. AI Planning for Enterprise: Putting Theory Into Practice. In Proceedings of the Twenty-Eighth International Joint

Conference on Artificial Intelligence (IJCAI-19), Macao, China, 10–12 August 2019; pp. 6408–6410. [CrossRef]
18. Cimatti, A.; Pistore, M.; Traverso, P. Automated Planning. In Handbook of Knowledge Representation; van Harmelen, F., Lifschitz, V.,

Porter, B., Eds., Elsevier B.V.: Amsterdam, The Netherlands, 2008. [CrossRef]
19. Gregory, P.; Schumann, P.H.C.; Björnsson, Y.; Schiffel, S. The GRL System: Learning Board Game Rules with Piece-Move

Interactions. In Workshop on Computer Games. International Workshop on General Intelligence in Game-Playing Agents. Communications
in Computer and Information Science; Cazenave, T., Winands, M., Edelkamp, S., Schiffel, S., Thielscher, M., Togelius, J., Eds.;
Springer: Cham, Switzerland, 2016; Volume 614, pp. 130–148.

20. Basbaum, R.T.; Vaquero, T.S.; Silva, J.R. Requirements and Work Domain Analysis in Automated Planning Systems. In Proceedings
of the 23rd International Conference on Automated Planning and Scheduling (ICAPS 2013), Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS), Rome, Italy, 10–14 June 2013.

21. Wang, P. Non-Axiomatic Reasoning System-Exploring the Essence of Intelligence; Indiana University: Indianapolis, IN, USA, 1996.
22. Ivanović, M.; Ivković, J.; Bădică, C. Role of Non-Axiomatic Logic in a Distributed Reasoning Environment. In Proceedings of the

International Conference on Computational Collective Intelligence; Lecture Notes in Computer Science; Nguyen, N.T., Papadopoulos,
G., Jedrzejowicz, P., Trawinski, B., Vossen, G., Eds.; Springer: Cham, Switzerland, 2017; Volume 10448, pp. 381–388.

23. Hammer, P. Adaptive Neuro-Symbolic Network Agent. In Artificial General Intelligence, AGI 2019, Lecture Notes in Computer Science;
Hammer, P., Agrawal, P., Goertzel, B., Iklé, M., Eds., Springer: Cham, Switzerland, 2019; Volume 11654, pp. 80–90.

24. Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; Genesereth, M. General Game Playing: Game Description Language Specification.
2008. Available online: http://logic.stanford.edu/classes/cs227/2013/readings/gdl_spec.pdf (accessed on 2 December 2019).

25. Ishida, T. Q: A Scenario Description Language for Interactive Agents. Computer 2002, 35, 42–47. [CrossRef]

http://doi.org/10.2478/jagi-2019-0002
https://arxiv.org/abs/2001.00008v1
http://dx.doi.org/10.1155/2015/986262
http://www.ncbi.nlm.nih.gov/pubmed/26380375
http://dx.doi.org/10.1017/S026988891200001X
http://dx.doi.org/10.24963/ijcai.2019/897
http://dx.doi.org/10.1016/S1574-6526(07)03022-2
http://logic.stanford.edu/classes/cs227/2013/readings/gdl_spec.pdf
http://dx.doi.org/10.1109/MC.2002.1046973

Appl. Sci. 2021, 11, 740 36 of 36

26. Konnerth, T.; Hirsch, B.; Albayrak, S. JADL–An Agent Description Language for Smart Agents. In Declarative Agent Languages
and Technologies IV, DALT 2006, Lecture Notes in Computer Science; Baldoni, M., Endriss, U., Eds.; Springer: Berlin/Heidelberg,
Germany, 2006; Volume 4327, pp. 141–155.

27. Faulkner, S.; Kolp, M.; Wautelet, Y.; Achbany, Y. A Formal Description Language for Multi-Agent Architectures. In Agent-Oriented
Information Systems IV, AOIS 2006, Lecture Notes in Computer Science; Kolp, M., Henderson-Sellers, B., Mouratidis, H., Garcia, A.,
Ghose, A.K., Bresciani, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4898, pp. 143–163.

28. Bergenti, F.; Iotti, E.; Poggi, A. Core Features of an Agent-Oriented Domain-Specific Language for JADE Agents. Trends in
Practical Applications of Scalable Multi-Agent Systems, the PAAMS Collection. Adv. Intell. Syst. Comput. 2016, 473, 213–224.

29. Wang, P. Non-Axiomatic Logic: A Model Of Intelligent Reasoning; World Scientific: Singapore, 2013.
30. Wang, P.; Li, X.; P, P.H. Self in NARS, an AGI System. Front. Robot. AI 2018, 5, 20. [CrossRef]
31. Sredojević, D.; Vidaković, M.; Okanović, D.; Mitrović, D.; Ivanović, M. Conversion of the agent-oriented domain-specific language

ALAS into JavaScript. In Proceedings of the AIP Conference, Symposium on Computer Languages, Implementations and Tools
(SCLIT), Rhodes, Greece, 23–29 September 2015. [CrossRef]

32. Sredojević, D.; Vidaković, M.; Ivanović, M.; Mitrović, D. Extension of Agent-oriented Domain-specific language ALAS as a
support to Distributed Non-Axiomatic Reasoning. In Proceedings of the ICIST 2017, Kopaonik, Serbia, 12–15 March 2017;
Volume 2, pp. 368–372.

33. Aeronautiques, C.; Howe, A.; Knoblock, C.; McDermott, I.D.; Ram, A.; Veloso, M.; Weld, D.; SRI, D.W.; Barrett, A.; Christian-
son, D.; et al. PDDL—The Planning Domain Definition Language; Technical Report; CVC TR98003/DCS TR1165; Yale Center for
Computational Vision and Control: New Haven, CT, USA, 1998.

34. Haslum, P.; Lipovetzky, N.; Magazzeni, D.; Muise, C. An Introduction to the Planning Domain Definition Language. In An
Introduction to the Planning Domain Definition Language; Morgan & Claypool: San Rafael, CA, USA, 2019.

35. Fikes, R.E.; Nilsson, N.J. STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artif. Intell. 1971,
2, 189–208. [CrossRef]

36. Galuszka, A.; Swierniak, A. Planning in Multi-agent Environment Using Strips Representation and Non-cooperative Equilibrium
Strategy. J. Intell. Robot. Syst. 2010, 58, 239–251. [CrossRef]

37. Harnad, S. The symbol grounding problem. Phys. D Nonlinear Phenom. 1990, 42, 335–346. [CrossRef]
38. Das, A.; Kottur, S.; Moura, J.M.; Lee, S.; Batra, D. Learning cooperative visual dialog agents with deep reinforcement learning.

In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2970–2979.
39. Sun, Y.; Singla, A.; Fox, D.; Krause, A. Building hierarchies of concepts via crowdsourcing. In Proceedings of the 24th International

Conference on Artificial Intelligence, IJCAI, Buenos Aires, Argentina, 25–31 July 2015; pp. 844–853.
40. Chattopadhyay, P.; Yadav, D.; Prabhu, V.; Chandrasekaran, A.; Das, A.; Lee, S.; Batra, D.; Parikh, D. Evaluating visual con-

versational agents via cooperative human-ai games. In Proceedings of the Fifth Conference on Human Computation and
Crowdsourcing (HCOMP), Québec City, QC, Canada, 24–26 October 2017; pp. 2–10.

41. Matuszek, C.; Bo, L.; Zettlemoyer, L.; Fox, D. Learning from unscripted deictic gesture and language for human-robot interac-
tions. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, AAAI’14, Québec City, QC, Canada,
27–31 July 2014, pp. 2556–2563.

42. Krishnaswamy, N.; Pustejovsky, J. A Formal Analysis of Multimodal Referring Strategies Under Common Ground. In Proceedings
of the Language Resource and Evaluation (LREC 2020), Marseille, France, 11–16 May 2020.

43. Comprehensive Open Source Machine Learning Platform. Availabel online: https://www.tensorflow.org/ (accessed on
3 December 2020).

44. Keras API Libraries. Availabel online: https://keras.io/ (accessed on 3 December 2020).
45. An Open Source Machine Learning Framework. Availabel online: https://pytorch.org/ (accessed on 3 December 2020).
46. Zadeh, L.A.; Aliev, R.A. Fuzzy Logic Theory and Applications; World Scientific Publishing Co Pte Ltd.: Singapore, 2018.
47. Introducing JSON. Available online: https://www.json.org (accessed on 10 December 2020).
48. JsonLogic. Available online: http://jsonlogic.com (accessed on 10 December 2020).
49. JSON Application Development for IBM® Data Servers. Available online: https://www.ibm.com/support/knowledgecenter/

SSEPEK_11.0.0/json/src/tpc/db2z_jsonappdev.html (accessed on 3 December 2020).
50. Ullman, J.D.; Widom, J. A First Course in Database Systems, 3rd ed.; Pearson Education Limited: London, UK, 2008;

ISBN 9780136006374.

http://dx.doi.org/10.3389/frobt.2018.00020
http://dx.doi.org/10.1063/1.4952026
http://dx.doi.org/10.1016/0004-3702(71)90010-5
http://dx.doi.org/10.1007/s10846-009-9364-4
http://dx.doi.org/10.1016/0167-2789(90)90087-6
https://www.tensorflow.org/
https://keras.io/
 https://pytorch.org/
https://www.json.org
http://jsonlogic.com
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/json/src /tpc/db2z_jsonappdev.html
https://www.ibm.com/support/knowledgecenter/SSEPEK_11.0.0/json/src /tpc/db2z_jsonappdev.html

	Introduction
	Literature Review
	Motivation and Goals
	Paper Organization

	Introduction to GEDL Language
	Notation Used in GEDL Language
	Environment and Individual
	Conceptual System and Its Elements
	Features
	Feature Sets
	Instance Concepts
	Relationship Concepts
	Action Concepts

	Occurrences in GEDL Language
	Experience in GEDL Language
	Exemplary Individual Knowledge
	The Conceptual System
	The Occurrences
	The Experience
	The More Complex Example
	Summary of the Example

	Applications of GEDL Language and Directions of Future Work
	Summary
	References

