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Abstract: Covert channels enable stealthy communications over innocent appearing carriers. They are
increasingly applied in the network context. However, little work is available that exploits crypto-
graphic primitives in the networking context to establish such covert communications. We present
a covert channel between two devices where one device authenticates itself with Lamport’s one-
time passwords based on a cryptographic hash function. Our channel enables plausible deniability
jointly with reversibility and is applicable in different contexts, such as traditional TCP/IP networks,
CPS/IoT communication, blockchain-driven systems and local inter-process communications that
apply hash chains. We also present countermeasures to detect the presence of such a covert channel,
which are non-trivial because hash values are random-looking binary strings, so that deviations are
not likely to be detected. We report on experimental results with MD5 and SHA-3 hash functions
for two covert channel variants running in a localhost setup. In particular, we evaluate the channels’
time performance, conduct statistical tests using the NIST suite and run a test for matching hash
values between legitimate and covert environments to determine our channels’ stealthiness.

Keywords: cryptographic hash function; hash chain; plausible deniability; steganography;
covert channel

1. Introduction

A covert channel (CC) is an unforeseen communication channel in a system design.
While the first covert channels for local computers were described in the 1970s (cf. [1]),
the research of recent decades has discovered a plethora of new and sophisticated covert
channels that aid the secret exchange of information between hosts, databases, network
hosts and IoT devices. Due to their stealthy and policy-breaking nature, covert channels
enable several actions related to cybercrime, such as the secret extraction of confidential
information, barely detectable botnet command and control channels, and unobservable
communication for cybercriminals. While legitimate use cases are imaginable as well, e.g.,
journalists using covert channels for secure exchange of dissident-related information,
criminal use seems foremost, so that presentation of new covert channels also serves
presentation of countermeasures.

We present the first CC that exploits cryptographic hash chains, which have become
popular because some form (blockchain) is used in cryptocurrencies, although they had
been used much earlier, e.g., by Lamport [2]. Hash chains are widely used, which renders
them an attractive carrier for covert information that can be applied in various cybersecurity
contexts, such as authentication systems, cryptocurrencies and blockchain-driven systems
of all kinds. Thus, our proposed covert channels can be applied in several domains and
contexts, which is an advantage in comparison to covert channels designed for legitimate
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communication systems (such as covert channels for specific smart building communication
protocols).

Our covert channels can be considered an example of plausible deniability: Alice
communicates with Bob over the covert channel. Both can state that every possible hash
value is equally likely to occur. By modifying (alternating) bits of hash values, Alice and
Bob can thus plausibly deny the existence of the covert channel. Moreover, we show that
our channel allows Bob to restore the original message before forwarding it to the overt
receiver, making our covert channel reversible. Alice and Bob, the covert sender and
receiver, can be located directly with sender and receiver of the overt channel, but they can
also be located on the communication path, realizing a man-in-the-middle (MitM) scenario.

Moreover, we present the CC in a parameterized manner so that our proposal really
comprises a large number of possible CC instances that differ in steganographic bandwidth,
robustness and stealthiness.

We sketch possible countermeasures against this CC, which are non-trivial because
hash values are random-looking bit strings. To this end, we also perform experiments with
MD5 and SHA-3 as cryptographic hash functions in Lamport’s application of hash chains
as one-time passwords, and give experimental results on the performance and detectability
of CC use.

2. Fundamentals and Related Work

We will first introduce related fundamental concepts, followed by coverage of more
sophisticated related work.

2.1. Fundamentals

A hash function is a function h : U → R that maps a possibly infinite universe, e.g.,
U = {0, 1}?, onto a finite set of hash values, e.g., R = {0, 1}m [3]. A cryptographic hash
function should have pre-image resistance, i.e., from a hash value y ∈ R it is not possible
(with reasonable effort) to compute a string x ∈ U such that h(x) = y, 2nd pre-image
resistance, i.e., from a given x with h(x) = y it is not possible to compute x′ ∈ U, x′ 6= x
such that h(x′) = y, and collision resistance, i.e., it is not possible to compute two strings
x, x′ ∈ U, x′ 6= x such that h(x) = h(x′). Examples of cryptographic hash functions
are MD5 (message digest 5) [4], now outdated, and SHA-3 (secure hash algorithm 3) [5],
the current standard for cryptographic hashing, based on the KECCAK hash function [6].
As R ⊂ U, a hash function can be applied repeatedly, i.e., for a seed x0 = s, we can compute
xi+1 = h(xi) for i = 0, 1, 2, . . . , n− 1. This sequence is called a hash chain. While it is easy
to compute a hash chain in a forward direction, it cannot be computed in a backward
direction, starting from xn, because of the pre-image resistance property.

A one-time password (OTP) is a password only used once to authenticate an entity. As
such, it is secure as long as it is secret and cannot be guessed prior to its use. Lamport [2]
presented a scheme to generate OTPs from a hash function with pre-image resistance.
Entity A uses a random and secret seed s to compute a hash chain x0, . . . , xn, and transfers
xn to entity B via a secure channel. To authenticate, A sends z = xn−1 over an insecure
channel to B. B checks if h(z) = xn. If yes, the authentication is approved, and B replaces
xn by z = xn−1. If not, authentication has failed. For the next authentication, A sends
z = xn−2, and so on. Each password is only used once, and by the pre-image resistance,
the next password cannot be guessed from the previous password. In addition, B need
not keep xn secret, as nothing can be inferred from this value. Haller’s S/Key [7] and the
TESLA protocol [8] use similar ideas.

A covert channel , as one form of steganography, defines a parasitic communication
channel nested inside a computing environment that allows at least two different legitimate
processes (or nodes) to access a shared resource. The covert channel exploits the legitimate
processes in a way that allows the signaling of hidden information via the shared resource.
The sender and receiver of a covert channel are called covert sender (CS) and covert receiver
(CR), respectively. CS and CR are not necessarily identical with the overt sender and overt
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receiver (OS and OR) as CS and CR might act in an indirect manner or as a man-in-the-
middle. Covert channels inside computer networks follow a set of known hiding patterns
[9] to transfer information, e.g., by placing secret data inside unused or reserved header
bits of network packets, by modifying header fields with random values, or by modulating
the timings between succeeding network packets.

Reversible steganography allows the reconstruction of the original carrier message
to the state before the steganographic data was embedded. For instance, it would allow
an original image to be completely restored after the extraction of hidden data embedded in a
cover image [10]. In man-in-the-middle scenarios, reversibility enables covert receivers
to forward non-modified, i.e., innocent, original data to the overt receiver. As shown by
Mazurczyk et al., reversibility is feasible for network covert channels: full reversibility refers
to covert channels where the original carrier data can be restored completely, while quasi-
reversibility refers to those covert channels that allow only the partial reconstruction of
the original data [11]. Different categories of reversible data hiding are feasible. In our
case, intrinsic data-hiding is applied, in which the covert receiver is able to achieve full
reversibility without guessing (implicit reversibility techniques) or embedding of additional
information that describe the original message (explicit reversibility techniques) [11].

Plausible deniability for a synthetic record is achieved when there exists a set of real data
records that could have generated the same synthetic data with (more or less) the same probability
by which it was generated from its own seed [12]. Plausible deniability is usually achieved
by replacing pseudo-random data with encrypted covert data that also appear pseudo-
random. Sometimes, it is also achieved by nesting secret information inside multiple layers
of hidden information, where the surrounding layer is revealed to an observer in order to
show cooperation. For instance, a steganographic filesystem might contain multiple layers
of steganographic filesystems nested inside each other. Only outer layers are revealed to a
warden while inner layers remain hidden.

2.2. Related Work

Covert channels have been proposed for several domains. For instance, Carrara and
Adams surveyed out-of-band covert channels over physical media, such as light, sound and
air [13] while other authors analyzed details of such channels, e.g., Hanspach and Goetz [14],
Cronin et al. [15] and Matyunin et al. [16]. Network covert channel techniques have been
summarized by Mazurczyk et al. [17], Wendzel et al. [9] and Zander et al. [18]. Detailed
studies of specific network covert channels and their countermeasures were performed by
Cabuk et al. [19], Xing et al. [20], Saenger et al. [21], Zander et al. [22] and Zhang et al. [23],
just to mention a few. Further, several local covert channels have been studied, e.g., on
smartphones by Mazurczyk et al. [24] and Urbanski et al. [25], in the architecture of pro-
cessors by Wang and Lee [26], as well as in real-time schedulers by Chen et al. [27]. Most
recently, covert channels in the Internet of Things has gained increasing attention, cf. works
by Mileva et al. [28], Wendzel et al. [29] and Hildebrandt et al. [30].

Calhoun et al. [31] described a covert channel in which OTPs are used as an element
for generating random data for a covert channel that exploits rate switching in 802.11 b
WiFi networks. In comparison, our approach allows an Internet-wide application that is
not limited to wireless environments. Moreover, our approach represents an indirect covert
channel based on hash chain exploitation. To the best of our knowledge, no other covert
channel has been published that exploits cryptographic hash chains.

Plausible deniability for steganography has been proposed by several authors, es-
pecially for filesystems (e.g., [32]). In the context of video streams, PRNG-output was
utilized [33]. Rutkowska published a covert channel that embeds DES-encrypted data
into third-party TCP initial sequence numbers (ISN) [34]. However, Murdoch and Lewies
have shown that the channel by Rutkowska is detectable, since the distribution of ISN
values does not match the distribution of DES-encrypted covert data [35]. Abad [36]
presents a covert channel in the check sum of IP packets, which, however, does not use a
cryptographic hash function.
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Several methods for reversibility analysis of network covert channels have been
studied by Mazurczyk et al. [11], while earlier works studied reversibility in digital media
steganography, e.g., Chang and Lin in [10,37].

The remainder of this paper is structured as follows. Our two covert channels based
on hash chains are introduced in Section 3. We discuss countermeasures for our covert
channels in Section 4 and evaluate the performance and stealthiness characteristics of our
channels in Section 5. Section 6 concludes and provides an outlook on future work.

3. Covert Channels in Hash Chains

We present multiple variants of a covert channel that can be used in OTPs based on
hash chains. We assume that each hash value is transmitted as part of network packets
between A and B, so that a modification of the hash value by CS can be hidden by re-
computing the packet’s check sum. The information flow would be A→ CS→ CR→ B.
In such a case, our channel assumes a man-in-the-middle scenario. Alternatively, A and CS
can be the same entity while B and CR can also be the same entity. However, our covert
channel would also function if A and B are local processes inside an operating system,
while CS and CR are part of an inter-process communication between A and B, or when A
and B are CPS or IoT devices.

3.1. Channel Characteristics

Our channel has certain features that are traditionally used to categorize and describe
covert channels:

1. Our channel variants allow plausible deniability as they replace selected bits of hash
values in a pseudo-random manner so that the probability distribution of original
and modified hash values are similar.

2. If CR is not just a passive observer but a hop on the path to B, CR is able to reconstruct
the original hash value and can thus forward the illicit original message to B, rendering
our approach reversible. This is feasible if, for example, B is a routing hop on a program
in an IPC-chain between A and B. Due to the fact that we achieve full reversibility and
do not exploit implicit or explicit reversibility methods, our technique is an intrinsic
reversibility method.

3. Finally, our channel does not rely on indirect signaling methods, which makes it a
direct covert channel. However, if CS applied a method to indirectly influence the
transferred hash value, our channel would be a semi-passive one, while it would also
be passive (indirect) if CR indirectly obtained the sent hash value (e.g., using a side
channel) [38].

4. It does not matter for our covert channel whether the hash value is transmitted over
a network or between local processes. The hash value can also be stored in a file at
some point in time and then read later by another process, i.e., sender and receiver
processes must not necessarily be active at the same time. However, in practice, most
authentication scenarios would require A and B to be active simultaneously.

3.2. Covert Channel Variants

The secret message that CS wants to send is broken into t symbols from an alphabet
V = {0, 1, . . . , v− 1}, i.e., the message comprises at most l = bt log2 vc bits.

To embed a symbol sj ∈ V into a password xi that is going to be transmitted, CS mod-
ifies the password by applying a transformation T : R × V → R, i.e., replaces xi by
a different password x′i = T(xi, sj). In the following, we will mostly use the notation
Tsj(xi) instead.

This password is intercepted by CR, who knows the previous password xi+1. CR first
tests if h(x′i) = xi+1. In that case, no symbol has been embedded and xi = x′i . Otherwise,
for each possible symbol s, CR applies T−1

s to x′i and checks if hashing produces xi+1.
CR stops with the first hit, extracts symbol sj of the secret message, and forwards the
original password xi = T−1

sj
(x′i) to B.
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Embedding is repeated until the complete message is transmitted. This requires that
the number of symbols in the message is t < n, as we do not embed a symbol in the first
password xn−1 to enable reversibility (see below).

The extracting procedure requires that T is injective in each argument, and that
Ts(x) 6= x.

To implement T, we identify V with a subset of size v of R = {0, 1}m, and define
Tsj(x) = x⊕ sj, where⊕ denotes the bitwise exclusive OR operation. Then T is self-inverse,
i.e., T−1

s = Ts. An upper bound for v = |V| is 2m − 1 = |R \ {00 · · · 0}|, so that the
message might comprise up to l = b(n− 1) log2(2

m − 1)c bits, i.e., almost n ·m bits can be
transmitted.

A first variant is found by defining set V of size v = m comprising all m-bit strings
with exactly one bit set to 1, i.e., embedding symbol sj means to flip bit j of the password to
be transmitted. We illustrate this variant in Figure 1.

Figure 1. Example of variant 1. Covert sender (CS) embeds symbol 2 by flipping bit 2 of a password.
Covert receiver (CR) first tries out which bit of the transmitted password must be flipped so that the
check is successful, i.e., that its hash corresponds to the password stored at CR. Thus CR extracts
symbol 2.

A much more restrictive variant could embed only one bit per password, e.g., by using
V = {100 · 0, 010 · 0}. Please note that when a symbol is embedded in each password (except
xn−1), then we might even use V = {000 · 0, 100 · 0}, i.e., flipping bit 0 of the password only
when a 1 is embedded, and leaving the password unmodified for embedding 0.

More liberal variants are also possible, e.g., defining V as the set of strings with one
or two bits set to 1, resulting in v = (m

1 ) + (m
2 ) = m(m + 1)/2, or taking all strings with at

least m/2 bits set to 1, so that

v = |V| =
m

∑
k=m/2

(
m
k

)
= 2m−1 ,

by applying the binomial theorem with a = b = 1 and taking the symmetry of binomials
into account [39]. Those variants might be useful for cases where m is small, e.g., when
hash chains of a small width are used in WSN networks [40].

In order to decouple the embedded symbols from the particular message, i.e., to get
random-looking symbols, the message might be encrypted before embedding, using a
stream cipher or a block cipher with a chaining method such as cipher block chaining (CBC),
to avoid the case when two identical symbols result in two identical encrypted symbols [3].
While this may increase stealthiness during communication, the computational effort on
the receiver side, which may also threaten stealthiness (see below), can alternatively be
optimized by using an encoding based on the frequency of symbols: the symbol with
the highest frequency gets a code symbol that is checked first by CR, and so on. When
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using the frequencies of letters a to z in English texts from [41] and applying such coding,
we get 7.5 evaluations on average, compared to 13 if symbols are encrypted and considered
equi-probable.

Furthermore, if t < n− 1 symbols are embedded, we have the freedom to choose
which of the n − 1 passwords are used for embedding, resulting in (n−1

t ) possibilities,
and increasing stealthiness if not all passwords can be controlled by a warden.

Finally, the transformation function T might depend on i and/or on the index of the
symbol to be embedded. For example, if we only embed one bit per password, we might
modify bits i mod m or (i + 1) mod m of xi to embed symbols 0 and 1, respectively, instead
of always using the same bit positions.

3.3. Hiding Pattern-Based Categorization

All variants perform a manipulation of (pseudo-)random packet fields as described
by the random value pattern [9]. The random value pattern covers all hiding techniques
that replace a legitimate (pseudo-)random bit string with a covert bit string that also
follows a random distribution. Random value techniques have been implemented by
several authors, rendering our proposed covert channel variants applicable in realistic
environments. Moreover, such random values can be found in many network protocols,
such as the IPID field in IPv4 or the ISN field in TCP.

On the sender side, the variants have very low effort and are thus hardly detectable.
During transmission, an isolated packet will look innocent, as the one-time passwords look
like random bitstrings, so that a possible bit flip is not likely to leave any trace or signature.
Hence, detection during transmission seems non-trivial.

4. Countermeasures

Before experimentally evaluating our proposed channel, we first consider a broader
set of potential countermeasures.

Note that in all variants, CR needs no knowledge of xn stored by B. In the first trans-
mitted password xn−1, no symbol is transmitted. Then CR knows xn−1 when intercepting
and forwarding that password, and can refer to it later on, duplicating B’s work.

Variants that embed more symbols per password might be detectable more easily
on the receiver side, as they encompass more evaluations of h. For example, the variant
that embeds one of v = m symbols by flipping one bit needs m/2 evaluations on average
if symbols are equidistributed, which is the case if they are encrypted. This is a notable
amount of computation if we consider that m might be 128 (MD5) or 512 (SHA-3). Yet those
variants also have higher steganographic bandwidth.

Possible countermeasures on the receiver side, i.e., checking for unusual timing or
energy due to repeated evaluation of the hash function, have been described in the previous
section. However, they apply mostly if CR resides with the overt receiver (a similar scenario
for energy-consumption-based covert channel detection has been proven to be feasible by
Caviglione et al. [42]). If we have a man-in-the-middle scenario, only a jitter in transmission
time from overt sender to overt receiver might be detectable.

Countermeasures during transmission are possible if a warden has knowledge of two
successive packets with passwords x′i and x′i−1, i.e., has some knowledge of the application
logic behind the packets. In this case, the warden can check if h(x′i−1) = x′i . If either
password has been modified by CS, this equality will most likely not hold because of the
hash function’s collision resistance properties.

If the warden has only superficial knowledge of the application, i.e., knows only
that the transmitted password must be a random bitstring, the warden can collect some
passwords and submit them to a random number test suite such as Diehard [43] or NIST’s
suite [44]. If embedding of symbols creates artefacts, then the randomness should decrease
if a CC is active. However, the test suites require a notable amount of bits to run, which
might not be available, or take very long to collect. Thus, this might be an ex post analysis.
Furthermore, if the set of code words V is a randomly chosen subset of R, and/or the
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symbols to be embedded are chosen in a quasi-random manner, e.g., by using encryption
first, then the bitwise exclusive OR of two random bit strings might not be distinguishable.

Another possible countermeasure would be that A and B modify the passwords
themselves, in a way that is not foreseeable by CS or CR. When A is about to send xi,
it already has knowledge about the following password xi−1. Let us assume that both A
and B have knowledge of a hash function g : {0, 1}m → {0, 1}. If g(xi−1) = 0, then A
sends xi. If g(xi−1) = 1, then A sends xi, i.e., xi with all bits inverted. If g is a good hash
function, then the second possibility will occur half of the time. If B receives a password x′i ,
then it checks if either h(x′i) or h(x′i) equals xi+1. In the latter case, B stores x′i .

As only two instead of one password value will be accepted, this scheme is still
secure. But life is now more complicated for CR. It must now compare the four possible
combinations of inverted and non-inverted passwords, i.e., its effort is notably increased,
and stealthiness thus reduced. More complicated schemes are possible. Even if they are not
preventing this covert channel, they can restrict bandwidth and/or can reduce stealthiness
by forcing CR to perform more computation.

5. Experiments

We have implemented one variant of our covert channel in a hypothetical system
that uses one-time passwords based on hash chains with cryptographic hash functions
MD5 (m = 128) and SHA-3 (m = 256). The implementation was done in C, and we
used existing open-source implementations for the cryptographic hash functions. For
MD5, we used Peter Deutsch’s 1999 free implementation that is based on the RFC 1321
specification [4] but does not use the reference implementation given there. For SHA-3 we
used Andrey Jivsov’s 2015 code from brainhub.org. As the system is not doing any real
application, we implemented client and server, i.e., overt sender and receiver, together with
CS and CR in one thread on the same computer, so that they transfer passwords through
memory instead of an insecure network. In addition, client and server do no work besides
computation of passwords. Hence, this implementation can be considered an extreme test
with respect to stealthiness. The covert sender and receiver are placed directly with the
client (sender) and server (receiver).

The covert channel transfers a null-terminated character string. We use v = 64 symbols
with the following coding. Lower case letters are converted into upper case letters. ASCII
characters 1 to 31 and from 95 onward are converted to blanks (ASCII character 32). ASCII
characters 32 to 94, comprising upper case letters, digits and some punctuation marks,
are converted to symbols 0 to 62, and ASCII character 0 (termination symbol) is converted
to symbol 63. Please note that for the purpose of embedding into the binary hash value,
we denote by symbol i a bit string of length m where only bit i is set to 1.

If encryption is used, then we employ a stream cipher that produces key stream
symbols in the range 0 to 62, and encrypt by adding symbol and key symbol modulo 63,
while termination symbol 63 remains unaltered. As the stream cipher, we employ the same
cryptographic hash function as used in the OTP application. The seed is the cryptographic
key, and we repeatedly hash. The bytes from the produced hash values are taken as modulo
63 and used as key stream symbols.

All experiments were performed on a Dell Latitude 5500 notebook with an Intel Core
i5-8265U CPU at 1.6 GHz and 8 Gibibytes of main memory, running a Windows 10 operating
system. We used gcc version 9.2.0 as the compiler, without activating optimizations.

5.1. Performance

To measure the performance impact of the covert channel, especially on the receiver, we
use a hash chain of length n = 16,384 and a string of length t = 16,382 (plus termination
symbol), i.e., we embed a symbol in each password except the first. As seed s, we use the
string Wonderful seed for Hash Chain. As the secret message, we use a string solely comprising
the repeated letter ‘?’ (symbol 31). As the cryptographic key, we use the same string as for the
seed.
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The secret message is chosen such that, no matter if we use encryption or not, the num-
ber of hash function evaluations by CR is 32 (on average if encryption is used, with standard
deviation 18), as we use only 63 of the 64 possible symbols during the message, and can
ignore the influence for recognizing the last symbol because of the message length.

The results can be seen in Table 1. If a CC is used, the runtime is notably higher than
without, while the runtimes for CC with encryption only marginally deviate from runtimes
for CC without encryption. The difference between runtimes with and without CC, divided
by 32 · n, amounts to 0.63 µs and 12.1 µs per evaluation of MD5 and SHA-3, respectively,
which, multiplied by n, amounts to about half the runtime without CC.

Table 1. Runtime results of performance test.

OTP Hash Function Without CC With CC With CC and Encrypt.

MD5 0.019 s 0.350 s 0.349 s
SHA-3 0.386 s 6.737 s 6.803 s

5.2. Randomness

To test if the covert channel can be detected by using a random number test suite,
the exchanged passwords (with or without CC) were collected into a file of 256 kibibytes
(MD5) or 512 kibibytes (SHA-3), respectively. Then we submitted the files to the NIST [44]
suite. The results from test 1 of the NIST suite (frequency of zeroes and ones should be
close to 0.5 for each), given as p-values, can be seen in Table 2. As the p-values are close to
1, all sequences seem random.

Table 2. p-values from NIST frequency test.

OTP Hash Function Without CC With CC With CC and Encrypt.

MD5 0.968052 0.973558 0.986777
SHA-3 0.864040 0.905754 0.864040

Yet already the results from test 2 (cumulative sums) differ for the sequences,
cf. Table 3. Thus we conclude that at least the CC without encryption might be de-
tectable. This hope is fostered because in total 15 tests are available in the NIST suite,
so there are more chances to detect CCs than we have explored. However, there is also a
downside. Some of the tests need much more data than we provided, and already these
data might need a long time to be collected. If we imagine that each minute an authentica-
tion takes place, then 11.3 days are needed to collect the data. Indeed, this assumption is
only valid if authentications take place during night and day without any interruption or
reduction of frequency. If limited to eight-hour working days Monday to Friday, it would
take almost 7 weeks instead. Thus we have a tradeoff between chance of detection and
time to detection.

Table 3. p-values from NIST cumulative sums test, averaged between forward and reverse tests.

OTP Hash Function Without CC With CC With CC and Encrypt.

MD5 0.8212000 0.7555420 0.8038680
SHA-3 0.6928455 0.6198775 0.6928455

5.3. Detectability

If a warden would be capable of observing the originally generated as well as the
transmitted hash values, it could compare both values. We assume that such a scenario
is rather unlikely but it is of theoretical interest in order to determine the detectability of
our channels.

We used the same covert channel as before, but the message comprised t = 16,382
letters “A” plus the termination symbol.
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As shown in Figure 2, the differences between the covert channel without encryption
(denoted as simple) and the legitimate hash values are only visually recognizable if a
suitable visualization method (in our case: differences modulo 8) is selected (in large hash
values of e.g., 512 bit size, a (randomized) modification of the least significant bits would
be invisible on charts that cover the whole range of hash values). The encrypted covert
channel’s values (denoted as improved) match those of the legitimate traffic.

However, both covert channels’ hash values are barely distinguishable from legitimate
values if the original traffic is not available. Several hash values of both channels are either
close to (and a few matching) the legitimate values (simple channel) or partially close and
mostly matching (improved channel) while following a pseudo-random distribution typical
for hash values. In our tests, approx. 6.7% of the modulo results of the improved channel
did not match those of the legitimate traffic while all other values matched exactly.
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Figure 2. Differences between consecutive hash values for legitimate hash chains and covert channel with and without
encryption, denoted as improved and simple, respectively.

6. Conclusions

Hash chains are an important element of today’s inter-networked computing systems
and are found, for example, in cryptocurrencies and authentication systems. For this reason,
the exploitation of hash chains for covert channels is an attractive goal for attackers in
several domains. We have presented the first covert channel in hash chains that is plausibly
deniable and reversible. We have detailed how to create variants that differ in stegano-
graphic bandwidth and stealthiness. We have also presented non-trivial countermeasures
against such a covert channel. Our experiments have shown that our channel might be
detectable under realistic conditions only if no encryption is applied and authentication
data are collected over a longer time-span. Thus, there are limitations both to the use of the
covert channel—short-term only—and to the detection or limitation capabilities. The exact
time spans will depend on the particular variant of the covert channel deployed, which in
turn hangs on the width of the hash function used.

The covert channel has been presented in the context of network communication,
yet it is not restricted to that. Instead of using network packets, the covert channel could
also use a local system to break a security policy if A authenticates against B over an IPC
path to which both CS and CR have access.
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Future work will comprise further experiments, e.g., on other implementation vari-
ants, including the validation of countermeasures that can either prevent/limit or detect
(e.g., with sophisticated machine learning methods) the proposed covert channels, and ex-
ploration of further application areas.
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communications via energy consumption and artificial intelligence. IEEE Trans. Inf. Forensics Secur. (TIFS) 2015, 11, 799–810.
[CrossRef]

43. Marsaglia, G. The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness; Technical Report; Florida
State University: Tallahassee, FL, USA, 1995.

44. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al.
A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Special Publication 800-22
Revision 1a; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.

http://dx.doi.org/10.1016/j.future.2020.04.032
http://dx.doi.org/10.1109/ACCESS.2019.2937969
http://dx.doi.org/10.1109/COMST.2014.2350994
http://dx.doi.org/10.13052/jcsm2245-1439.621
http://dx.doi.org/10.1002/wcm.969
http://dx.doi.org/10.1109/TIFS.2006.885034
http://dx.doi.org/10.1145/1514274.1514279
http://dx.doi.org/10.1109/TIFS.2015.2510825

	Introduction
	Fundamentals and Related Work
	Fundamentals
	Related Work

	Covert Channels in Hash Chains
	Channel Characteristics
	Covert Channel Variants
	Hiding Pattern-Based Categorization

	Countermeasures
	Experiments
	Performance
	Randomness
	Detectability

	Conclusions
	References

