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Abstract: In this paper, we show that parameters of a neural network can have redundancy in
their ranks, both theoretically and empirically. When viewed as a function from one space to
another, neural networks can exhibit feature correlation and slower training due to this redundancy.
Motivated by this, we propose a novel regularization method to reduce the redundancy in the rank
of parameters. It is a combination of an objective function that makes the parameter rank-deficient
and a dynamic low-rank factorization algorithm that gradually reduces the size of this parameter
by fusing linearly dependent vectors together. This regularization-by-pruning approach leads to
a neural network with better training dynamics and fewer trainable parameters. We also present
experimental results that verify our claims. When applied to a neural network trained to classify
images, this method provides statistically significant improvement in accuracy and 7.1 times speedup
in terms of number of steps required for training. Furthermore, this approach has the side benefit of
reducing the network size, which led to a model with 30.65% fewer trainable parameters.

Keywords: matrix rank; neural network; pruning; redundancy; regularization

1. Introduction

Recently, neural networks have shown great success in a wide range of tasks, such as
achieving superhuman performance in the game of Go [1] and Atari games [2,3], photo-
realistic image synthesis [4], and many natural language processing applications [5–9]. One
of the key factors behind these achievements is the huge amount of trainable parameters
in the model. For instance, the PG-GAN model [10], which is capable of generating high
resolution, photo-realistic faces, has about 46 M parameters. Another example is BERT [6],
which is a model with around 340 M trainable parameters. At the time of its release, it
achieved state-of-the-art performance in eleven natural language processing tasks.

Since the size of deep neural network models keeps getting larger, it is natural to
suspect that not all of the parameters might be necessary to show that level of performance.
Indeed, research has shown that features and parameters of a neural network tend to
have redundancy [11–13]. By analyzing the cause of these redundancies, methods that
encourage the model to better utilize its full capacity can be developed. Dropout [14] is
one of the most successful and widely used examples, where the coadaptation of neurons
was suggested as the cause of redundancy.

In this paper, we provide a theoretical and empirical analysis on a type of network
redundancy, which we call the redundancy in the rank of parameters. It is based on a linear
algebraic interpretation of parameter matrices, which suggests that the rank of it can be
lower than the upper bound. Based on this hypothesis, we propose a novel regularization
method that can not only improve the training dynamics of a neural network but also
reduce the size of it. This regularization-by-pruning approach consists of a loss function
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that aims at making the parameter rank deficient, and a dynamic low-rank approximation
method that gradually shrinks the size of this parameter by closing the gap between the
actual rank and its upper bound.

Empirically evaluating this method on an image classification task, we observe that
the proposed method leads to a statistically significant accuracy gain of 0.21% and reduces
the required number of gradient updates to train the model by a factor of 7. Furthermore,
this approach provides the side benefit of reducing 30.65% of the free parameters in the
model. Given that these improvements are built on top of other regularization methods
such as Dropout, this approach is orthogonal to many other regularization studies and
could be used in conjunction with them.

The contributions of this paper can be summarized as follows: (i) We provide theoreti-
cal background and analysis regarding this novel type of redundancy, found in the rank
of neural network parameters. (ii) We propose a loss function that localizes and identifies
redundant parts of a network, in a way that the parameters become rank deficient. (iii) We
propose a dynamic low-rank approximation method that lowers the upper bound of the
rank of a parameter, by gradually reducing its size. (iv) We provide empirical results that
verify our theoretical analysis and claims.

2. Related Work

Many studies have shown that deep neural networks have a lot of redundancy in their
parameterization and proposed ways to make better use of the redundant parameters. In
the work of Ayinde et al. [15], a measure was proposed to quantify network redundancy,
and various architectural choices in designing neural networks were tested using this
measure. It is shown that not only the depth and width of the network but also the choice
of activation function and initialization method can affect redundancy. Dropout [14] is a
widely used regularization method that reduces redundancy by discouraging coadaptation
of neurons. Cogswell et al. [16] suggested that the covariance between the activations of a
layer is the result of redundancy and designed a loss function that penalizes this. Their
method has shown to be effective at reducing overfitting. In Minimum Hyperspherical
Energy (MHE) regularization [17], a method that promotes angular diversity of neurons
was proposed and was shown to be a strong regularization method. Our method largely
falls into this line of work, where the goal is to regularize the network by minimizing
redundancy. Unlike the other methods, however, the proposed method has the benefit of
reducing the number of trainable parameters.

Low-rank approximation aims to speed up and/or decrease storage footprint of a
neural network by representing a parameter tensor with a multiplication of two or more
smaller tensors. The work of Sainath et al. [18] was one of the first works to investigate
the effectiveness of low-rank matrix factorization in deep neural networks. They used
low-rank factorization to compress the final layer of deep neural networks and showed
that training speed can be greatly improved with the cost of no or marginal performance
lost. In the works of Howard et al. [19] and Kim et al. [20], factorization methods were
applied to popular image recognition models to reduce the storage and computation cost,
so that they can be ported to mobile devices. GroupReduce [21] is a block-wise low-rank
approximation method that utilizes statistical property of word embedding and softmax
layers. Since most of the trainable parameters resides in these two matrices, their method
has shown great success in compressing large neural language models. In [22], low-rank
approximation is utilized to predict the sparsity of the activation in feed-forward neural
networks and perform conditional computation to speed up the calculation. The works
in [23,24] focused on automatically finding the optimal rank while compressing the kernel
of convolutional neural networks via decomposition. DeepTwist [25] proposes to inject
noise that simulates weight decomposition during training to mitigate the performance
drop caused by the actual decomposition in CNNs. Our work also takes the form of
low-rank approximation but with two distinctive properties. First, it does not operate on a
trained network and instead can be used during the initial task-specific training. Second,
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the rank of the factorized matrices does not need to be specified in our approach and is
automatically discovered in the process of parameter optimization.

Network pruning is an active research area where the goal is to identify and remove
redundant parts of a model. The key to a successful pruning algorithm is an effective
method to localize and/or identify the redundant parts of a model. Early works in this
literature and some extensions used the Hessian of the loss to determine and remove
redundant parts of a neural network [26–28]. In [29] applies L2 regularization on the
parameters during training and prunes connections with magnitudes below a certain
threshold to acquire a sparsified network. This network is then retrained to recover
the performance loss. In [11] combines this approach with quantization and Huffman
coding to greatly reduce the storage requirement of image recognition models without
loss of accuracy. In [30] further extends this work by allowing the threshold parameter
to be differentiable so that it can be learned via backpropagation. CLIP-Q [31] performs
magnitude-based pruning and quantization in parallel to minimize the side effects of the
latter. In [32] also explores magnitude-based pruning but includes a wider range of models
and tasks such as LSTMs, language modeling, and neural machine translation. ThiNet [33]
greedily removes convolutional filters that has the least contribution to the output of each
layer. Some approaches targeted characteristics with more practical implications, such as
FLOPs, required for an inference step instead of the number of trainable parameters as
the pruning criteria [34,35]. However, pruning processes tend to act adversarially against
the model’s performance and require a fine-tuning step to recover the loss [36]. On the
other hand, our method works as a regularizer which leads to better accuracy without the
requirement of postpruning fine-tuning step.

3. Redundancy in the Rank of Parameters

A neural network layer can be seen as a mapping from one (input) feature space to
another (output) feature space. This can be accomplished by combining several transforma-
tions. The most typical setting is to map the input feature space to an intermediate space
via an affine or linear transformation and map this space to the output feature space with
a nonlinearity. This not only applies to fully-connected networks and LSTMs but also to
CNNs since in practice convolution operation is reduced to a batch matrix multiplication
for efficiency [37]. We will later discuss how this setting can be extended to other neural
architectures.

Let x = [x1, x2, · · · , xn] ∈ Rn and y = [y1, y2, · · · , ym] ∈ Rm be some elements in
the input and output feature space of a fully-connected layer, respectively, and W =[
w>1 , w>2 , · · · , w>n

]
∈ Rm×n and b = [b1, b2, · · · , bm] ∈ Rm be the trainable parameters of

it. Then, the mapping from x to y using this layer is computed by

ŷ =
n

∑
k=1

xkwk + b (1)

y = f (ŷ), (2)

where f (·) is an element-wise nonlinearity such as the rectifier or sigmoid. Here, ŷ in (1)
can be interpreted as the coordinates of a point in the Cartesian coordinate system, given
x as the affine coordinates over the affine frame with origin b and basis W (assuming W
has full rank). Thus, the intermediate feature space is a linear subspace of Rm where its
dimension is the rank of Ŵ =

[
W, b>

]
(i.e., the column space of Ŵ).

The key idea is that if Ŵ is rank-deficient, the same mapping can be represented with
a smaller MLISstrict(Ŵ), where MLISstrict(A) denotes the maximal linearly independent
subset of matrix A. However, for fully-connected layers in modern neural architectures, n
and m are often in the order of hundreds or thousands [7,38]. In such a high dimension, a
set of vectors is almost always linearly independent, especially when they are randomly
initialized and optimized towards a certain objective. We argue that even in such a case,
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Ŵ can be almost linearly dependent, where some vectors in Ŵ can be defined as a linear
combination of the other vectors with a small error.

More formally, let a = [a1, a2, · · · , an+1] ∈ Rn+1 be a vector that satisfies

Ŵa> = 0>, a 6= 0, (3)

where 0 denotes the zero vector. Ŵ is said to be linearly dependent if such a exists. We
propose to introduce a slack variable ξ ∈ Rm such that

Ŵa> + ξ> = 0>, a 6= 0. (4)

Then, we can find the maximal linearly pseudoindependent subset of a matrix under
the condition given by (4). We denote this subset by MLISso f t(A). The amount of difference
that occurs when representing the column space of Ŵ using MLISso f t(Ŵ) can be controlled
by introducing a condition on the slack variable ξ, such as ‖ξ‖2 < τ. If the rank of
MLISso f t(Ŵ) is smaller than min(n + 1, m), which is the upper bound of the rank of Ŵ,
we can get a lossy mapping from the input feature space to the output feature space with
less free parameters. In such case, it can be said that there is redundancy in the rank of Ŵ.
This implies that there are always at least |n−m + 1| linearly dependent vectors along the
longer axis, and a square matrix is likely to have the least redundancy in its rank.

When ŷ is represented with MLISso f t(Ŵ), its outputs will lie in a lower-dimensional
subspace of the original space, spanned by MLISso f t(Ŵ). However, the dimensionality of
the feature space (i.e., outputs of y) can be higher than this subspace due to the nonlinear
activation function f (·). This suggests that the null space of Ŵ still could grant some
expressive power to this layer.

To close the gap between the upper bound of a parameter and its rank, one can lower
the upper bound by shrinking the size of this parameter. By doing so, the same function of
this neural network can be approximated with fewer trainable parameters, which leads to
a more compact parameter search space.

Another important aspect of the aforementioned interpretation, based on affine frame,
is that the input feature space’s entanglement is related to the orthogonality of the basis.
Feature space correlation occurs when some change along one basis vector has an effect in
the direction of other basis vectors. More formally, let vi, vj ∈ Rn be two basis vectors, and
ai, aj ∈ R be their coordinates. Then, the change along the direction of vj introduced by aivi

is given by aivi · vj/
∣∣vj
∣∣2vj - the orthogonal projection of aivi onto a straight line parallel to

vj. Based on this observation, the feature space could be decorrelated by orthogonalizing
the basis, but we leave this to a future work.

4. Proposed Method

In this section, we propose a novel method to manipulate the affine frame, based on
the theoretical analysis in the previous section. Reducing the size of a neural network
parameter based on its rank requires two steps. First, the parameter needs to be made rank
deficient, while identifying the linearly dependent vectors in it. Second, we need to find
a factorization of this parameter that approximates the original function, by fusing the
linearly dependent vectors together.

4.1. Making a Matrix Rank Deficient

We need to find a that satisfies (4), which in turn identifies vectors that can be repre-
sented with a linear combination of the other vectors. However, (4) has infinitely many
solutions since for any a that satisfies (4), ka where−1 ≤ k ≤ 1 also satisfies it. Furthermore,
without explicit control on the interdependence between vectors of W, there is no mean to
impose any bounds in ξ. To alleviate this issue, we propose a novel objective function that
encourages a matrix to be rank deficient.



Appl. Sci. 2021, 11, 725 5 of 15

A matrix is rank deficient when there are linearly dependent vectors, and the most
simple form of linear dependence is vi = kvj, k 6= 0 ∈ R. This means that vi and vj are
parallel or opposite to each other. Therefore, an objective function that encourages vectors
to be this way can make the matrix rank deficient. Among the family of trigonometric
functions, the value of sine function gets closer to zero when the angle between two vectors
approach either 0◦ or 180◦. Based on this fact, we build our objective function upon the
pairwise squared sine values of a matrix.

Another important factor to consider is the task-specific training objective of the
network. When the neural network is optimized for a task, the process can be seen as
finding the set of basis vectors of the affine frame that would lead to a desirable feature
space transformation. However, minimizing the pairwise squared sine values of a matrix
could push these basis vectors to other directions, which in turn can act adversarially
against the model’s primary training objective. Our preliminary experiments also supports
this hypothesis, where naively minimizing the pairwise squared sine value led to unstable
training and inferior performance.

To avoid this side-effect, we design the objective function so that it first chooses a pair
of vectors that is the closest to being parallel or opposite, and pushes it further towards
this direction. More formally, for a matrix W ∈ Rm×n, we propose RaRe (Rank Reducing)
loss which is defined as follows:

RaRe(W) = min
i

min
j 6=i

(
1− Dcos(i, j, W)2

)
(5)

Dcos(i, j, W) =
wi ·wj

‖wi‖
∥∥wj

∥∥ , (6)

where wi denotes the ith column of W. Since this loss function affects only a single pair of
vectors, it can only reduce the rank of a matrix by 1. This, however, is not a problem since
this pair will be merged into a single vector using the method described in the following
subsection. An alternative formulation which reduces the squared sine value of k pairs
instead of one is possible but performed worse than the proposed form in our preliminary
experiments.

4.2. Dynamic Low-Rank Approximation

When a pair of linearly dependent vectors in a matrix is identified, the size of this
matrix can be reduced by removing one of the vectors and representing it using the other
one. Given the network layer described by (1) and the columns i, j(i < j) as the linearly
dependent pair in W, we can create an equivalent function as follows:

x′ =
[
· · · , xi−1, xi+1, · · · ,

(r + 1)
s

xj, · · ·
]

(7)

r = Σwi/Σwj, s =
√

r2 + 1 (8)

W′ =
[
· · · , w>i−1, w>i+1, · · · , sw>j , · · ·

]
(9)

ŷ = W′x′> + b. (10)

This can be easily proved by setting wi = rwj. Since the transformation from x to
x′ can be implemented with a matrix multiplication, the problem becomes finding the
matrices W′ ∈ Rm×n′ , Q ∈ Rn′×n for the original matrix W ∈ Rm×n, such that W′Q = W
where n′ ≤ n. This can be accomplished by initializing Q0 ∈ Rn×n with an identity matrix,
and setting the jth row as the weighted sum of the ith and jth row as follows:

Q =
[
· · · , qi−1, qi+1, · · · ,

(
qi + qj × r

)
/s, · · ·

]
. (11)
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Then, (10) can be rewritten as:

ŷ = W′Qx> + b. (12)

The reduction process in (8), (9), (11), and (12) can be repeatedly applied whenever a
linearly dependent pair of columns is identified.

Similarly, it is possible to fuse pairs of linearly dependent rows. Once linearly depen-
dent rows has been identified after minimizing RaRe(W>), these rows can be fused by
introducing a matrix P ∈ Rm×m′ that satisfies PW′Q = W where m′ ≤ m. The process of
finding P and W′ is almost identical to (9) and (11), except the column operations become
row operations and vice versa. When reducing both rows and columns, the vector fusing
process along one axis can alter the pairwise angular distances along the other axis. The r
and s terms in (9) and (11) are introduced to prevent this issue.

When fusing two vectors with this method, one must choose the vector that is merged
to the other one. Since s is always greater than 1, the remaining vector’s magnitude increases.
If we choose to keep the vector with greater magnitude, it is more likely to be kept after
successive merges and become extremely large. This led to unstable training, so we choose
to keep the shorter vector. Even with this precaution, the average magnitude of the vectors
tends to increase after multiple merges. Therefore, we utilize L2 weight decay to counter
this effect.

Another factor to consider when shrinking the weight parameter is the choice of
axis to reduce. Since the upper bound of a m× n matrix’s rank is min(m, n), the longer
axis is likely to have more redundancy. This hypothesis was supported by preliminary
experiments, and we design this method to reduce along the longer axis only, keeping its
shape close to a square.

Theoretically, this is not an approximation method, since it produces an equivalent
function given that the merged pair of vectors are parallel or opposite to each other.
However, in practice we find it neither necessary nor efficient to impose such a strict
condition. Thus, we approximate the original function by allowing a slight angle between
the two vectors. More formally, we fuse wi and wj if 1− |Dcos(i, j)| < τcos. However, even
with a very strict value of τcos, large error could be introduced since large difference in a
single dimension would be amortized when calculating the cosine distance in a very high
dimensional space. Therefore, we propose to use the Euclidean distance between the two
vectors when their magnitudes are equalized, which is calculated as follows:

Deuc(i, j, W) =

∥∥∥∥∥wi
∥∥wj

∥∥
‖wi‖

− cwj

∥∥∥∥∥,

c =

{
1 if Dcos(i, j, W) > 0
−1 otherwise

.W

(13)

Then we fuse wi and wj if 1− |Dcos(i, j, W)| < τcos and Deuc(i, j, W) < τeuc. The value
of τcos and τeuc can be used to control how aggressively this method reduces the size of a
matrix.

4.3. Feature Space Reduction

Even though the feature space could have higher dimensionality than the outputs’
lower-dimensional subspace spanned by MLISso f t(Ŵ), the feature space can have redun-
dancy in its dimensionality as well. This is due to the fact that many widely-used nonlinear
activation functions such as the rectifier or the leaky rectifier are linear almost everywhere.
For example, when the rectifier nonlinearity is used, two or more output coordinates in the
feature space originated from a fused, single column of Ŵ have linear relationship when
they are expected to have the same sign. By exploiting this fact, we reduce the feature
space’s dimensionality by fusing these linear coordinates into one coordinate. Since this is
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not an approximation method, the feature space reduction is a lossless process. When the
feature space is reduced, the drop rate of Dropout should be modified to compensate the
change, and we linearly decay the rate r as follows:

r =
n
n0

r0, (14)

where n is the current dimensionality of the feature space, and n0, r0 are the initial values
of n, r, respectively.

4.4. Comparison with Low-Rank Approximation

This method can be seen as a form of low-rank approximation. However, there
are a few key improvements in this method. First, this process is dynamic, in the sense
that the desired rank of the matrix does not need to be predefined. As shown in the
experiments section, this leads to different sizes in each layer, allowing the model to have
more trainable parameters where needed and to remove parameters that do not affect
performance. Similar observations has been made in the automatic structured pruning
literature [36,39,40]. Second, in the factorized form PW′Q, only W′ is trainable, while P
and Q are nontrainable, sparse matrices with only m and n nonzero elements, respectively.
This always shrinks the size of the gradient-based parameter search space, which makes
the optimization process more efficient and effective. On the contrary, in the case of
factorizations where all factorized matrices are trainable, the number of free parameters
increases unless m′ and n′ becomes small enough to satisfy mm′ + m′n′ + n′n < mn. Third,
while most previous low-rank approximation methods focus on factorizing the parameter
matrices after the task-specific training is finished, our method is most effective when its
applied simultaneously with the training, since it is beneficial to the optimization process.
Last but not least, the matrix reduction is a deterministic process that does not require an
iterative method.

4.5. Input and Classification Layer

Unlike the hidden layers, the input and classification layers of a neural network serve
special purposes and need to be treated differently. The input layer converts the input
feature into a dense vector representation. If the size of an input dimension is reduced, part
of the input feature is lost, which can lead to degeneration of the performance. In order to
prevent this, we do not fuse any columns of the input layer’s parameter.

The classification layer refers to the layer that converts the output feature into logits,
which is typically the last layer of a discriminative model. While hidden layers can be
seen as functions that map one feature space to another, a classification layer evaluates
how close the final output feature is to each class vector [17,41]. Therefore, when two class
vectors (i.e., rows) of the classification layer’s parameter get fused, the model loses the
ability to distinguish these two classes. Hence, we do not merge any rows in the parameter
of the classification layer.

4.6. Frobenius Normalization

Even though the proposed method is orthogonal and can be used with many normal-
ization techniques such as Layer Normalization [42] or Batch Normalization [43], methods
that alter the pairwise angular distances between rows or columns could lead to unwanted
behavior. Weight Normalization [44] is an example of this case, since the magnitude-
decoupling process along one axis of a matrix would alter the pairwise angular distances
along the other axis. To alleviate this problem, we propose to use another form of reparam-
eterization called Frobenius Normalization. As its name suggests, the Frobenius norm of a
matrix is decoupled via a single trainable scalar, as follows:

FN(W) = kW/‖W‖F × g, (15)
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where k is the initial Frobenius norm of W, and g is the trainable scalar that controls the
norm of W, relative to k. Empirically, we find this normalization method to accelerate
parameter reduction and stabilize training.

4.7. Training Process

Applying the proposed method to a neural network is simple and straightforward. The
detailed training process is shown in Algorithm 1. Given a network with N weight matrices
W1, W2, · · · , WN , each matrix should be replaced with the initial factorized form PiW′ iQi,
where W′ i ∈ Rm′i×n′i is initialized with the values of Wi, and Pi ∈ Rmi×m′i , Qi ∈ Rn′i×ni are
initialized with an identity matrix. Then the total RaRe loss for this network is calculated
as follows:

LRaRe =
1
2c

N

∑
i=1

m′in
′
i[RaRe(W′ i) + RaRe(W′>i )], c =

N

∑
i=1

m′in
′
i. (16)

Algorithm 1: Training a neural network with Dynamic Low-Rank Approximation.
Input : neural network with parameters θ, set of 2-dimensional matricesW ⊆ θ
Output : trained neural network parameters θ

1 foreach Wk ∈ W do
// Wk is a m× n matrix.

2 Pk ← Im, Qk ← In, W′k ← Wk
3 end
4 while not converged do
5 Update θ towards minimizing L
6 foreach Wk ∈ W do
7 i, j← argmax

i,j

∣∣Dcos(i, j, W′k)
∣∣

8 if 1− |Dcos(i, j, W′k)| < τcos and Deuc(i, j, W′k) < τeuc then
9 Update W′k, Qk via (8), (9), and (11)

10 end
11 Update W′k, Pk by performing line 7–10 on the rows of W′k
12 Wk ← PkW′kQk
13 end
14 end
15 return θ

The weighting term m′in
′
i is introduced to encourage more reduction in larger parame-

ters. As mentioned in the earlier section, the L2 decay loss is calculated as follows:

LL2 =
1
N

N

∑
i=1

∥∥W′ i
∥∥2

2. (17)

These two loss functions are optimized in conjunction with the task specific loss Ltask:

L = Ltask + λ1LRaRe + λ2LL2. (18)

After each parameter update, the pair of vectors that satisfies (13) is merged using the
method described by (8), (9), (11).

Here, we assume that L is optimized using a gradient-based method, which requires
Ltask to be differentiable w.r.t. the input of the neural network in use. However, this
requirement puts minimal restrictions on the type of neural network that can be used,
since the use of differentiable neural architecture and loss function (e.g., cross-entropy loss)
is the de facto standard in current practice. This setting also mitigates the convergence
issue that the nonconvexity of LRaRe might carry. It has been suggested that gradient
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descent is reasonably effective at optimizing nonconvex functions [45,46], and in some
cases the benefits of using nonconvex functions outweigh the absence of convergence
guarantee [47]. The empirical results of this study also suggest that LRaRe, despite its
nonconvexity, improves the stability of the training process (Section 5.2).

4.8. Extending to Other Neural Architectures

So far, we have elaborated our claim and analysis based on the fully-connected net-
work architecture, centered on the parameter matrix. However, the proposed method is
independent from most architectural choices such as activation function, batch normal-
ization, and layer normalization. This makes it straightforward to apply this method to
architectures that build upon parameter matrices, such as Transformer [7] or Long-Short
Term Memory (LSTM) [48].

For other architectures, the concept of rows and columns in the parameter matrix
can be generalized using the affine frame interpretation. A column can be seen as the set
of elements in a parameter that share the same affine coordinate, and a row is the set of
elements that contribute to the same coordinate in the intermediate feature space (i.e., the
output space of (1)). In the case of Convolutional Neural Networks (CNN), the weight
parameter (i.e., kernel) is typically a 4-dimensional tensor with shape H ×W × Ci × Co,
where H, W, Ci, Co are the kernel’s height, width, number of input channels, number of
output channels, respectively. Here, a column has the shape of 1× 1× 1× Co and a row
has the shape of H×W ×Ci × 1. Hence, it would be possible to extend this work to reduce
the size of a convolution kernel, but we leave this to a future work.

5. Experiments
5.1. Experimental Setup
5.1.1. Models

We use multilayer fully-connected networks to test our hypothesis that reducing the
redundancy in the rank of neural network weights could not only reduce the number of
free parameters but also help the optimization process. For the baseline model, the network
configuration is 784-500-500-500-500-500-10 units which uses the rectifier activation func-
tion in the hidden layers and the softmax function in the output layer. All layers, except the
output, are regularized using Dropout with 20% drop rate. It is optimized by minimizing
Ltask, which is the cross-entropy loss between the model’s prediction and the label. To help
training, gradient noise is added as in Neelakantan et al. [49].

To evaluate the proposed method, we minimize L in (18) and fuse linearly dependent
pair of vectors after each update. We use λ1 = 20.0, λ2 = 0.1 for all experiments unless
otherwise stated. For the values of τcos and τeuc, we find 1e−4 and 1e−1 to be good values,
respectively, that balances size reduction effectiveness and stable training. Since the dataset
has no validation set, the hyperparameters were chosen using 10% of the training data,
which were held-out during training.

All models are trained for 2000 epochs using the Adam optimizer [50] with learning
rate 1e−3 and β1 = 0.9, β2 = 0.999.

5.1.2. Dataset

We use the Fashion-MNIST dataset [51] to train and evaluate all models. This has the
same format (image shape, number of training/test instances, number of classes) as the
MNIST dataset but is considered to be more challenging since each image represents a
fashion item. No augmentation or preprocessing is performed on the data.

5.2. Results

We use accuracy as our evaluation metric, which is the standard metric in this dataset.
Accuracy is defined as the percentage of correct predictions and can be acquired by dividing
the number of correctly classified test samples with the total number of test samples.
Compression rate is the fraction of parameters removed, compared to the initial number of
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parameters. To test the statistical significance between different configurations, we train
each model 20 times with same hyperparameters but with different random seeds and
report the mean and standard deviation.

The change in accuracy and training loss over the course of training is plotted in
Figure 1. We also plot the moving average of 20 epochs to highlight the trend. As can be seen,
the proposed method achieves the best accuracy of the baseline model, plotted with a dashed
line, in just around 280 epochs. This is about 7.1× speedup in terms of number of training
steps. Even after this point, the accuracy of this method keeps increasing and reaches to a
significantly higher point. The cross entropy loss of the proposed method decreases faster
to a lower point compared to the baseline, while also exhibiting less deviation. These results
suggest that the proposed method makes the training process more effective and efficient.
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Figure 1. (a) Test set accuracy and (b) training loss over the course of training. We also plot the moving average of 20 epochs.

In Table 1, the result of an ablation study is summarized. To account for the noise
from mini-batched training, all numbers are the average of the last 5 epochs. Please note
that we do not show the result of minimizing LRaRe alone, since it would only reduce the
pairwise sine value of a single pair of vectors and had almost no effect on the model. When
Frobenius Normalization is applied to the baseline model, there is a little improvement in
accuracy and decrease in standard deviation. However, the difference is not statistically
significant with p > 0.1. On the other hand, with both Frobenius normalization and
dynamic low-rank approximation, we see an average of 2.09% relative error reduction
with p < 0.001. The proposed method is also most reliable in achieving the accuracy, as
indicated by the lowest standard deviation. This is more encouraging given the fact that
our model has 30.65% less trainable parameters.

Table 1. Ablation results, on the Fashion-MNIST test set after training for 2000 epochs. Acc = accuracy, Comp = compression
rate, # Param = number of trainable parameters, FLOPs = number of floating point operations for a single inference step,
FN = Frobenius normalization, DLRA = dynamic low-rank approximation. P-values are calculated against the baseline
model.

Acc. (%) p-Value Comp. (%) # Param. FLOPs

Baseline 90.45 ± 0.21 N/A 0.00 1.40 M 2.79 M
+FN 90.51 ± 0.18 1.99 × 10−1 0.00 1.40 M 2.79 M

+DLRA (λ1 = 20.0) 90.65 ± 0.15 3.72 × 10−4 30.65 ± 0.97 0.97 ± 0.01 M 2.09 ± 0.03 M

There are three hyperparameters that affect the compression—τcos, τeuc, and λ1. Over-
all, we find that λ1 is more suitable at controlling the compression rate than τcos or τeuc,
since the effect of the latter two hyperparameters is less predictable as shown in Figure 2.
For this reason, we fix the values of these two hyperparameters and control the model
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compression using λ1 in the following experiments. It is worth noting that all combinations
of τcos and τeuc that we have tested still outperformed the baseline model.

-
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Figure 2. The effect of τcos and τeuc on model training and compression. (a) Accuracy (%) on the test set. (b) Compression
rate (%) at the end of the training process.

To have a better understanding on the effect of compression on the accuracy, the
proposed model is trained with different values of λ1 and the result is plotted in Figures 3
and 4. Again, we measure the average of 20 training runs. Overall, we find that increasing
its value leads to a model with fewer trainable parameters as expected. However, this
method is less sensitive and λ1 needs to be changed in an exponential scale to have a
noticeable effect. Another thing to note is that a large portion of the reduction in the rank is
concentrated on the early phase of training as shown in Figure 4a. We hypothesize that as
the training progresses, more parameters become necessary to the model’s objective which
makes the rank reduction more difficult.

Intuitively, a model’s performance should decrease as the number of trainable param-
eters decreases if the model is utilizing all of its weights. However, we find that this is
not the case. As can be seen in Figure 3a, the model does not suffer serious degradation
in accuracy to the point where 34.22% of the parameters are removed (λ1 = 40.0). On
the other hand, forcing the model to use even fewer parameters leads to a dramatic drop
in performance. This can be observed more clearly when the accuracy is plotted as a
function of compression rate in Figure 3b. Merely removing 6.91% more parameters from
this point results in a model less accurate than the baseline. In addition, the model with
10.41% (λ1 = 1.0) compression performs worse than the models with 27.22% (λ1 = 10.0)
and 30.65% (λ1 = 20.0) compression. These results indicate that redundancy in the rank of
neural network’s weight can negatively impact the model, and our proposed method is
effective at reducing it.

To analyze the amount of redundancy present in each parameter, we summarize the
feature, input, and output dimensions after training in Figure 4b–d and Table 2. Overall,
all parameters’ shapes become close to a square, due to the reduction process. However,
the dimensions of each layer differ while the weighting term in (16) is the same for layers
2 to 5. Similar results were reported in the network pruning literature [36,52] and this
suggests that our method is able to effectively identify and remove redundant part of the
model. Further, even though the weighting term in (16) of layer 6 is the smallest, its input
dimension is reduced most aggressively. Given that this parameter has the highest value of
|n−m|, this supports our hypothesis that the redundancy is high when the matrix is rank
deficient. The dimensionality of the feature space lies in between the initial value and the
layer’s output dimension, which is in line with our claim that the feature space can have
higher dimension than the output space due to the nonlinear activation function but still
has redundancy which is possible to be removed.
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Figure 3. (a) The change in compression rate and accuracy with varying values of λ1. (b) Test set accuracy plotted as a
function of compression rate. The compression rate of the baseline model is 0% and its accuracy is plotted in black dashed
line for reference.
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Figure 4. Characteristics of model compression with different values of λ1. (a) The compression rate of the proposed
method over the course of training. (b–d) Feature space, input, and output dimension of each layer after training is finished.

6. Conclusions and Future Directions

In this paper, we have provided theoretical and empirical analysis about a novel type
of redundancy that can exist in the rank of neural network parameters. Since the actual
rank of a parameter can be lower than the upper bound imposed by its size, closing this gap
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can lead to better training dynamics and fewer trainable parameters. Based on this analysis,
we proposed a regularization-by-pruning method that has the side benefit of reducing the
size of parameters. This has two parts, where the first part is a loss functions that makes
the parameter rank deficient, and the second part is a dynamic low-rank approximation
method that reduces the size of this parameter. Empirical analysis of this method shows
that it can surpass the baseline accuracy with 7.1 times less training steps and provides an
average of 2.09% relative error reduction, on top of Dropout. Furthermore, the proposed
model has 30.65% less trainable parameters.

Table 2. Learned model architecture with λ1 = 20.0. Init = initial size.

Layer 2 3 4 5 6

Input init. 500 500 500 500 500
Input avg. 413.95 400.20 351.40 346.85 10.00
Input std. 4.92 5.07 13.83 10.01 0.00

Output init. 500 500 500 500 10
Output avg. 414.90 401.20 351.45 347.15 10.00
Output std. 4.97 5.07 13.76 10.30 0.00

Feat. avg. 417.00 406.15 359.30 353.45 10.00
Feat. std. 4.93 5.04 14.63 10.72 0.00

As for future research directions, we plan to investigate deeper about the character-
istics of the affine frame of neural networks. Extending the proposed method to other
architectures such as CNN and analyzing the effectiveness would be an important step
as well. In addition, investigating this method’s pruning effect and combining it with
other pruning methods can lead to smaller models, which is essential for resource-limited
environments such as mobile devices.
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