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Abstract: Transformation of a Bessel beam by a lens results in the formation of a “perfect” vortex
beam (PVB) in the focal plane of the lens. The PVB has a single-ring cross-section and carries an
orbital angular momentum (OAM) equal to the OAM of the “parent” beam. PVBs have numerous
applications based on the assumption of their ideal ring-type structure. For instance, we proposed
using terahertz PVBs to excite vortex surface plasmon polaritons propagating along cylindrical
conductors and the creation of plasmon multiplex communication lines in the future (Comput. Opt.
2019, 43, 992). Recently, we demonstrated the formation of PVBs in the terahertz range using a
Bessel beam produced using a spiral binary silicon axicon (Phys. Rev. A 2017, 96, 023846). It was
shown that, in that case, the PVB was not annular, but was split into nested spiral segments, which
was obviously a consequence of the method of Bessel beam generation. The search for methods of
producing perfect beams with characteristics approaching theoretically possible ones is a topical
task. Since for the terahertz range, there are no devices like spatial modulators of light in the visible
range, the main method for controlling the mode composition of beams is the use of diffractive
optical elements. In this work, we investigated the characteristics of perfect beams, the parent beams
being quasi-Bessel beams created by three types of diffractive phase axicons made of high-resistivity
silicon: binary, kinoform, and “holographic”. The amplitude-phase distributions of the field in real
perfect beams were calculated numerically in the approximation of the scalar diffraction theory. An
analytical expression was obtained for the case of the binary axicon. It was shown that a distribution
closest to an ideal vortex was obtained using a holographic axicon. The resulting distributions were
compared with experimental and theoretical distributions of the evanescent field of a plasmon near
the gold–zinc sulfide–air surface at different thicknesses of the dielectric layer, and recommendations
for experiments were given.

Keywords: beams with orbital angular momentum; diffractive axicons; surface plasmon polaritons;
terahertz range

1. Introduction

Photon beams with an orbital angular momentum (OAM), or vortex beams, are well
known and have been used in optics for 25 years. The history of their research and fields of
application were described in a recent review [1]. More recently, the application of OAM
beams in the terahertz range began. A review of methods for generating vortex beams in
this spectral range can be found in [2]. One of the applications of vortex beams in nano-
optics is the generation of concentrically converging surface plasmon polaritons (SPPs) on
flat conducting surfaces. To excite them, the vortex beam illuminates narrow circular or
spiral slits that are cut, for example, in a metal–insulator–metal sandwich [3] to excite an
SPP on the metal layer on the opposite side. At a certain spatial-phase distribution of the
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electromagnetic field of plasmons, their orbital angular momentum relative to the axis of the
system will be nonzero. Surface plasmons of this kind have been obtained experimentally
in the visible range in many works (see, for example, [4–6] and reviews [7,8]).

It is possible, however, to excite another type of vortex plasmons, which propagate
along an axisymmetric conductor and simultaneously rotate around its axis. In this case,
the Poynting vector of a plasmon moves helically over the conductor, and, therefore,
the plasmon carries an orbital angular momentum. In Ref. [9], we proposed using a
combination of vortex surface plasmon polaritons propagating along a metal wire to create
a multiplex plasmon transmission line, which is similar to using vortex beams for multiplex
communication in free space [10]. Since the propagation length of plasmons in the visible
range is of the order of 10 µm [11], in transmission lines of macroscopic dimensions, it is
necessary to use terahertz or mid-infrared radiation. In [12], experiments performed at a
wavelength of 141 µm demonstrated for the first time the excitation of vortex plasmons
on an axisymmetric conductor and their propagation over a distance of 100 mm. To excite
plasmons on the cylinder, higher-order vortex beams illuminated its end face (the end-fire
coupling technique [13]). In this excitation method, the spatial distribution of the complex
amplitude of the electric field of the vortex beam and its overlap with the distribution of
the vortex plasmon field play an important role. The vortex plasmon field distribution is
determined both by the properties of the conductor material and the wavelength of the
incident radiation, as well as by the topological charge of the exciting beam.

When creating a multiplex line, it is necessary to simultaneously launch several vortex
plasmons with different topological charges on a cylindrical conductor. Therefore, the
beams exciting these plasmons must have equal diameters, and all wave energy must be
concentrated in one annular beam. Theoretically, so-called perfect beams possess such
properties [14,15]. Such beams are generated due to focusing by a lens of Bessel beams
of different orders with the same transverse wave numbers [16]. In practice, however,
“perfect beams” are far from perfectness. The reason is that, in reality, there are no ideal
Bessel beams with an infinite cross-section and infinite energy. The properties of real Bessel
beams depend on the methods of their generation, which have even a greater effect on the
characteristics of perfect beams, as will be shown below.

In the visible range, Bessel beams are usually generated via formation of phase trans-
parencies using commercially available spatial light modulators. No radiation modulators
are available so far in the terahertz range, and phase diffractive elements [17] made of plas-
tics [18] or silicon [19] are mostly used. This work is devoted to analytical and numerical
study of the characteristics of ideal beams obtained using diffractive phase axicons. In Sec-
tion 2, we describe the characteristics of three types of axicons that can be used to generate
Bessel beams. In Section 3, we explain the experimental setup in which ideal beams will be
used, present an analytical calculation of the electric field of an ideal beam for the case of a
binary phase axicon, and perform a comparison with numerical calculations. In Section 4,
ideal beams created by different types of axicons are compared. Section 5 is devoted to a
discussion of the results and their use in experiments on excitation of vortex plasmons.

2. Techniques for Bessel and Perfect Vortex Beam Formation
2.1. Bessel Beams

The electrical field of Bessel beams (BBs) is described by the expression

E(r) = E0 J`(κr) exp(ikzz + i`ϕ), (1)

where J`(κr) is the Bessel function of the first kind of the order `, k = (k2
z + κ

2)
1/2, and ϕ is

the azimuth angle. Hence, they are (see, for instance, [2]) a superposition of plane waves:

E(r) = E0 exp(ikzz)
∫

aκ`(k⊥) exp(ikr)
d2k⊥
(2π)2 , (2)
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which converges conically to the optical axis under the angle

θk = atan(κ/kz), (3)

and the Fourier amplitudes of which are described by the following expression:

aκ`(k⊥) = i−` exp(i`ϕk)
2π

k⊥
δ(k⊥ − κ). (4)

In optics, the quantum number ` is called the topological charge. From the above
expressions, one can see that the ideal Bessel wave has infinite transverse size, infinite
energy, and, like a plane wave, cannot exist in reality. A superposition of Bessel waves,
however, can be used for an analytic description of really existing radiation modes—for
example, Laguerre–Gaussian beams.

As seen from Equations (1)–(4), some properties of Bessel beams are of interest in
terms of use in real-life optical systems. The maximum beam intensity is in the vicinity of
the beam optical axis; the intensity in the beam cross-section does not change with distance;
higher-order beams have an orbital angular momentum (OAM). Due to these properties,
the beams are “non-divergent”. The intensity distribution in the beam cross-section is
capable of “self-recovery” after the beam’s passage through obstacles and during the
beam’s propagation in turbulent media [20]. The beams can transfer angular momentum
to micromechanical systems and particles [21,22].

2.2. Methods of Forming Quasi-Bessel Beams

Equations (2)–(4) show how beams with properties close to those of ideal Bessel beams
can be formed in real life. Here, we will call them quasi-Bessel beams (QBBs). To this end,
it is necessary to use conically converging beams. A zero-order Bessel beam, for example,
is formed behind an axicon (conical lens) illuminated by a beam with a plane wavefront.
If a spiral phase plate is added to the axicon [13], then a higher-order Bessel beam can be
formed (Figure 1a). The phase transmission function of such a hybrid element, which can
be called a spiral axicon (SA), is described by the expression

tSA(r,ϕ) = −kαr(n− 1) + `ϕ ≡ `ϕ− κr, (5)

where α is the cone-apex angle, and n is the refractive index of the material. Such axicons
were fabricated using a 3D printer to generate Bessel beams at a radiation frequency
of 0.3 THz in [18]. Since we are interested in radiation frequencies that are an order of
magnitude higher and greater radiation powers, such volumetric plastic elements cannot
be used because of the strong absorption of radiation and thermal destruction of plastic
(see Figure 8 in [14]). In additions, the elements have the drawback of the ability to operate
only at one given wavelength.

This problem can be solved by forming quasi-Bessel beams via the use of phase
diffraction gratings with a given phase shift distribution, which are also called diffractive
axicons [17]. Figure 1b–d presents three types of diffractive axicons. The phase function of
a binary axicon (BA) is described by a stepwise profile

ΦBA(r,ϕ) =
π

2
sign(sin(`ϕ− κr)), (6)

where

sign(x) =


+1 x > 0
0 x = 0
−1 x < 0

, (7)

and p = 2π/κ is the axicon period.
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Figure 1. Optical elements for formation of quasi-Bessel beams. (a) Spiral axicon forming a beam with a topological charge
` = +1. (b–d) Phase axicons forming beams with topological charges ` = +3: binary axicon (b), kinoform axicon (c),
and holographic axicon (d). All phase axicons are 50 mm in diameter and designed for operation at wavelength λ = 141 µm.
(e) The calculated intensity distributions of quasi-Bessel beams with |`| = 3 formed by any of the phase axicons at a distance
of 120 mm are identical. The size of frame is 20× 20 mm. In (b–d), the phase grows from 0 (black) to 2π (white).

A kinoform axicon (KA), as seen in Figure 1c, differs from the previous one in the
fact that within each period, the phase incursion decreases linearly along the radius by the
value 2π

ΦKA(r,ϕ) = `ϕ− κρ− 2πfix
(
`ϕ− κρ

2π

)
, (8)

where the function fix(z) converts a real number into an integer, discarding the fractional
part. Essentially, this axicon is a diffractive analogue of a refractive spiral axicon (SA) (see
Equation (5)).

Another axicon, which we, following [23], will call the holographic axicon (HA), has
a profile that is step-wise in radius, but continuous in azimuth (Figure 1d). The width of
the zones of this axicon, unlike the previous ones, is not constant, but is determined by
the position of the zeros of the Bessel function [24]. In our notation, this function can be
written as follows:

ΦHA(r,ϕ) = `
(
ϕ+ π + H(J|`|(κr)) · π/|`|

)
− 2πfix

(
`(ϕ+ π + H(J|`|(κr)) · π/|`|)

2π

)
. (9)

This expression is derived from (5), but the spiral plate is divided into zones along the
radius. The zones are between the zeroes of a Bessel function of a given order, in which the
point of reference for the azimuth angle ϕ, which is an argument of the function Φ(r,ϕ), is
shifted by ∆ϕ = π/|`| for odd zones using the Heaviside function

H(x) =
sign(x) + 1

2
=


+1 x > 0
0.5 x = 0
0 x < 0

. (10)

For the sign of the beam topological charge to change, the transparency must be
rotated through 180 degrees about the axis lying in the plane of the diffractive element and
passing through its center.

All the elements described above make it possible to form QBBs with the same
intensity distribution in the cross-section, which coincides well with the Bessel function,
and a phase function that corresponds to the exponent in Equation (1), but exists only on a
certain limited length (after which they collapse):

Z∗ = D/2 tan(θk) ≈ D/2θk, (11)

where D is the diameter of the element. Hereinafter, we will assume that the angles θk are
small. In this case, beam propagation can be described in the approximation of the scalar
theory of diffraction. The so-calculated intensity distribution over the beam cross-section
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for the case of ` = 3 is shown in Figure 1e. Hence, we can conclude that diffractive axicons
can be used in any optical systems in which it is required to form Bessel beams whose
cross-section practically does not differ from that of the ideal BBs. Later on, however, we
will see that a more detailed analysis reveals important differences in the characteristics of
these beams.

Let us now discuss the technical side of the issue. In the visible range, phase trans-
parencies can be generated, as discussed in the introduction, using commercially available
spatial light modulators (SLMs) based on liquid crystals, whereas in the long-wave range,
it is necessary to make optical elements from plastic or other materials transparent in
this range. In the mid-infrared and near-terahertz ranges, materials absorb more strongly,
and making helicoidal axicons with a continuous or step-wise profile requires the use of
complicated technologies (multistep photolithography or laser ablation [25]). In addition,
high-power free-electron lasers and wavelength-tunable sources of mid-infrared and ter-
ahertz radiation require elements with high radiation resistance and that are capable of
operating with the radiation wavelength tuned within several tens of a percent. Hence,
subject to the above requirements, binary axicons (Figure 1b) made of high-resistance sili-
con are the most suitable (at least in the first experiments). This work will mostly address
these axicons. Bessel beams with an OAM (vortex beams) in the terahertz range were first
obtained using such axicons [26].

2.3. Transformation of Quasi-Bessel Beams into “Perfect Vortex Beams”

As follows from expression (1), the diameters of the rings of Bessel beams grow with
the topological charge `. For some applications, for example, when radiation is input into
dielectric fibers, this property is a disadvantage. In the case of Bessel beams, the problem
can be solved by transforming them using a lens. From (1)–(4), it follows that, regardless of
the magnitude and sign of the topological charge, if the beams have the same transverse
wave number κ, they form an annular beam of the radius

R f ≈ f
κ

kz
≈ κ

k

(
1 +

κ2

2k2

)
f ≈ κ

k
f (12)

in the focal plane of the lens, the beam topological charge being equal to the charge of the
initial beam. Such beams are usually called “perfect vortex beams” [14]. The amplitude-phase
distribution in the real “perfect vortex beams”, however, depends on the method used to
create the “parent” quasi-Bessel beam. In [27], the authors showed that the radius and width
of the ring of ideal beams obtained by focusing of Bessel–Gaussian beams increased with the
topological charge and demonstrated that in experiments at a wavelength of 623 nm.

3. Analytical Expressions for Vortex Beams Formed with Binary Axicons
3.1. Optical Scheme and Coordinate Sysem

For the reader to understand the meaning of the calculations performed in this section,
as well as the characteristics of axicons and wavelengths selected for numerical examples,
we present here a diagram of the experimental setup (Figure 2) for which these calculations
are carried out. A linearly polarized Gaussian beam I = I0 exp(2r2/w2) from the Novosi-
birsk free electron laser (NovoFEL) with a plane wavefront (wavelength of 141 µm and
mode radius w = 11 mm) enters the user station through two radiation-resistant tungsten
wire polarizers (P), the characteristics of which are described in [28]. The first polarizer
is to regulate the beam power, and the second polarizer provides vertical polarization of
the beam. Then, the beam passes through the beam polarization converter, which forms a
vector beam [29] with the radial direction of polarization. In the experiments, the vector
beam is formed using a Mach–Zehnder interferometer [30] or a segmented half-wave
plate [31]. The laser radiation is an infinite train of 100-ps pulses with a repetition rate
of 5.6 MHz. The average power of the NovoFEL Gaussian beam in the experiments is
50–100 W. Even after 50% attenuation of the beam because of the Fresnel reflection on
the axicon, the beam energy was sufficient to fire a paper sheet, which was also partially
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transparent for terahertz radiation, in several seconds (Figure 3). Preliminary experiments
showed that after the vector beam passed through the BA and the lens, an annular beam
was formed at the lens focus, which retained its radial polarization.
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3.2. Vortex Beams behind Binary Axicon

In [26], the authors used binary phase axicons similar to that shown in Figure 1b to
form Bessel beams of the first and second orders in the terahertz range. The cross-section of
one of these beams, which was recorded using a microbolometer array detector, is shown
in Figure 3. In [26], it was shown analytically that the electric field of a wave at a distance
z′ behind the axicon can be written in the paraxial approximation as

E(z′, ρ, θ) =
4k
πz′

(−i)`eik(z′+ρ2/2z′) ×
∫ a

0
J`

(
k
z′

r′ρ
)

sin[(κr′ − `θ)]eikr′2/2z′r′dr′. (13)

Hereinafter, we use the coordinate system shown in Figure 2. We employed the polar
coordinates (r′,ϕ) for the axicon plane and the coordinates (ρ, θ) in the space behind the
axicon and in the lens plane. The upper limit of the integral is the axicon radius a.

As shown above, the region of existence of quasi-Bessel beams is determined by
expression (11). A simplified analytical expression for the electric field of the Bessel beam
was derived from (13) for the region a << z < zA (zA = ka/κ):

E(z′, ρ, θ) ∝
2κ
π
(−i)`−1

√
2πiz′

k
ei`θ+ik(z′+ρ2/2z′)−iκ2z′/2k J`(κρ), (14)

and for the intensity:

I(z′, ρ, θ) ≈ J2
`
(κρ)

8κ2z′

πk
. (15)
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One can see that the cross-section of the beam intensity exactly corresponds to the
Bessel function. The analytical calculations in [19] were finished on this expression, and
further results were obtained using numerical simulations and experiments. Since in this
work, we are interested in the excitation of plasmons by means of diffraction of radiation
on an end face of a cylindrical conductor, it is useful to derive, as an intermediate stage,
analytical expressions for beams illuminating such a conductor. In the next section, we will
find analytical expressions for converting beams described by expression (13) using a lens.
Since the lens diameter is approximately equal to the axicon radius a, which is much larger
than the diameter of the first rings of the Bessel beam, in the further calculations, we used
expression (13), which does not contain further simplifications, as an initial expression for
the wave illuminating the lens.

3.3. Transformation of Bessel Beams Formed by Binary Axicons into Perfect Vortex Beams Using
a Lens

Below is the expression for a beam that has passed through a thin lens with a focal
distance f [16,32]:

E(z, r, ψ) = − ikeikz

2πz
e

ikr2
2z

aL∫
0

2π∫
0

ρdρdθE(zL, ρ, θ) e
ikρ2

2 ( 1
z−

1
f )e−

ikρr
z cos(θ−ψ), (16)

where E(zL, ρ, θ) is the amplitude of the wavefield incident on the lens and aL is the lens
radius. Placing a thin lens at the distance z′ = zL from the axicon and taking into account
the fact that k− κ2/2k ≈ kz, after some transformations, we get the following expression at
the distance z behind the lens:

E(z, r, ψ) = (−i)2`+14k2

πzzL
eik(z+zL+

r2
2z )×

×
∫ aL

0 ρdρ J`
(

kρr
z

)
e

ikρ2
2 ( 1

zL
+ 1

z−
1
f )
{∫ a

0 J`
(

k
zL

r′ρ
)

sin(κr′ − `ψ) eikr′2/2zL r′dr′
} (17)

Here, r′ and ψ are the polar coordinates in the plane of the lens and aL is the radius of
the lens. Since

F1(r′, ρ, r) =
2π∫
0

sin[(κr′ − `θ)] e−
ikρr

z cos(θ−ψ)dθ = 2π(−i)` J`

(
kρr
z

)
sin)κr′ − `ψ), (18)

we have

E(r, ψ, z) =

= − (−i)2`−14k2eik(z+ZL+r2/2z)

πzZL

∫ a
0

{
aL∫
0

J`
(

kρr
z

)
J`
(

k
ZL

r′ρ
)

ei kρ2
2 [ 1

ZL
+ 1

z−
1
f ]ρdρ

}
sin(κr′ − `ψ)eikr′2/2ZL r′dr′

(19)

Making a trivial substitution ρ2 = x in the integral with respect to ρ, introducing the
variable ZL f = (1/zL + 1/z− 1/ f )−1, and expanding the upper limit of integration aL to
infinity, we get the following integral, the value of which is given in [33] (see Appendix A):

F2(r, r′) =
∫ ∞

0

[
J`
(

k
zL

r′ρ
)

J`
(

kρr
z

)
e

i kρ2
2ZL f

]
ρdρ = 1

2

∫ ∞
0

[
eix(k/2ZL f ) J`

(√
x kr

z

)
J`
(√

x kr′
zL

)]
dx =

= i
ZL f

k I`
(

iZL f
krr′
zzL

)
exp

{
−i

ZL f k
2

[(
r′
zL

)2
+
( r

z
)2
]}

=

= i`+1 ZL f
k J`

(
ZL f

krr′
zzL

)
exp

{
−i

ZL f k
2

[(
r′
zL

)2
+
( r

z
)2
]}

.

(20)
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Substituting the resulting expression (20) into (19), we obtain the final expression for
the field behind the lens:

E(z, r, ψ) =
(−i)`4kZL f

πzzL
eik(z+zL+

r2
2z−

ZL f r2

2z2 ) ×
∫ a

0
J`

(
ZL f

krr′

zZL

)
e
−ik

ZL f r′2

2z2
L sin(κr′ − `ψ) eikr′2/2zL r′dr′ (21)

For the distance z = f, which is the main interest to us, we get the field amplitude

E( f , r, ψ) =
(−i)`4k

π f
e

ikr2
2 f (1− zL

f ) ×
∫ a

0
J`

(
krr′

f

)
sin(κr′ − `ψ) r′dr′, (22)

where we omitted the insignificant constant phase factors in the exponent. The integrals
in expressions (21) and (22) cannot be taken analytically; therefore, further calculations
(see below) will be performed numerically. Based on the law of conservation of angular
momentum, one can assume that the beam behind the lens has the same topological
charge as the quasi-Bessel beam created by the axicon. In expressions (21) and (22), this
dependence is hidden in the harmonic term under the integral (compare with Equation (5)).

3.4. Perfect Vortex Beams: Graphical Representation

As already mentioned in Section 3.1, Bessel beams formed by diffractive axicons have
features that are not manifested in the intensity distribution, but are present in the phase
distribution. When the beams are transformed by a lens, which is a Fourier transformer,
these features are manifested in the spatial distribution too. Since our next task will be
excitation of surface plasmon polaritons using perfect beams, the efficiency of plasmon
excitation will depend on the features of the amplitude–phase distribution in the beams. In
Figure 4, we present graphs of the distributions of fields and intensities in the lateral and
longitudinal sections of perfect beams with the topological charges ` = 0, 1, 2 constructed
based on Equations (21) and (22). Together with the plots for the Bessel beams presented
in [26], they can serve as a useful reference for planning experiments with binary phase
axicons. It is seen from the figure that in the case of beams created by binary spiral axicons,
the intensity distribution at the focus is much more complicated than that for the ideal
“perfect beams” (12). Instead of a single ring, we see (Figure 4a,b) a structure of nested rings
(at ` = 0) or nested segments of spirals (at |`| > 0). However, most energy is concentrated
in the annular region corresponding to the radius R f . In Figure 4a, the direction of the
twisting of the spirals corresponds to beams with a negative topological charge when the
observer looks along the axis z.

Figure 4c shows the effect of the diffraction of beams because of the limited beam
diameter. It is seen that the beam cross-section is not symmetric with respect to the focal
plane. This feature can be used for adjustment of the diameter of the “perfect beam” to the
diameter of the conductor on which surface plasmon polaritons are to be excited. The phase
distribution in the ring is also quite complex and can affect the efficiency of SPP generation.
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Figure 4. Distribution of intensity I(r, ψ, z) = E(r, ψ, z) · E∗(r, ψ, z) of vortex beams with ` = 0,−1,−2 (left, middle, and
right columns, respectively) created by binary axicons with periods p = 3.1 mm in the space behind the lens with focal
length f = 100 mm. Dimensions are in millimeters. (a,b) Distribution of I(r, ψ, f ) in the focal plane of lens, calculated by
Formula (22). (c) Longitudinal section of the same beam I(r, 0, z) for 80 ≤ z ≤ 120 mm, calculated using Formula (21). The
radiation wavelength is 141 µm.

4. Comparison of Wavefields of “Perfect Beams” and SPPs
4.1. Characteristics of SPPs on Axisymmetric Conductors

In this section, we will discuss the features of plasmon excitation by the end-fire cou-
pling technique [13], which we must take into account when evaluating the applicability of
one or another axicon for this. Surface plasmon polaritons [34] are essentially coupled os-
cillations of electrons in the surface layer of a conductor and a p-polarized electromagnetic
field in an adjacent dielectric, which propagate along the surface. The field strength goes
down on both sides of the interface, and the wave energy decreases due to ohmic losses in
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the conductor. In the case of cylindrical geometry, the normal component of the plasmon
field value F(r) decreases according to the law (see, e.g., [35])

F(r) =


I1(pmr)

I1(pmaw)
r < aw

K1(pdr)
K1(pdaw)

r > aw

, (23)

where I1(•) and K1(•) are modified first-order Bessel functions of the first and second

kind, respectively, pm,d =
√

k2
s − k2

0εm,d and εm,d are the dielectric permittivities of the
metal and dielectric, respectively, ks is the wave vector of plasmon, and aw is the radius of
the cylinder.

Our prime interest is the efficiency of the excitation of the plasmon that rotates
while propagating along a conductor with a frequency determined by the orbital angular
momentum of the exciting beam; therefore, as a model of a plasmon, we will choose an
electromagnetic wave that has the following field distribution over the surface

F(z, r, ψ) =
K1(pmr)

K1(pmaw)
ei`ψe−γ(z− f ), r > aw (24)

and carries an orbital moment corresponding to the moment of the exciting wave. Here, γ
is the decay constant of the amplitude of the surface wave during the propagation of the
plasmon along the cylinder. In the terahertz range, for metals such as copper and gold,
the plasmon propagation length varies from centimeters to tens of centimeters [34], that is,
by an order of magnitude; the attenuation coefficient of the surface wave along the z-axis
is 10−2 mm−1. With a conductor diameter of several millimeters, the electric field decays
almost exponentially with respect to the radius:

F(z, r, ψ) = e−β(r−aw)ei`ψe−γ(z− f ). (25)

In this case, the decay constant β must be close to the respective value for plasmons
on flat surfaces. For a gold surface with a zinc sulfide coating that is 0 to 1.5 µm thick, the
measured β values are in the range of 0.3÷ 5 mm–1 [36]. According to experiments [37],
the optimal thickness of the dielectric coating, which ensures good coupling of the plasmon
with the surface and reduces parasitic radiation losses, is approximately 1 µm. In this case,
the characteristic decay length for the evanescent wave in air is approximately 200–300 µm,
that is, practically all energy of the plasmon field is concentrated within a cylindrical layer
that is less than 0.6 mm thick.

4.2. Wavefields of Perfect Beams Obtained with Binary Axicons and Overlap Integral

In waveguide systems, the efficiency of the transformation of the exciting wavefield
into a waveguide mode is usually estimated by the value of the overlap integral of the
incident wavefield and the waveguide mode field (see, for example, [38]). The closer the
distribution of the incident wave amplitude and phase to the expected distribution of these
quantities in the waveguide mode, the greater the efficiency of excitation of the latter. Let
us write the overlap integral for our case. It is known that the electric field of a plasmon
on a cylinder has both radial and longitudinal components, while the incident wave at
the lens focus has a plane wavefront; therefore, it is more convenient to write the overlap
integral through the vectors of the magnetic field, which, in both cases, has only azimuthal
components:

dη(ψ)
dψ

≈

[∫ ∞
aw

H(SPP)
ψ (r,ψ) ·H(QBB)∗

ψ (r,ψ)rdr
]2[∫ ∞

aw
H(SPP)
ψ (r,ψ) ·H(SPP)∗

ψ (r,ψ)rdr
][∫ ∞

aw
H(QBB)
ψ (r,ψ) ·H(QBB)∗

ψ (r,ψ)rdr
] . (26)



Appl. Sci. 2021, 11, 717 11 of 16

Unlike the notation conventional for the bulk waves, as, for example, in [39], we write
here not the total efficiency of the transformation of a free wave into a plasmon mode, but
its derivative as a function of the azimuthal angle. This notation takes into account the
difference between the excitation of a waveguide mode, for example, in a resonator, and
the excitation of a plasmon on a surface. In the first case, the excited mode is spatial, and
its distribution across the entire volume is known in advance. All the energy absorbed
transmits into this mode. In the case of plasmons, the situation is different. A plasmon is
excited at the conductor edge and moves in a certain direction. Simultaneously, another
plasmon moving in parallel can be excited nearby with the same field distribution, but,
generally speaking, with a different intensity, set by the local pumping intensity. In other
words, in the first approximation, the excitation of plasmons in different regions can be
considered independent. This is evidenced by the observation of parallel non-expanding
tracks of plasmons created by the diffraction of a Bessel beam at the edge of a convex
surface [40].

To calculate expression (27), one should substitute the expected distribution of the
plasmon field in the air, and the field of the vortex beam illuminating the end of the
cylinder should be substituted into it. The plasmon field is described by the expression
F( f , r,ψ) = e−β(r−aw)ei`ψ, where the β value can be taken from the experimental data for
the Au–ZnS–air surface [34], and the incident wavefield can be calculated according to
(22). Figure 5 shows the intensity and phase distributions in the Bessel beams generated
by binary axicons and in perfect beams in the focal plane of the lens. The numerical
calculations were carried out using the diffraction integral [41], whereas the analytical
calculations were done using Equation (22). The results of the calculations are very similar.
The parameters of the axicons were selected in a way such that the diameter of the beams
at the focus of the lens was approximately 7 mm, which is close to the diameter of the
cylindrical conductors prepared for experiments. One can see that the width of the brightest
part of the ring is about 0.6 mm, which is in good agreement with the plasmon decay length
estimated above. The wavefields of perfect beams produced by binary axicons of different
orders (see Figure 5) have variations of brightness over the azimuthal angle, which has a
number equal to 2`. Thus, we can expect the generation of 2` parallel SPPs on a cylinder if
the topological charge of a perfect beam is equal to `.Appl. Sci. 2021, 10, x FOR PEER REVIEW 12 of 17 
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Figure 5. Top row: helical binary axicons for generation of quasi-Bessel beams of different topological
charges (D = 50 mm, p = 2.03 mm (κ = 3.1 mm−1), ZL = 120 mm). Second row: Bessel beam
intensity distributions; phase distributions are shown with a color map (λ = 141 µm). Third and
fourth rows: perfect beams in a lens focal plane ( f = 50 mm), simulated numerically and calculated
using Equation (22). Frame size is 20× 20 mm2.
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4.3. Comparison of Perfect Beams Generated with Different Axicons

Since the field distributions in “perfect beams” created by binary axicons are quite
far from ideal rings, we calculated the fields of Bessel beams and their images in the focal
plane of a lens for all three axicons within the scalar diffraction theory. The calculation
results are shown in Figure 6.Appl. Sci. 2021, 10, x FOR PEER REVIEW 13 of 17 
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Figure 6. Top row: binary, kinoform, and holographic axicons for generation of quasi-Bessel beams
with topological charge ` = +9 (D = 50 mm, (κ = 3.1 mm−1), ZL = 120 mm). Middle row: Bessel
beams’ intensity distributions; phase distributions are shown with a color map (λ = 141 µm). Bottom
row: the same for a lens focal plane (f = 100 mm). Frame size is 20× 20 mm2.

As seen from the third row in Figure 6, the calculated value of the ring radius in
the focal plane of a lens with f = 100 mm for an ideal Bessel beam with a transverse
wavenumber κ = 3.1 (see Equation (4)) is 6.9 mm. The inner radius of all three rings in
the figure is 6.6 mm. The radius of the maximum intensity of the ring created using the
holographic axicon coincides well with the calculated value of 6.9 mm. The rest of the rings
are much wider, and the numbers of spiral segments they have are 9 and 18, respectively.
Using these results and adding to them the results of calculations for the same axicons
with a topological charge of 3, we collected in Figure 7 the cross-sections of perfect beams
produced with different axicons. Now, we summarize in Table 1 the main characteristics of
perfect beams created using different types of axicons and discuss the results obtained.
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Table 1. Calculated ring parameters of perfect beams formed by three types of axicons producing
quasi-Bessel beams with κ = 3.1 mm−1 at a wavelength of 141 µm: ` is the topological charge of the
vortex beam, Rmax is the position of the ring maximum, and ∆R is the ring half-width.

Axicon Type Binary Kinoform Holographic

` 3 9 3 9 3 9

Rmax, mm 7.05 7.4 6.95 7.0 7.05 7.4

∆R, mm ~25 ~25 0.82 1.05 0.41 0.43

5. Discussion

The results of the analytical and numerical calculations of the characteristics of ter-
ahertz vortex beams created by the three types of axicons show that their characteristics
depend substantially on the axicon type. Although all these axicons create quasi-Bessel
beams, in which the amplitude–phase distributions of the field in the first ring are almost
identical, the distributions of the field at the periphery differ—insignificantly, at first glance.
However, when a lens focuses these beams, the main contribution into the formation of
perfect beams, which are essentially the Fourier transform of a quasi-Bessel beam, is made
by the beam periphery, in which the energy significantly exceeds the energy contained
in the first ring. As a result, as seen in Figures 5–7 and Table 1, the shape of the annular
PVB is highly dependent on the phase distribution profile of each axicon. The diffraction
phenomena associated with the relatively small number of zones in the axicons, which
should be rather wide in the terahertz range because of the large wavelength, may also
play a certain role in the formation of the PVB profile.

From this, we can draw two conclusions. First, perfect beams formed in different
experiments always bear the imprint of their origin, and the properties of each of them are
largely individual. The second concerns the Bessel beams themselves. It is very likely that
their inherent self-recovery property after passing through inhomogeneities also depends
on their origin, since self-recovery is provided by the arrival of converging plane waves
from the beam periphery into the optical axis region. Apparently, this circumstance should
be taken into account in propagation of Bessel beams in inhomogeneous media.

Another issue to discuss is the dependence of PVB parameters on the magnitude
of the topological charge. In [27], it was shown theoretically and experimentally that, in
contrast to the conclusions of the simplified theory, the radius and width of the rings of
PVBs created in the visible range using a spatial light modulator grow with the topological
charge. The results of our calculations show that in the case of terahertz vortices created
using diffraction axicons, we observe no strong dependence on the topological charge,
although there is a slight upward trend. We can trust the accuracy of calculations by this
program, since, in [26], it was demonstrated that the images of perfect beams obtained in
the experiment coincided with the calculated ones.

In conclusion, let us discuss the possibilities of using axicons to excite surface plasmon
polaritons on cylindrical waveguides. A factor favorable for the excitation of terahertz
plasmons is the very small change in the radius and width of the rings of perfect plasmons
with a change in the topological charge. Apparently, radially polarized PVBs can be applied
to the excitation of azimuth-uniform SPPs using a holographic axicon. In this case, the
half-width of the PVB ring is approximately 400 µm, which is in good agreement with
the decay length of plasmons on a gold surface covered with a zinc sulfide layer that is
about 0.5 µm thick. When using other axicons, one can expect the separation of SPPs in
azimuth into ` or 2` plasmons moving in parallel, which, however, carry the same total
orbital angular momentum. Since in this case, the half-width of the rings is of the order of
1 mm, they can be used at a dielectric coating thickness of about 0.1 µm, at which the decay
length is close to this value. With linear polarization of the PVB, plasmons will be excited
on the opposite sides of the cylinder, where the wave electric field vector is normal to the
surface. Finally, note that the limited aperture of the beam on the axicon, which causes
diffraction of the beam, can also be beneficial in experiments. Figure 4 shows that near the
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focal plane, the ring diameter changes smoothly; by moving the end face of the cylinder
along the axis, one can optimize the efficiency of the plasmon excitation due to change in
the overlap integral value (27).
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Appendix A

Strictly speaking, according to [33], relation (20) holds only if the real part of the
exponent in the original integral is negative. Numerical calculations using the Matematica
package have shown that the relation is also valid for a purely imaginary exponent. The
use of this formula greatly simplified our solution, but there appeared a problem of validity
of this replacement.

The point is that the handbook presents Formula (20) with an infinite upper limit,
while in Formula (19), this integral is calculated with a finite upper limit. Since comparing
two functions with two external parameters (r and r′) is an extremely resource-intensive
and ambiguous problem, we checked the admissibility of such a replacement not by
comparing the integral from (19) with Formula (20), but by matching the graphs of the
dependence of the radiation intensity in the focal plane of the lens, i.e., the results of
numerical integration of original Formula (17) and calculations with Formula (21). The
results are shown in Figure 4. They evidence that the use of solution (20) is justified, at
least in our case.
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