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Abstract: A core task in technology management in biomedical engineering and beyond is the
classification of patents into domain-specific categories, increasingly automated by machine learning,
with the fuzzy language of patents causing particular problems. Striving for higher classification
performance, increasingly complex models have been developed, based not only on text but also
on a wealth of distinct (meta) data and methods. However, this makes it difficult to access and
integrate data and to fuse distinct predictions. Although the already established Cooperate Patent
Classification (CPC) offers a plethora of information, it is rarely used in automated patent catego-
rization. Thus, we combine taxonomic and textual information to an ensemble classification system
comparing stacking and fixed combination rules as fusion methods. Various classifiers are trained
on title/abstract and on both the CPC and IPC (International Patent Classification) assignments of
1230 patents covering six categories of future biomedical innovation. The taxonomies are modeled as
tree graphs, parsed and transformed by Dissimilarity Space Embedding (DSE) to real-valued vectors.
The classifier ensemble tops the basic performance by nearly 10 points to F1 = 78.7% when stacked
with a feed-forward Artificial Neural Network (ANN). Taxonomic base classifiers perform nearly
as well as the text-based learners. Moreover, an ensemble only of CPC and IPC learners reaches
F1 =71.2% as fully language independent and straightforward approach of established algorithms
and readily available integrated data enabling new possibilities for technology management.

Keywords: innovation management; medical technology; taxonomies; tree edit distance;

multiclass patent categorization; automation; emerging technologies

1. Introduction

The analysis of patents is one of the core duties of technology and innovation manage-
ment with varying purposes and perspectives, such as forecasting emerging technologies,
assessing performances of regional /national innovation systems, mapping technologies,
managing R&D activities, or evaluating the collaboration potential at company or policy
level [1,2].

An essential subtask within these processes is classifying patents into coherent groups
of similar documents as base for further retrieval and assessment. To facilitate such ap-
proaches, examiners at the national authorities use official taxonomies to assign patent
applications according to their content to one or more classes. To overcome the so far
existing separation, in 2013 the European Patent Office (EPO) and the United States Patent
Office (USTPO) jointly released the Cooperative Patent Classification (CPC), which com-
pared to the previously used International Patent Classification (IPC) now comprises about
four times the number of different classes [3]. However, in order to assess domain-specific
emerging technologies, either the use of concordance tools/tables to map, e.g., medical
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technologies [4] or a complete reclassification of patents beyond the official taxonomy
systems is still indispensable [1].

Facing the huge and still expanding number of worldwide patents [5], the implemen-
tation of automated text categorization methods becomes vital to keep up with the rapidly
growing body of knowledge. Many approaches have been deployed differing in features,
such as Machine Learning (ML) algorithms, domains etc. Most of these approaches use the
bag-of-word model to transform the text into term frequencies as real-valued features for
machine learning (Term Frequency-Inverted Document Frequency—TF-IDF) [6]. In order
to improve the classification performance, advanced methods incorporate more and more
(meta) data of several distinct sources [7].

However, the subsequently increasing complexity raises new difficulties in mastering
both varying methods and different data sources, such as data accessibility and integration
(deduplication), the number of features in sparse matrices, the need of a method to combine
multiple predictions, or the necessary computing power. Surprisingly, only a few studies
implement IPC, and even less use the CPC assignments as an additional information source,
although the data are readily available jointly with patent texts.

Furthermore, the well-studied fusion of different classifiers promises improved perfor-
mance results especially when the diversity of the base classifiers is high [8]. A plethora of
fusion methods, e.g., rule-based approaches such as summing and averaging, or stacking
with machine leaning algorithms acting as fusion classifiers, are available to customize
ensemble classification systems to specific tasks.

Despite of these advantages, so far patent categorization into user-defined groups via
ensemble classifier systems has rarely been studied. In particular, the use of the taxonomies
mentioned above could be a major step to overcome given limitations, since IPC and CPC
represent a graph that provides available and extensive information. However, to be used
in a classifier ensemble, the graph representation must be transformed into a real-valued
vector. Riesen and Bunke [9] offer an outstanding solution for this challenging task with
the Dissimilarity Space Embedding (DSE), which provides a dense real-valued vector of
graph edit distances.

Thus, we present a novel ensemble classification system based on the combination
of text and taxonomic features to enhance both applicability and performance in a real-
world set-up, namely the mapping of patents as an important R&D output of biomedical
engineering into six fields of future innovation (e.g., telemedicine, imaging, and implants).
The central question is to what extent classification performance can be improved without
significantly increasing the complexity of the approach.

To achieve this, as far as possible robust technologies and models and only one source
providing integrated data will build up our approach. In detail, title and abstract of biomed-
ical patents are processed according to the bag-of-words model. Additionally, the IPC
and especially the much more detailed CPC are transformed by means of DSE, an estab-
lished method that—to the best of our knowledge—is now applied to patent taxonomies
for the first time. Both textual and taxonomic features serve as input to four different
machine learning base classifiers to assign patents into six classes of future biomedical
innovation. By pairing two base learners applied on diverse features (one text- and one
taxonomy-based) selected according to the differing performances on validated test data
(low vs. top performer) and varying the fusion methods systematically between stacking
or fixed combination rules, our extensive comparisons totals in 64 different ensembles. The
results show at first that IPC and CPC related learners achieve comparable performances
as those using textual features in base classification and secondly that the top taxonomic
base classifiers contribute substantially to the overall performance when stacked with also
top performing base learners on textual features.

The remainder of this paper ranges from analyzing of the related work, to describing
materials and methods ending up at presenting and discussing the results. The conclusions
point out the major findings and important future perspectives.
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2. Related Work
2.1. Official Patent Classification Systems

The IPC system with approximately 70,000 classes and its extension, the unified CPC
system with about 250,000 classes, are currently in use at the different patent authorities.
As part of any patent application process, the examiners at the patent offices assign up to
several hundred IPC/CPC codes to every filed patent to describe its content [3]. This inde-
pendent assessment of the content makes both codes with their availability and language
independence extremely valuable for classification tasks. While the first three levels of
CPC and IPC (section, class, subclass) show a high degree of similarity, the greater level of
detail provided by CPC is particularly evident from the group level and below [3]. Despite
this new wealth of information, in general only a reserved scientific discussion of the CPC
system has been conducted. Since 2013, about four times more publications listed in Web
of Science deal with IPC than with CPC.

2.2. Automated Text Categorization using Patents

Classification algorithms are successfully applied to patent texts. In early approaches
full texts serve as basis for automated categorization using k-Nearest-Neighbor (kNN),
naive Bayes, Support Vector Machine (SVM) or back-propagation neural network [10,11].
In order to improve the classification performance, which is reduced, inter alia, by the legal
and blurred language of patents, further data from distinct sources were combined into
increasingly complex models. For example, Liu and Shih [7] suggest a hybrid classification
with a weighted linear combination of content-, citation-, metadata-, and network-based
predictions, which outperformed each single contribution with F1 = 86.4%. However,
this performance is contrasted by an enormous complexity and effort: kNN and SVM,
cosine similarity, ontology-based network analysis, more than 27,000 patents for training
purposes, and the adjustment of weights for the final prediction. All this illustrates the
methodological challenges and the workload, which have to be overcome.

In contrast, with only 1600 training objects a multiclass setting can successfully be
established using SVM (66.4% accuracy) leading the classifier ranking followed by random
forest and kNN [12]. Furthermore, SVM served as both base and fusion classifier in an
ensemble approach and achieved F1 = 77.7%, further increased by implementing user
feedback as active learning (F1 = 84.2%) [13]. In order to achieve these high performances
in the chosen multiclass classification, Zhang interactively extended his model not only to
active learning, but also by reducing the text features using principal component analysis
or reinforcing the training process through so-called dynamic certainty propagation.

IPC or CPC have rarely been used as a knowledge source, but rather as a target for
automated document categorization to relieve the examiners from manual work [7,11,14].
Recent deep learning approaches such as BERT as well proved their predictive power in
mastering the assignment of patents at the CPC subclass level [15]. In general, this evolving
number of approaches with extensive pre-trained language models has a great potential
for semantic tasks such as text classification. However, a high complexity (e.g., in terms
of fine-tuning) and demanding huge amount of training data limit the applicability to
classify patents, especially into user-defined categories with usually very limited amount
of training samples. Therefore, our approach focuses on applicability with established
methods as a solid basis for a proof of concept. This could serve as a basis for future studies
to evaluate whether more complex methods such as BERT are worthwhile in terms of effort
and outcome.

2.3. Ensemble Classification

There is an extended body of research and general knowledge on combining classi-
fiers [16-18] to achieve, e.g., an improvement of the overall performance [8,19] despite
of noisy training data. Especially the diversity provided by the base classifiers bolsters
the capability of their fusion [20]. Among different options to introduce this diversity,
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e.g., varying the base ML classifier, the use of distinct features extracted from the same
data are considered to be the most promising approach [8].

The final performance depends on the scheme of combining the basic predictions.
Both methods, fixed combinations rules (FCR), i.e., combining the estimates of posterior
class probability using algebraic operations such as summation or product [21], and stack-
ing, i.e., using a classifier to fuse the probability estimates of the base learners [22], are suc-
cessfully deployed in text classification. Surprisingly, patents are very rarely the subject of
classifier combinations, even though, unlike scientific texts, patents are considered particu-
larly difficult to classify. This is true even when considering boosting, a technique in which
a larger number of weak learners are successfully combined to achieve a strong ensemble
performance. During the last 25 years, especially adaptive boosting (AdaBoost) [23], pro-
viding increased weights during training to the base learners with higher predictive power,
has been studied intensively. AdaBoost works especially well on weak learners performing
only slightly better than a random classification, whereas using stronger base classifiers
such as SVM does not lead to improved results [24]. More recently, Lee uses a combination
of topic modeling and AdaBoost to predict the suitability of patents for further technology
transfer (Lee et al. 2018) and achieves a maximum F1 value of approx. 0.589. Apart from
patent classification, currently AdaBoost with SVM is, e.g., successfully applied to issues
such as imbalanced streaming classification and concept drift [25,26].

2.4. Feature Extraction from Graphs

The IPC and even more the CPC taxonomy constitutes a powerful representation
of information regarding the content of the underlying patents, structured as a graph of
nodes and edges. A plethora of research work has been performed on studying graph-
based pattern representation [27]. To utilize patent taxonomies as input for machine
learning classification the graph representation (G) must be transformed into a real-valued
feature domain.

Besides extracting structural information of graphs with, e.g., the adjacency matrix or
the Laplacian matrix methods [28], the widely used Graph Edit Distance (GED) approach
compares two graphs by computing the distance as a cost function, i.e., on a minimized set
of edit operations such as inserting, deleting, and substituting nodes or edges to transform
one graph into the other. In their pioneering work on Vector Space Embedding, Riesen and
Bunke [9] introduced the concept of a variety of selected prototypes, i.e., training graphs to
which the GED of an input graph are computed. The resulting dissimilarity representation
characterizes the specificity of the input graph as dense real-valued vector, which is well
suited as input for the subsequent classification algorithms. Additionally, different graph
edit approximations are successfully deployed even in an ensemble setting outperforming
the best individual base classifier [29].

3. Materials and Methods

A classifier C solving a supervised learning problem for a given set of n classes
Q = {ws,...,wy} is described by a set of functions {cy,...,c, } defined as ¢; : X — [0,1].
Here c; assigns every object from the input space X’ a non-negative score for each class w;.
Additionally, we expect the sum of all class scores to be equal to 1. Thus, the used classifiers
are called probabilistic because their score outputs can be interpreted as the likelihood of an
object x € X belonging to the class w;. To combine the strengths of different approaches to
automatically assign patents to biomedical classes of future innovation a unified ensemble
classification system is created as follows (see Figure 1):
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Figure 1. General structure of a classification model using different features V of representations R of input data for an
ensemble of 1 base classifiers C merged by a fusion method F.

In our approach, at the input site two different representations of each patent docu-
ment, namely text (title, abstract) and assigned taxonomies (CPC and IPC), are transformed
into numerical features to be fed to machine learning base classifiers. After hyperparameter
tuning, four different base classifiers compute their predictions from distinct features of the
same object (Stage I) to be finally merged by various fusion methods providing the final
prediction (Stage II). The whole two-stage-process (see Figure 2) has been implemented
using Python and the scikit-learn library [30].

Stage | - Basic Classification Stage Il - Ensemble Classification
Base Classifiers Representations .
. cuv SUM . Text Weak & Strong Base Classifiers
= kNN = Taxonomy = N
= ANN *« CPC,IPC Stackin Fixed Combination
o = LogReg L 2acing Rules (FCR)
‘g f Hyperparameter Tuning ) Hyperparameter
=1 Grid Search | 10-Fold Cross-Validation Tuning, 10-f-CV
* N
! Selecting Top
Selecting Top Hyperparameters Hyperparameters 10‘;Fﬁclld )
by max. F1 by max. F1 Cross-Validation )
I
v
| Tuned Base Classifiers | Tuned Fusion FCR: Sum, Product,
< e .
&S] I Basic Evaluation Results | Classifiers Min, Max
3 SVM, kNN, ANN, LogReg
S
S Selecting Weak & Strong , 1
W i
Base Classifiers/Features . .
by max, F1 Final Evaluation Results

Figure 2. Overview of the main stages of data processing and evaluation. SVM—Support Vector Machine, ANN—Artificial
Neural Network, KNN—k-Nearest-Neighbor, LogReg—Logistic Regression.

3.1. Patent Data

The training data consists of 1230 distinct patents, which are equally assigned to
six classes of innovative biomedical devices (see Table 1). This dataset is based on our
preliminary work [31]: the data were selected and labeled with a study-based keyword
search and further optimized by experts. To evaluate the classification performance,
an externally validated test data set is used comprising additional 94 patents, which were
categorized by biomedical experts. All content of the patents, the text of titles and abstracts
as well as the de-duplicated IPC and CPC codes were extracted from the patent database
PATSTAT [32] and then transferred to feature transformation.
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Table 1. Patent data for training and testing assigned into six classes of innovative biomedical devices.
Class N # of Patents # of CPC Codes # of IPC Codes
ass IName Training Testing Training Testing Training Testing
Imaging 205 30 1380 129 838 84
Implants and prostheses 205 15 1659 78 732 33
Telemedicine 205 2 1064 5 827 6
Surgical intervention 205 23 1351 98 805 59
In-vitro diagnostics 205 6 922 18 1175 18
Special therapy systems 205 18 1190 67 1024 50
Total 1230 94 7566 395 5401 250

3.2. Feature Transformation
3.2.1. Textual Data

To obtain numerical feature vectors from textual data, the widely used ‘bag-of-words’
model is applied after preprocessing the concatenated title and abstract by removing
stop-words not providing any additional information. Final feature vectors for text cate-
gorization are created utilizing a TF-IDF value computation for each input term per text
document [6].

3.2.2. Taxonomic Data

By implementing the following steps, the graph based taxonomic data of IPC and
CPC are transformed into a real-valued vector to be used as input for machine learning
algorithms.

3.2.3. Tree Creation

Since both used patent classifications comprise a hierarchically organized taxonomy,
each can be represented by a tree. By additionally inserting a root node, the trees of all
assigned class codes are unified in one tree structured graph (see Figure 3), which facilitates
the computing of the distance between the structured codes of CPC/IPC taxonomy using
the tree-edit-distance [33].

Table 2. Excerpt from the CPC definition showing all hierarchical levels up to the actual code
A61B5/0055. Symbols in square brackets indicate subgroups discarded by parsing the code string.

Level Symbol Classification and Description
Section A Human necessities
Class A6l Medical or veterinary science; hygiene
Subclass A61B diagnosis; surgery; identification
Main Group A61B 5/00 Detecting, measuring or recording for

diagnostic purposes; identification of persons
o Detecting, measuring or recording by
applying mechanical forces or stimuli

Subgroup A61B 5/00 55 e o by applying suction

Subgroup (A61B 5/00 48)
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Main Group
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[ A6I1 ] [ G(;l |
[ Ae1B | | GoIR |
[ A61B5/00 | A61B8/00 | | GOlR:LB/OO J
| A61B5/0035 | A61B5/0055 | | GO1R33/4814 |( GO1R33/56358

Figure 3. Example of a simplified Cooperative Patent Classification (CPC) tree of a patent parsed from the CPC code strings

(see also Table 2).

The string representations of the IPC/CPC codes have to be parsed to build the
required tree. However, a full deduction of the hierarchy as given in official CPC defini-
tion [34] solely from the code strings is not possible, because the different subgroup levels
are not represented in the code strings. Thus, the resulting tree parsed from the code string
is only an approximation of the actual defined structure, which is created by discarding
eventually existing intermediate subgroup levels between the given code and the main
group. For example, a patent is marked with code A61B5/0055. Since this is according to
the official CPC definition a 2nd-level subgroup (see Table 2), the string parser discards
one intermediate subgroup. Nevertheless, the parsed tree carries as much information as
possible to be extracted solely from the string representation of a CPC/IPC code.

3.2.4. Vector Space Embedding

We adopt the Dissimilarity Space Embedding method (DSE) to transform the CPC and
IPC tree into a vector space following the work of Riesen and Bunke [9]. A graph object
can therefore be described by its dissimilarity to a fixed set of other objects from the same
domain (prototypes).

Given a graph domain G, a dissimilarity between graphs can be expressed using a
distance function d: G x G — R=%. Given such a distance function d, a dissimilarity space
embedding y can be defined as:

’y:g—>]R”,g'—> (d(g]/g)r /d<g1’l/g)) (1)

A suitable distance function in a dissimilarity space embedding is provided by the
graph edit distance (GED), given by the minimal cost sequence of all operations transform-
ing the graph ¢ into g» using insertion, deletion, and relabeling of nodes and edges with
the cost of each operation set to 1. For computing the general GED no efficient algorithm is
known [35]. However, since IPC/CPC can be represented as ordered trees, the problem
can be reduced to compute the tree edit distance utilizing the Zhang-Shasha algorithm [36].
Although being an efficient algorithm, no implementation of sufficient performance was
available. Thus, we implemented the algorithm in rust GitHub repository of “Tree edit dis-
tance algorithm implemented in rust’: https://github.com/AME-SCM/ tree-edit-distance.

3.2.5. Prototype Selection Methods

Before any features are created invoking the function 7, a set of graphs g1,...,gx
called “prototypes’ needs to be fixed. Prototypes are chosen from the training data as the
source of known data in advance and are not altered thereafter. Two selection methods with
different capabilities [9] were applied to optimize the resulting real-valued feature vectors:
(1) random prototype selector—selecting prototypes in a completely random manner, and
(2) spanning prototype selector—selecting the median graph as first element of the training
data. The further added graphs maximize the distance to the nearest graph of the already
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chosen one yielding a better representation of the graph domain. Hyperparameter tuning
determines the number of prototypes needed to deliver meaningful features.

3.3. Experimental Settings
3.3.1. Classifier Selection and Hyperparameter Tuning

A set of four well established machine learning algorithms are selected particularly to
enable comparisons to prior work: Support Vector Machine (SVM), k-Nearest Neighbor
(kNN), Logistic Regression (LogReg), and feed-forward Artificial Neural Network (ANN).
They all serve as both, base and fusion classifiers (see Figure 2).

To obtain performance estimates of each combination of classifier and input feature, a
10-fold cross-validation on the training data set was carried out when using grid or random
search to optimize all hyperparameters (see Table 3; for details see Appendix A Table Al).

Table 3. Grid of hyperparameters to optimize the performance of the base classifiers acting on
different textual and taxonomic features in 10-fold cross-validation.

Classifier Hyperparameter

Feature: Text

SVM nu € {0.1,0.2,...,0.9} n—gram € {(1,1),...,(3,3)}
kNN ke {1,5,10,15,...,50} norm € {12, I1,none}
LogReg ce {107%,107>,...,10° } smooth_idf € {true, false}
a€{107%,1073,...,10% } sublin_tf € {true, false}
ANN hl € use_idf € {true, false}

(50, —), (100, —), (200, —),
{ (50,12), (100,12), (200, 12) }

Feature: Taxonomy

SVM nu € {0.1,0.2,...,0.9}
KNN ke {1,510,15,...,50} ’;;f ;”tty";z p:eiiiloof:’ 50,100,200}
LogReg ce€{107,107°,...,10° } Insstvise rand
10-4 10-3 102 ! classwise random,
ANN Zlee{ ’ Tt classwise spanning

(50, —), (100, —), (200, ),
{ (50,12), (100,12), (200,12) }

For hyperparameter tuning and all further evaluations conducted on the externally
validated test data set, we employ the overall micro-averaged F1 score [7], representing a
balanced ratio of recall and precision. The ranking of the classification performances (F1) in
training and testing provided an ordered list according to the summed-up ranks. The top
and bottom ranked classifier from this list were selected for later combination following
the notion, that in some cases even less well performing base learners might contribute
substantially to the overall ensemble outcome [8].

3.3.2. Fusion Methods

A combination of classifiers Cy, ..., Cy can be defined as:
C(x) = F(Cy(x),...Cu(x)) ()

Accordingly, the fusion method F systematically combines the predictions of the used
base classifiers Cy, . .., Cn, processing an input object x. Two approaches to obtain a fusion
method F are used.

Fixed combination rules combine the class prediction output of base classifiers in
a predefined way by utilizing simple arithmetic operations (sum, product) or basic set
operations (minimum, maximum).
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Considering the classification output for input object x and class w; of base classifier
Cjas ¢ji(x) the sum rule is given by:

pi(x) = ¢j,i(x) 3)

S|
M:

j=1

The product, minimum, and maximum fixed combination rules are constructed like-
wise [19].

Stacking interprets the combination of base classifiers” output as further classification
problem creating a meta-classifier. The base classifiers” output is fed into a classifier for
objects with known class assignment. In comparison to the fixed combination rules, this
requires an additional training phase including hyperparameter tuning (for details see
Appendix A Table A2) for the used meta-classifier while providing more flexibility to adapt
to the learning data.

3.3.3. Experimental Design

The final evaluation consists of a variety of differently composed ensembles, which
always consist of two base learners each. These ensembles differ in three factors, namely
the feature used, the performance of the base learners, and the applied fusion method (see
Table 4). Overall, 64 different ensembles were tested and the corresponding F1 score was
computed.

Table 4. Factors of the experimental design to build the varying classifier ensemb]es.

Factor Levels
Feature Source Text; Taxonomy (IPC or CPC)
Base Performance Ranking Top; Bottom

Stacking (SVM, kNN, LogReg, ANN);

Fusion Method Fixed Combination Rules (sum, product, min, max)

4. Results and Discussion
4.1. Basic Evaluation

The initial basic evaluation on the test data highlights the mutual dependency between
the classification algorithm and the type of feature (see Figure 4). SVM and kNN perform
best on text (69.1%) while ANN reaches nearly the same top score on CPC (68.1%) as
Logistic Regression (LogReg) on IPC taxonomy. In contrast, the weaker base classifiers only
achieve F1 values between 53.2% (CPC-kNN), 54.3% (IPC-kNN) and 60.6% for LogReg
on text.

Considering the results of prior research [12], it was to be expected that SVM would
again prove to be a powerful tool for text classification in the present task. The almost equal
quality of classification achieved with both patent taxonomies using ANN or LogReg is all
the more remarkable, because it is only about one percentage point below the best value
of SVM on text. Different from the majority of past approaches that use the taxonomies
as target of automated categorization [11,14], our results place both IPC and CPC close to
the text of patent documents to be used as a valuable source of information suitable for
machine learning approaches in multiclass environments.

Since medical technology is an international domain, its technology management
is forced to analyze patents worldwide originally written in many different languages.
However, in many countries, such as Germany, patents are not translated into English by
default. Thus, only 51.6% of all records in the international patent database provided by
the European Patent Office (PATSTAT 2019 autumn version [32]) contain an English title
and abstract. This is a drawback for international technology management, as automated
patent categorization based on textual features usually depends on the common language
of the data.
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Figure 4. Performance of four different base classifiers using text or taxonomic (IPC, CPC) fea-
tures comparing the overall F1 scores. Biomedical patents of the test data set were classified. IPC:
International Patent Classification.

In contrast, CPC or IPC codes are language independent and very frequently assigned
to the patent documents. In the PATSTAT database 85.2% of documents are assigned
with ICP or CPC codes. Therefore, the IPC/CPC taxonomies could potentially bridge the
language gap by even replacing text features in machine learning classification systems of
international patents. We have explored this prospect in a preliminary analysis, the results
of which are reported in Section 4.4, Outlook.

4.2. Ensemble Evaluation

The fusion of base classifiers reveals in most cases (60/64) an improvement of classifi-
cation performance on the test data compared to the best base classifier of each ensemble
(see Table 5).

Table 5. Resulting performance (F1) of the ensemble classification displayed as pivot table of different base classifiers

combinations using stacking or fixed combinations rules as fusion method. The combination of the base learners in pairs of

one text and one taxonomic (either IPC or CPC) classifier is additionally varied according to the Base Performance Ranking

(BPR: top or bottom rank). For each of those conditions four different stacking classifiers as well four fixed-combinations

rules are applied (see Table 4). Peak values are printed in bold.

FEATURE TEXT TEXT
BPRbottom BPRtop BPRbottom BPRtop
Base Classifier LogReg SVM LogReg SVM
F1 0.606 0.691 0.606 0.691
Fusion method Stacking Fixed Combination
IPC Fusion Fusion
BPRbottom 0.691 SVM 0.702 0.681 sum 0.702
0.670 kNN 0.681 0.660 product 0.713
kNN 0.543 0.660 LogReg 0.702 0.649 min 0.681
0.691 ANN 0.745 0.681 max 0.702
BPRtop 0.713 SVM 0.755 0.734 sum 0.745
0.745 kNN 0.745 0.734 product 0.745
LogReg 0.681 0.755 LogReg 0.755 0.702 min 0.713
0.766 ANN 0.787 0.723 max 0.723
crC
BPRbottom 0.638 SVM 0.723 0.681 sum 0.702
0.691 kNN 0.713 0.660 product 0.681
kNN 0532 0.670 LogReg 0.745 0.660 min 0.681
0.670 ANN 0.745 0.638 max 0.691
BPRtop 0.681 SVM 0.766 0.766 sum 0.777
0.766 kNN 0.745 0.734 product 0.777
ANN- 0681 0.745 LogReg 0.777 0.713 min 0.745

0.702 ANN 0.787 0.734 max 0.755
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The improvements reach a maximum of 9.6%, which in two cases leads to the peak
value of the entire performance matrix of F1 = 78.7%, namely by combining SVM (Text)
with ANN (IPC) or ANN (CPC). At this stage, two first conclusions can be drawn: (1) in
our approach, ensemble classification using text and taxonomic features in general proves
to be a very effective method to enhance the overall classification performance; (2) our
achieved maximum value certainly holds up to the comparison to multi-classifier fusion
with F1 = 77.6% [13] before adding active learning components or network-based classifi-
cation with F1 = 76.2% [7]. The latter approach only reaches F1 = 86.4% by hybridization
of four different patent classification approaches. The impressive performance is coun-
terbalanced by a high complexity in using a wide variety of methods and distinct data
sources. In contrast, for our model the IPC/CPC codes and titles/abstracts of the patents
are readily available from the same structured database [32]. Except DSE, the deployed
feature transformations, the base classifiers, and fusion methods are all well-established,
which further strengthen the applicability and efficiency of the presented pipeline. Finally,
the fusion by the fixed combination rules sum and product achieved remarkable top scores
of F1 = 77.7%, only one mark behind the overall peak using stacking, without the burden
of training and hyperparameter tuning.

4.3. Boosting

To analyze the impact of the performance rank of base learners on the final ensemble
outcome, the Fl-results are averaged over this basic condition. They show a clear trend
(see Table 6): The best performances are achieved by combining two top ranked learners in
both fusion methods, stacking and fixed combination rules. Consistently, combining only
bottom ranked classifiers places last in the ranking of the final outcome.

Table 6. Averaged F1 scores for the performance condition (Base Performance Ranking, BPR with
top or bottom rank) of the four different stacking techniques and the four fixed combinations rules
for all ensemble conditions of combining two base learners. Peak values are printed in bold.

FEATURE TEXT TEXT
BPRbottom BPRtop BPRbottom BPRtop
Fusion method Stacking Fixed Combination
avg-F1
BPRbottom 0.678 0.708 0,668 0.700
IpC BPRtop 0.745 0.761 0.723 0.732
BPRbottom 0.667 0.732 0.660 0.689
CPC BPRtop 0.724 0.769 0.737 0.764

Hence, we conclude, that in our case comparably weak base classifiers are not capable
to strengthen the ensemble categorization. This somehow contradicts the fundamental
notion which underlies the well-established boosting approaches, that have been just
recently applied very successfully, e.g., in stream data classification and concept shift
problems. However, the specific characteristic of boosting is that ,weak learners’ are
defined as performing only slightly better than random categorization. For example,
Lee and colleagues [37] applying boosting to predict the transfer potential of patents finally
reach a top F1 score of 0.589. Compared to our approach, even the bottom ranked base
learners perform at the same level (F1 = 0.532) and can consequently not be seen as truly
‘weak’ classifiers. In general, it has been proven that AdaBoost is not successful with
strongly performing base learners [38].

4.4. Outlook

As discussed with the basic evaluation above, the best taxonomic base learners are per-
forming nearly as well as the still leading text-based classifier SVM (see Table 5). This raises
the question whether a combination of just strong IPC and CPC-based classifiers, omitting
all text features, might boost the overall performance, perhaps even beyond the scores of
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the best text-based learners. Thus, a corresponding preliminary experiment has been con-
ducted: the base learners LogReg (IPC) and ANN (CPC) are combined by fixed combination
rules as well as using stacking (see Figure 5).

Ay
AMMMIn.,

sum product min max SVM kNN LogReg ANN

FCR Stacking

Figure 5. Performance of language independent ensemble classification (F1) by combining the two top ranked IPC and CPC

base learners with different fusion methods: four different stacking classifiers as well four fixed-combinations rules (FCR)

are applied. The dotted line marks the top performance value of the base learners.

Whereas the fusion with FCR provides no improvement, the stacking with both
ANN and SVM enhances the overall performance up to an F1 score of 71.2% on the test
data. This outperforms the so far best basic performance of a text-based SVM and is
completely independent from the language of the written patent information. Considering
the PATSTAT patent database, now more than 22 million additional documents, lacking
English titles/abstracts, could be included into a technology analysis based on automated
categorization. The potential seems to be very large, but beforehand further studies have
to evaluate the scalability of our preliminary results to further domains and larger sample
sizes.

Furthermore, modern deep learning approaches such as BERT or ELMo [39,40],
with extensive pre-trained language models including multilingual and domain-specific
variants (e.g., BioBERT [41]), show a great potential in semantic tasks and might boost our
patent classification also in terms of cross-lingual patent data. However, it remains to be
clarified whether the high effort of such complex approaches is also worthwhile in terms of
applicability and performance. The results and data of our work might serve as basis for
an elaborate evaluation as part of future work.

4.5. Limitations

In this paper, for the first time—to the best of our knowledge—IPC and CPC tax-
onomies are applied as graph-based information resources for automated patent classifica-
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tion. Despite the success, some limitations remain. Although we conducted an extensive
hyperparameter tuning, the cost of 1 for each operation to calculate tree edit distance stayed
untuned. Altering the costs in preliminary experiments modified the overall performance
and should therefore be investigated in future work. Likewise, using solely the CPC/IPC’s
string representation to parse the corresponding tree will not extract all the available infor-
mation. Thus, with a method to display the full subgroup relationship more information
could be inserted to the CPC code tree.

5. Conclusions

We were able to show that the official patent taxonomies, IPC and CPC, contribute
substantially to the performance of automated patent categorization into user-defined
classes when the graph is transformed into a real-valued vector space by Dissimilarity
Space Embedding. The multiclass classification with taxonomic base classifiers achieves
F1 values close to the top text classifier. The fusion of the best performing taxonomic and
textual base classifiers results in an overall increase in performance by +9.6% to a final F1
score of 78.7%.

This does not only unlock the potential of hierarchical patent taxonomies as valuable
part of an ensemble to enhance automated patent categorization. In addition, ICP and CPC
are language-independent, which makes the difference: the solely taxonomic ensemble
with stacking performs even better than the best text-based learners. This opens the access
to millions of additional patent documents enabling new possibilities for the management
of biomedical technologies.

Overall, the deployed methods are well established in research and all used data are
accessible from one integrated source. Even the novel implementation of the taxonomic
CPC and IPC graph is built upon a well-descripted procedure (DSE) to transform the
information into a real-valued vector. Consequently, this increases the applicability of the
whole approach.

Our novel approach could also make an important contribution to the digitization of
the health care system. For the annotation of health data, medical category systems such
as the International Classification of Diseases or SNOMED CT are used. Accordingly, this
graph-based information could now contribute to future solutions using the presented
approach, thus advancing Al implementations in decision support for diagnosis and
therapy.
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Appendix A

Table Al. Results of hyperparameter tuning of the base classifiers: feed-forward Artificial Neural Network (ANN), k-
Nearest-Neighbor (kNN), Logistic Regression (LogReg), and Support Vector Machine (SVM). The F1 scores for testing and
10-fold cross-validation (CV) were ranked (values in parentheses: Base Performance Ranking, BPR) for each feature. The
summed BPR are used to select top (**) and bottom (*) ranked classifiers to build ensemble pairs for final evaluation.

. .. Ccv Test
Classifier Optimized Hyperparameters (BPR) (BPR)
Feature: Text

hidden_layer_sizes = (200,12), alpha = 1, max_iter = 10,000, n-gram 84.1% 62.8%

ANN = (1,1), norm = none, smooth_idf = true, sublinear_tf = true, s e
- 2) ®3)

use_idf = true

KNN k =40, n-gram = (1,1), norm = L2, smooth_idf = false, 79.3% 70.2%
sublinear_tf = true, use_idf = true 4) (1)

¢ = 10, solver = saga, multi-class = multinomial, max_iter = 10,000, 84.6% 60.6%

LogReg * n-gram = (1,1), norm = none, smooth_idf = false, sublinear_tf = true, ('1) ¢ (4) ?

use_idf = true

SVM ** nu = 0.6, kernel = RBE, n-gram = (1,1), norm = none, smooth_idf = 82.9% 69.1%

false, sublinear_tf = true, use_idf = true ) (2)
Feature: IPC Taxonomy

ANN hidden_layer_sizes = (100,12), alpha = 1, max_iter = 10,000, 79.8% 66.0%
n_prototype = 200, prototype_selection = classwise_random 1) )

KNN * k =5, n_prototype = 100, 69.3% 54.3%
prototype_selection = classwise_spanning 4) 4)

LooReg ** ¢ =1, solver = saga, multi-class = multinomial, max_iter = 10,000, 80.1% 68.1%
geE n_prototype = 200, prototype_selection = classwise_random (1) (1)

SVM nu = 0.2, kernel = RBE, n_prototype = 200, prototype_selection = 77.1% 64.9%
classwise_random (€)) 3)

Feature: CPC Taxonomy

ANN ** hidden_layer_sizes = (50,12), alpha = 1, max_iter = 10,000, 74.4% 68.1%
n_prototype = 200, prototype_selection = classwise_spanning 2 1)

kNN * k =5, n_prototype = 100, prototype_selection = classwise_spanning 6(244) & 5?242) &

LooRe ¢ =1, solver = saga, multi-class = multinomial, max_iter = 10,000, 75.1% 62.8%
geE n_prototype = 100, prototype_selection = classwise_random (1) )

SVM nu = 0.2, kernel = RBE, n_prototype = 100, prototype_selection = 72.0% 64.9%

classwise_spanning 3) 2)
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Table A2. Results of hyperparameter tuning of ensembles using stacking with four different fusion classifiers: feed-forward Artificial
Neural Network (ANN), k-Nearest-Neighbor (kNN), Logistic Regression (LogReg), and Support Vector Machine (SVM). The base
learners in pairs, one text and one taxonomic (either IPC or CPC) classifier, is varied according to the Base Performance Ranking

(BPR: top or bottom rank). The grid search with 10-fold cross-validation (CV) was performed to maximize F1. ‘hl’ stands for

‘hidden_layer_sizes’.

FEATURE TEXT
BPRbottom BPRtop
Base Classifier LogReg SVM
Fusion F1 Hyperparameter F1 Hyperparameter
TAXONOMIES
SVM 0.846 nu =0.85 0.841 nu=09
kNN 0.843 k=50 0.841 k=20
IPC kNN LogReg 0.846 c=1.0 0.846 ¢=0.01
ANN 0.847 alpha =1, hl = (100,12) 0.843 alpha =10, hl = (10,-)
BPRbottom
SVM 0.837 nu = 0.85 0.831 nu=0.7
kNN 0.843 k=25 0.830 k=50
CPC kNN LogReg 0.838 ¢=0.01 0.828 c=0.1
ANN 0.841 alpha =10, hl = (50,-) 0.831 alpha = 0.1, hl = (10,12)
SVM 0.859 nu=0.9 0.845 nu=0.25
kNN 0.859 k=50 0.854 k=30
IPC LogReg LogReg 0.864 ¢=0.001 0.853 c=001
ANN 0.863 alpha =10, hl = (10,-) 0.853 alpha =10, hl = (100,12)
BPRtop
SVM 0.844 nu = 0.55 0.852 nu = 0.25
kNN 0.846 k=15 0.843 k=25
CPC ANN LogReg 0.849 c=01 0.842 c=1.0
ANN 0.850 alpha = 0.1, hl = (10,-) 0.844 alpha =10, hl = (10,-)
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