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Abstract: Transmission compliance and hysteresis behaviors are associated with harmonic drives.
The experimental observation of a harmonic drive showed that these behaviors are significantly
degraded with increasing service time, and their accurate modeling is expected to improve the
performance of the control system of harmonic drive-based devices such as robot manipulators.
In this paper, a new model is proposed to capture transmission compliance and hysteresis and
their degradation. The phenomenon is represented through a combination of the nonlinear stiffness
component and the micro-sliding friction in the tooth engagement area. The proposed model
considered the multi-tooth meshing and the interference effects of the reducer. The parameters of the
model were identified using optimization techniques. Numerical simulations and experimental data
using a specialized harmonic drive test device were compared to demonstrate the proposed model.

Keywords: transmission compliance; hysteresis degradation; interference; multi-tooth meshing

1. Introduction

Harmonic drives (HDs), which were invented in the 1950s [1], are well known for
their high gear-reduction ratio, low weight, small volume, lack of backlash, and high
efficiency [2]. Therefore, HDs are used widely in intelligent robotics and various high-
tech fields [3]. Many studies have been conducted on HD kinematic error [4], nonlinear
stiffness [5–10], hysteresis [8,10–16], and dynamic friction [17]. However, no definite
understanding of the mechanism of transmission compliance and hysteresis behaviors or
their degradation is available in the literature. In previous works, the HD is considered
to be a black box or grey box, which causes the accuracy of the HD model to degrade
over time.

As stated in a manufacturer’s catalog [5], the torque-displacement relationship for an
HD consists of two characteristic properties: (i) the increasing stiffness with torsional angle,
and (ii) the hysteresis characteristic. To capture the nonlinear stiffness, the manufacturer
suggests using a piecewise linear function of the torsion angle [5]. Some other scholars
prefer to approximate the stiffness curve with a cubic or quintic polynomial [6–8]. Even
in certain applications, linear stiffness can be sufficient to simulate the behavior of the
reducer [9]. Recently, Zhang et al. [10] proposed the HD rotational compliance model by
modeling the compliance behaviors of the flexspline and the wave generator. Consider-
ing an HD mechanical system analogy, the transmission compliance is described by the
behavior of a serial spring-mass system.

Hysteresis is widespread in the fields of smart materials, magnetic fields, and me-
chanical systems. The hysteresis in HDs is considered to be caused by the combined
effect of torsional flexibility and friction [8,11]. Seyfferth et al. [12] proposed a hysteresis
model, represented by a hyperbolic function, in which the hysteresis loss is estimated
as a combination of Coulomb friction and a weighted friction function. Assuming that
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the hysteresis mainly arose from structural damping, Taghirad [13] developed a model
to describe the hysteresis of an HD. Based on the heredity concept of dynamic systems,
a mathematically well-posed nonlinear differential equation was proposed by Dhaouadi
et al. [8] to describe the hysteresis phenomenon in HDs. Ruderman et al. [14] used the
Preisach model to capture the hysteretic behavior of HDs. Preissner et al. [15] proposed
a new type of comprehensive harmonic drive model. They used the Maxwell resistive-
capacitor model to model the hysteresis behavior in harmonic drives that are taken to be
black boxes. Tjahjowidodo et al. [16] developed a grey-box model for HDs that captured
the hysteresis behavior by combining nonlinear stiffness characteristics and distributed
Maxwell-slip elements. Zhang et al. [10] recently proposed a simple hysteresis model.
A hysteresis model considering sheath stiffness was proposed by Hong et al. [18] to capture
the hysteretic behavior of the tendon sheath mechanism.

Interferences occur at the contact teeth even at no load in HDs [19]. Sahoo et al. [20]
proposed a method of estimating the load shared by the multiple tooth pairs in contact.
They pointed out that the interference almost vanished with the increase of the external
load. The number of effective meshing teeth pairs increases sharply with the increasing
resistance torque [21]. Many experiments also have been done on the lubrication failure of
HDs [22–25]. These experimental results showed that obvious wear was found on the wave
generator–flexspline interface and the meshing tooth surface. However, these mechanical
characteristics of HDs were not considered in the previous grey- or black-box models.
This could cause the applicability of the HD model to deteriorate with the degradation of
the reducer.

The objective of this study was to develop a mechanical model of transmission com-
pliance and hysteresis in HDs for high-performance robot joint control. The proposed
model of transmission compliance and hysteresis was influenced by the work of Tuttle
et al. [11] and Tjahjowidodo et al. [16]. Specifically, the proposed mechanical model allows
for transmission compliance of the flexspline cup, flexspline teeth, and wave generator;
as well as micro-sliding friction in the tooth engagement area, and multi-tooth meshing
and interference effects. Our study offers a mechanical model that can capture the degra-
dation of behavior due to wear. A specialized harmonic drive test device was used in the
experimental validation of the HD modeling effort.

2. Mechanical Model

HDs, which contains only three main components (Figure 1), are widely used in the
joints of robot manipulators. The wave generator (WG) is an elliptically shaped steel core
surrounded by a flexible race bearing. The flexspline (FS) is a thin-walled flexible cup
having two fewer teeth on its outer rim than on the inner rim of the circular spline (CS).
The CS is a rigid steel ring with teeth machined into the inner circumference.Appl. Sci. 2021, 10, x FOR PEER REVIEW 3 of 18 
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The most common configuration for an HD usually consists of the WG as the input
port, the FS as the output port, and the CS fixed to the ground and held immobile. In this
configuration, when the WG is inserted into the FS, the FS deforms and causes the FS
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teeth and the CS teeth to mesh at the major axis of the WG. With the rotation of the WG,
the FS rotates in the opposite direction, corresponding to the load-angle output. Accurate
modeling of the HD dynamic behavior is expected to improve the performance of the robot
manipulators [16].

2.1. Ideal Model

Considering the different working modes for HDs, the ideal kinematic and mechanical
relationships of these three ports, as explained in [11], can be expressed as follows:

θWG = (N + 1)θCS − NθFS (1)

TWG =
1

N + 1
TCS = − 1

N
TFS (2)

where θWG, θCS and θFS denote the angular position of WG, CS, and FS, respectively; TWG,
TCS and TFS denote the corresponding torques; and N is the gear-reduction ratio, which
can be described as:

N =
ZFS

ZCS − ZFS
(3)

where ZCS and ZFS denote the number of teeth on the CS and FS, respectively. The most
common configuration of an HD is illustrated in Figure 2: a fixed-member CS; a driven-
member FS; and a driving-member WG. The basic harmonic-drive equations that capture
this three-port behavior are:

θWG = −NθFS (4)

TWG = − 1
N

TFS (5)
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However, the above equations describe HD behavior under the assumption of an ideal
linear input/output relationship, in which friction, torsional compliance, and kinematic
error effects are ignored. These factors should be considered to obtain a better result [15].

2.2. Basic Model with Friction, Compliance, and Kinematic Error

In order to capture the synthesis effects of friction, torsional compliance, and kinematic
error, a model simplified by using a translational motion model analogy, was proposed
by Tuttle et al. [11] (Figure 3). In the comprehensive model, the kinematic and mechanical
relationships can be expressed as follows:

θWG = −N(θFS + θe + ∆θ) (6)

TWG = − 1
N

(
TFS + Tf

)
(7)
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where θe is the kinematic error, ∆θ is the torsional angle of the HD, and Tf is the friction
torque. In the model, the compliance behavior is described by modeling the overall
behavior of HD.
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According to the description in a manufacturer’s catalog [5], the nonlinear spring can
be approximated by a piecewise linear function of the torsion angle:

∆θ =


TFS
K1

TFS ≤ T1
T1
K1

+ TFS−T1
K2

T1 ≤ TFS ≤ T2
T1
K1

+ T2−T1
K2

+ TFS−T2
K3

TFS ≥ T2

(8)

where K1, K2, and K3 are the stiffness; and T1 and T2 are the torque given by the manu-
facturer. Another method of estimating the nonlinear stiffness uses a cubic polynomial
approximation [12]. The third-order polynomial function is given by:

TFS = a3(∆θ)3 + a1∆θ (9)

where a1 and a3 are constants to be determined.
In order to estimate the friction torque, the Stribeck friction model was used to capture

the nonlinear friction behavior [26]. Therefore, the friction torque Tf can be expressed as:

Tf =

[
Fc + (Fs − Fc)e−(

.
θWG/Ω)

δ

+ Fv
.
θWG

]
sign

( .
θWG

)
(10)

where Fs denotes static friction, Fc denotes the minimum value of the Coulomb friction,
Ω and Fv are lubricant and load parameters, and δ is an additional empirical parameter.

Any deviation of the teeth from an ideal shape results in the well-known errors in
gear ratio known as the kinematic error. As described in [27], the finite Fourier series can
be used to describe the kinematic error:

θe =
n

∑
i=1

Ai sin(ωi(θFS/2π) + Φi) (11)

where Ai is the amplitude for a particular cyclical frequency, ωi is the frequency, Φi is the
phase angle for each component, an n value of 3 is adequate to describe the kinematic
error profile.

However, as shown in Figure 4, the model described in this section does not incor-
porate the hysteresis behavior, which results from the interaction between transmission
compliance and friction. This is because the model described in this section is a mechanistic
superposition model for friction, torsional compliance, and kinematic error, and does not
consider the coupling effects of torsional compliance and friction. Hysteresis behavior,
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especially in smart materials, magnetic fields, or micro-sliding friction, was dramatically
observed [28,29]. A typical HD stiffness curve (Figure 4) is a hysteresis loop that is divided
into upper and lower branches. In this study, a new model based on the basic operat-
ing principle of HDs is presented to capture their nonlinear torsional compliance and
hysteresis behaviors.
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2.3. Modeling of Compliance and Hysteresis

Hysteresis behavior is usually caused by micro-sliding friction in mechanical sys-
tems [28]. An HD has three moving combinations: between the inner and outer races of
the WG bearing, between the outer surface of the WG and the inner surface of the FS,
and between the FS and CS teeth. The first two contacting combinations are mainly rolling
contacts, and the frictional force is relatively small compared to that of the third sliding
combination. Therefore, only the effect of friction in the tooth engagement area on hys-
teresis was considered. The gear–tooth interface operates in an almost mixed lubrication
regime [30]. In this case, the external load was jointly carried by the asperity contact and
the fluid film.

W = Wl + Wa = (λ1 + λ2)W (12)

where Wl is the load carried by the fluid, Wa is the load carried through direct surface
contact, and λ1 and λ2 are the fluid and asperity load ratio, respectively, which depend on
the lubrication condition. The traction force in mixed lubrication can be written as the sum
of two portions [31]:

Ff =
(

Ff

)
l
+
(

Ff

)
a
= µlWl + µcWa (13)

where (Ff)l and (Ff)a are the hydrodynamic and asperity traction forces, respectively;
µc is the boundary friction coefficient; and µl is the hydrodynamic friction coefficient.
Substituting (12) into (13) yields:

Ff = (µlλ1 + µcλ2)W = µW (14)

In previous works, a single stiffness element was usually included at the HD for
simplicity, and the FS and the overall transmission compliance were not quantified into
the individual locations of the HD. In practice, the deformation of the WG is also the
main contributor to the total transmission compliance [10]. To adequately model HD
behavior, in [10], a spring-mass system with two springs and a mass (assume that spring (a)
represents the WG compliance, and spring (b) represents the FS compliance) was proposed
to describe the stiffness and hysteresis behaviors of the HD transmission. It implied that
the compliance of the WG needs to be considered when modeling the HD compliance.

Previous researchers have observed that the number of teeth pairs in an HD that
mate simultaneously increased with increasing resistance torque [21]. This is because
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the deflections of the FS and CS teeth gradually increase with the increasing load torque.
This shows that the FS compliance is composed of the compliance of the FS cup and the FS
teeth. The CS teeth are much more rigid than the FS teeth in conventional HDs. Therefore,
the CS teeth contribution to transmission compliance was not considered in this paper.
The stiffness of an FS tooth is expressed as follows:

KTi =
Fi
ξ

(15)

where Fi is the gear loads, and ξ is the total deflection of an FS tooth. The total deflection
is composed of deflections due to bending, deflections due to shearing, local deflections
owing to Hertzian contact deformation, and deflections due to tooth foundation [20].

In particular, interferences occur at several tooth pairs even with no load, but the
interference almost vanishes with an increase in the external load [20]. The no-load preload
T0 due to inherent initial interference can be approximated by a piecewise linear function
of the load:

T0 =

{
c(TFS − Ti) TFS ≤ Ti
0 TFS > Ti

(16)

where c is constant to be determined, and Ti is the piecewise linear threshold.
Based on the above discussions, we observed that the main sources of flexibility in HD

transmissions included the FS cup, the FS teeth, and the WG. The hysteresis phenomenon
resulted from the combined effect of the flexibility in the HD and micro-sliding friction
in the tooth engagement area. In order to model the HD hysteresis, we considered its
mechanical system analogy, and an HD model was proposed by using a translational
motion model analogy (Figure 5). The behavior of the HD rotational compliance can be
captured by the behavior of the spring and massless inclined plane system. The aggregate
effect of multiple gear teeth meshing is instead achieved by a single continuous gear-tooth
surface. As illustrated in Figure 5, KF, KT, and KW represent the FS cup, FS teeth, and WG
compliance, respectively; Tf is the HD friction torque; and T0 is no-load preload. When TFS
increased from zero, springs KF and KT were compressed, the number of working springs
KT increased, the no-load preload T0 decreased, and spring KW stayed at its initial position
as long as the driving force was less than friction torque Tf.Appl. Sci. 2021, 10, x FOR PEER REVIEW 7 of 18 
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In order to model the FS teeth compliance (Figure 5), a series of springs with different
lengths and stiffnesses were used to embody the FS teeth of the actual transmission. Varying
spring lengths were intended to characterize the fact that the number of meshing tooth
pairs varies with load. FS tooth stiffness was influenced by two main factors: the gear tooth
geometry and parameters, and the point of application of load. Pedersen and Jorgensen [32]
showed that the stiffness had an almost parabolic dependence on the contact point position.
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The combined stiffness of meshing tooth pairs can be simplified by a piecewise linear
function of the load:

KT =

{
aTFS + b TFS ≤ TT
aTT + b TFS > TT

(17)

where a and b are constants to be determined, and TT is the piecewise linear threshold.
From the analysis of the HD model in Figure 5, the torque-displacement relationship

of the HD gear can be modeled as

TFS = KF∆θF (18)

∆θT ≈


li(TFS)

∑
i=1

1
ai+b TFS ≤ TT

li(TT)

∑
i=1

1
ai+b +

TFS−TT
aTT+b TFS > TT

(19)

TFS sin α = KW∆θW cos α± (TFS cos α + KW∆θW sin α + T0)µ (20)

where ∆θW, ∆θT, and ∆θF denote the torsional angles of WG, FS teeth, and FS cup, respec-
tively; α is the gear-tooth angle, and li(TFS) and li(TT) are the largest integers less than TFS
and TT, respectively. Equation (20) incorporates information about the direction-dependent
friction torque and no-load preload.

When considering the compliance of the WG, the FS teeth, and the FS cup, according
to the basic operating principle shown in Figure 5, the torsional angle of the HD can be
obtained by using the following expression:

∆θ = ∆θF + ∆θT + tan α · ∆θW (21)

3. Behavioral Degradation

In order to evaluate the behavioral degradation, a specialized harmonic drive test
device was designed to observe the behavior change of the reducer. As depicted in
Figure 6, it is an electromechanical system that includes a driving servo motor, a loading
servo motor, two rotary encoders, two torque sensors, an HD unit, and a digital control
module. The concentricity was adjusted using an Easy-Laser shaft alignment instrument.
The main performance parameters of the test apparatus are displayed in Table 1. An HD
(CSF-25-80) was used for the behavioral degradation test. The reduction ratio was 80:1,
and it had a rated output torque of 63 Nm.
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To determine the torsional compliance and hysteresis behaviors of the HD experimen-
tally, first, the input shaft of the drive was locked. Next, the load torque was controlled to
vary in a linear manner, and the resulting angular displacement for the load position was
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measured by the rotary encoder and recorded. The initial torque-displacement relationship
of the reducer is shown in Figure 7. Then the reducer was operated stably for 100 h at
a rated torque of 63 Nm and a rated speed of 2000 rpm, and its torque-displacement
relationship was tested (Figure 7). The wear conditions of the rubbing surface of the HD
unit after the test are shown in Figure 8. The wear was visible on the FS tooth surface and
FS inner surface.

Table 1. List of the main performance parameters of the test system.

Name Rating Resolution

Driving servo motor 6.5 Nm -
Torque sensor for the input side 20 Nm 0.02 Nm

Encoder for input side - 0.00439◦

Loading servo torque motor 500 Nm 0.5 Nm
Torque sensor for the output side 1000 Nm 0.1 Nm

Encoder for the output side - 0.00056◦
Appl. Sci. 2021, 10, x FOR PEER REVIEW 9 of 18 

 

Figure 7. The transmission compliance and hysteresis behaviors change of the HD. 

(a)

(b)  

Figure 8. The condition of the rubbing surface after the test: (a) FS inner surface, and (b) FS tooth. 

For the FS tooth, wear made the tooth and tooth foundation thinner, and reduced 

the depth of engagement and number of meshing teeth, which led to degradation of the 

combined stiffness of meshing tooth pairs. 

FS FS T

T

T FS T

a T b T T
K

a T b T T

   
  

    
 (22) 

At the same time, with the increase of wear, the amount of interference of the tooth 

surface gradually decreased, and when the wear reached a certain degree, the interfer-

ence disappeared. Therefore, the no-load preload T0 due to inherent interference also 

decreased with the increase of wear until it reached 0. 

 
0

0

FS FS i

FS i

c T T T T
T

T T

     


 (23) 

Equations (22) and (23) capture the degradation of this behavior in the proposed 

model. Figure 7 shows that the initial transmission compliance and hysteresis in HD had 

the symmetric property, but the reducer did not have such properties after 100 h of op-

eration. This is most likely because the test was conducted in one direction. Figure 7 also 

shows that the reducer hysteresis at zero load torque decreased and tended toward zero 

after 100 h of testing. This is because the tooth surface interference disappears due to 

wear, and the no-load preload is zero. Therefore, the micro-sliding friction that caused 

hysteresis is almost zero at no load. Furthermore, the transmission compliance shows 

obvious nonlinearity, especially in the range of small-load torque. 

4. Parameter Identification 

The steady-state hysteresis loop can be defined by three curves [8]: the stiffness 

curve, an ascending curve denoted for increasing load (dTFS/dt >0), and a descending 

curve denoted for decreasing load (dTFS/dt <0). According to the model proposed in this 

paper, the stiffness curve can be obtained by using the following expression: 

Figure 7. The transmission compliance and hysteresis behaviors change of the HD.

Appl. Sci. 2021, 10, x FOR PEER REVIEW 9 of 18 

 

Figure 7. The transmission compliance and hysteresis behaviors change of the HD. 

(a)

(b)  

Figure 8. The condition of the rubbing surface after the test: (a) FS inner surface, and (b) FS tooth. 

For the FS tooth, wear made the tooth and tooth foundation thinner, and reduced 

the depth of engagement and number of meshing teeth, which led to degradation of the 

combined stiffness of meshing tooth pairs. 

FS FS T

T

T FS T

a T b T T
K

a T b T T

   
  

    
 (22) 

At the same time, with the increase of wear, the amount of interference of the tooth 

surface gradually decreased, and when the wear reached a certain degree, the interfer-

ence disappeared. Therefore, the no-load preload T0 due to inherent interference also 

decreased with the increase of wear until it reached 0. 

 
0

0

FS FS i

FS i

c T T T T
T

T T

     


 (23) 

Equations (22) and (23) capture the degradation of this behavior in the proposed 

model. Figure 7 shows that the initial transmission compliance and hysteresis in HD had 

the symmetric property, but the reducer did not have such properties after 100 h of op-

eration. This is most likely because the test was conducted in one direction. Figure 7 also 

shows that the reducer hysteresis at zero load torque decreased and tended toward zero 

after 100 h of testing. This is because the tooth surface interference disappears due to 

wear, and the no-load preload is zero. Therefore, the micro-sliding friction that caused 

hysteresis is almost zero at no load. Furthermore, the transmission compliance shows 

obvious nonlinearity, especially in the range of small-load torque. 

4. Parameter Identification 

The steady-state hysteresis loop can be defined by three curves [8]: the stiffness 

curve, an ascending curve denoted for increasing load (dTFS/dt >0), and a descending 

curve denoted for decreasing load (dTFS/dt <0). According to the model proposed in this 

paper, the stiffness curve can be obtained by using the following expression: 

Figure 8. The condition of the rubbing surface after the test: (a) FS inner surface, and (b) FS tooth.

Figure 7 shows that behavioral degradation of the reducer occurred. Therefore, in or-
der to improve the performance of the system, it was necessary to capture the degradation
behavior of the reducer. Using the analysis of the HD model in Figure 5, the transmission
compliance and hysteresis in HD were mainly attributed to the flexibility of the FS cup, the
FS teeth, and the WG, as well as the friction in the tooth engagement area. The degradation
of the behavior of the reducer was caused by the wear of the FS tooth surface and the FS
inner surface, which led to the degradation of the stiffness of the FS tooth and the friction
in the tooth engagement area.
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For the FS tooth, wear made the tooth and tooth foundation thinner, and reduced
the depth of engagement and number of meshing teeth, which led to degradation of the
combined stiffness of meshing tooth pairs.

K′T =

{
a′TFS + b′ TFS ≤ T′T
a′T′T + b′ TFS > T′T

(22)

At the same time, with the increase of wear, the amount of interference of the tooth
surface gradually decreased, and when the wear reached a certain degree, the interference
disappeared. Therefore, the no-load preload T0 due to inherent interference also decreased
with the increase of wear until it reached 0.

T0
′ =

{
c′(TFS − T′) TFS ≤ Ti

′

0 TFS > Ti
′ (23)

Equations (22) and (23) capture the degradation of this behavior in the proposed
model. Figure 7 shows that the initial transmission compliance and hysteresis in HD
had the symmetric property, but the reducer did not have such properties after 100 h of
operation. This is most likely because the test was conducted in one direction. Figure 7
also shows that the reducer hysteresis at zero load torque decreased and tended toward
zero after 100 h of testing. This is because the tooth surface interference disappears due
to wear, and the no-load preload is zero. Therefore, the micro-sliding friction that caused
hysteresis is almost zero at no load. Furthermore, the transmission compliance shows
obvious nonlinearity, especially in the range of small-load torque.

4. Parameter Identification

The steady-state hysteresis loop can be defined by three curves [8]: the stiffness curve,
an ascending curve denoted for increasing load (dTFS/dt >0), and a descending curve
denoted for decreasing load (dTFS/dt <0). According to the model proposed in this paper,
the stiffness curve can be obtained by using the following expression:

∆θ =

(
1

KF
+

tan2(α)

KW

)
TFS + ∆θT(TFS) (24)

From the analysis of the HD model in Figure 5, the torque-displacement relationship
of the HD gear can be represented by two functions. For an increasing load (dTFS/dt >0),
the function will take the form:

∆θu =
TFS
KF

+ ∆θT(TFS) + tan α · ∆θWu (25)

∆θWu =


− µ(T0−TFS cos α)−TFS sin α

KW (cos α−µ sin α)
TFS ≤ Toµ

sin α+µ cos α

0 Toµ
sin α+µ cos α < TFS ≤ Toµ

sin α−µ cos α
TFS(sin α−µ cos α)−T0µ

KW (cos α+µ sin α)
TFS > Toµ

sin α−µ cos α

(26)

For a decreasing load (dTFS/dt <0), the function will take the form:

∆θd =
TFS
KF

+ ∆θT(TFS) + tan α · ∆θWd (27)

∆θWd =


Tmax(sin α−µ cos α)−T0(Tmax)µ

KW (cos α+µ sin α)
TFS ≥ KW ∆θWmax(cos α−µ sin α)−T0µ

sin α+µ cos α
TFS(sin α+µ cos α)+T0µ

KW (cos α−µ sin α)
TFS < KW ∆θWmax(cos α−µ sin α)−T0µ

sin α+µ cos α

(28)

According to the model proposed in this paper, the nonlinearity of transmission
compliance is caused by the FS teeth. When TFS > TT, the rigidity of the FS tooth is constant,
the transmission flexibility of the reducer is linear. Therefore, the threshold value TT can
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be obtained by the method shown in Figure 9. A trial and error method can be used to
estimate the parameters of the proposed HD model. The µ and cTi take initial values as
µ0 and (cTi)0. As shown in Figure 9, five points (Ai (Ai1, Ai2) i = 1, . . . , 5) are selected
for parameter evaluation. Considering the test error, the average value can be obtained
through several tests. Model parameters can be estimated as follows:

K̂W =
µ0(cTi)0 tan α

A12(cos α− µ0 sin α)
(29)

ĉ =
A32K̂W(cos α− µ0 sin α)

2µ0 A31 tan α
+

(cTi)0
A31

(30)

T̂i =
(cTi)0

ĉ
(31)

A41

K̂F
+ ∆θ̂T(A41) + tan α∆θ̂Wu(A41) = A42 (32)

A51

K̂F
+ ∆θ̂T(A51) + tan α∆θ̂Wu(A51) = A52 (33)

A21

K̂F
+ ∆θ̂T(A21) + tan α∆θ̂Wu(A21) = 0 (34)
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Based on estimated stiffness parameters (KF, KW, a, b, TT) and hysteresis parameters
(c, Ti, µ), the evaluation errors εuj εdj can be expressed as follows:

∆θuj = ∆θ̂uj + εuj (35)

∆θdj = ∆θ̂dj + εdj (36)

where ∆θuj and ∆θuj are the measured hysteresis torsional angles. The optimum parameters
µ0 and (cTi)0 in the least square sense can be obtained to minimize the criterion function in
Matlab software:

J =
n

∑
j=1

(
ε2

uj + ε2
dj

)
(37)

Specifically, when TT = 0, the torsional angle of FS cup and FS teeth can be rewritten
as follows:

TFS
KF

+ ∆θT(TFS) =
TFS
K

(38)
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where K is the combined stiffness of the FS cup and FS teeth, which can be evaluated using
the above parameter-evaluation method.

5. Results and Discussion

Considering the non-symmetric property of the HD’s stiffness after testing, the trans-
mission compliance and hysteresis model parameters were identified using the torque-
displacement curves for TFS > 0 (Figure 7). The identified parameters are listed in Table 2.

Table 2. Experimentally identified parameter values used in the HD simulation.

Parameter Initial Curve Post-Test Parameter Initial Curve Post-Test

TT 0 Nm 30 Nm KW 101,837.5 Nm/rad 98,548.7 Nm/rad
A - 1833.5 M 0.066 0.076
B - 5729.6 C −1.177 −1.152

KF (K) 50,923.2
Nm/rad

78,197.8
Nm/rad Ti 115.5 Nm 70.2 Nm

The torsional angle was computed using the identified parameters and the trans-
mission compliance and hysteresis model as given in Equations (25)–(28). The estimated
torsional angle was next compared to the actual measured angle. Figure 10 shows the
estimated and measured torque-displacement curves for different run times. The calcu-
lated curves closely coincided with those found experimentally. Therefore, the spring and
massless inclined plane system can reasonably describe the transmission compliance and
hysteresis behaviors of the HD.Appl. Sci. 2021, 10, x FOR PEER REVIEW 12 of 18 
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A dynamic model of hysteresis in HDs proposed by Dhaouadi et al. (Appendix A) also
was used to describe the transmission compliance and hysteresis phenomenon. As shown
in Figure 10, when comparing the proposed model to the Dhaouadi’s model, for the
initial behavior, the estimation results formed two similar curves that are consistent with
the experimental observation. However, for the HD after 100 h of operation, the model
proposed in this paper can better characterize its hysteresis behavior. This is because the
proposed model captures the behavior degradation mechanism of the reducer.

The torque-displacement curve of the Zhang’s hysteresis model given in Appendix B,
the Dhaouadi’s hysteresis model given in Appendix A, and that of the proposed model
are shown in Figure 11. In Zhang’s model, the behavior of the HD’s rotational compliance
was described by the behavior of a serial spring-mass system. They assumed that the
linear spring (a) represents the WG compliance, the linear spring (b) represents the FS
compliance, and hysteresis is caused by constant friction Ff. It can be shown that Zhang’s
model cannot capture the nonlinear flexibility of a harmonic drive, and the hysteresis curve
is independent of the load torque. In Dhaouadi’s model, they used the hereditary concept to
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represent the hysteresis behavior of the HD, and an analytical odd polynomial function was
selected for the stiffness curve. It is important to observe that the hysteresis represented by
this model decreased with an increase in load. Therefore, as shown in Figure 10, this model
cannot accurately capture the hysteretic behavior of the harmonic reducer after degradation.
Compared with the above models, the proposed model considers the influence of the multi-
tooth engagement and interference characteristics of the HD on the transmission flexibility
and hysteresis. The proposed model can capture the degradation of nonlinear stiffness and
hysteresis behaviors of HD.Appl. Sci. 2021, 10, x FOR PEER REVIEW 13 of 18 
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Figure 11. A comparison of the proposed model and the existing model.

Figure 12 shows an analysis of the effects of interference and multi-tooth meshing
on the behavior of the HD. The hysteresis was clearly affected by the preload caused by
the interference. At zero torque output, hysteresis decreased as preload decreased. This
explains why the hysteresis decreased as the running time increased (Figure 7). Figure 12
also shows that the nonlinear stiffness of the reducer is attributed to the number of meshing
teeth, which depends on the load. The number of meshing teeth reached the maximum
(TT = 0) due to initial interference. Therefore, the initial stiffness was linear (Figure 7).
With an increase in wear, the initial no-load tooth interference vanishes gradually, and TT
increased from zero. The transmission compliance of HD shows nonlinear characteristics
gradually. This is consistent with the test results shown in Figure 7.
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Figure 12. The influence of interference and multi-tooth engagement on the transmission compliance
and hysteresis.

Figure 13 shows the analysis of the effects of the friction coefficient and stiffness of
the FS and the WG on the behavior of the HD. With the increase of the friction coefficient,
the hysteresis characteristic strengthened, and the stiffness of the reducer increased slightly.
The decrease in the stiffness of the WG not only increased the hysteresis characteristics
of the reducer, but also reduced the stiffness of the reducer. For the FS stiffness, when it
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was reduced, it only reduced the overall rigidity of the reducer, and hardly affected the
hysteresis characteristics of the reducer.Appl. Sci. 2021, 10, x FOR PEER REVIEW 14 of 18 
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compliance and hysteresis.

The derived stiffness model given in Equation (24) was compared with the linear
piecewise model given in Equation (8) and the cubic polynomial model given in Equation
(9) through simulations. Figure 14 shows the simulation results for the piecewise linear
model, cubic polynomial model, and proposed model. The results show that the proposed
stiffness model matched the others. Figure 15 shows the local elastic coefficient evaluated
using different models. The local elastic coefficient can be calculated as:

KFL =
dTFS
d∆θ

(39)
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In Figure 15, the proposed stiffness model’s local elastic coefficient curve consists of
two parts. When TFS < TT, the local elastic coefficient, similar to those achieved using
the cubic polynomial model, increased as TFS increased. When TFS > TT, the local elastic
coefficient remained unchanged, which is consistent with the results of the piecewise linear
model. It can be seen in Figure 7 that the above properties of the proposed model captured
the stiffness degradation characteristics of the reducer. The maximum relative error of the
proposed model and the cubic polynomial model was 26.3%, and that of the proposed
model and the piecewise linear model was 24.8%.
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6. Conclusions

In this study, we presented a new model based on the mechanical system analogy
to explain the transmission compliance and hysteresis behaviors in HDs. By considering
the effect of interference and multi-tooth meshing, the proposed model captured the
degradation of reducer behavior caused by wear. The hysteresis loss was captured by
taking the micro-sliding friction in the tooth engagement area into account. The main
sources of flexibility in HD transmissions include the FS cup, the FS teeth, and the WG.
The number of meshing teeth was affected by the load torque, which is the main cause of
nonlinear stiffness. The interference, WG stiffness, and friction coefficient were the main
influencing factors in hysteresis behavior. The method of estimating the parameters of
the proposed HD model has been described in detail. Experimental results confirmed the
effectiveness of the proposed model.

Furthermore, the model can capture the degradation of transmission flexibility and
hysteresis better than the existing models. Therefore, the model will be useful in under-
standing the hysteresis mechanism of HDs. There are two characteristics of the behavioral
degradation of HD: the degradation of stiffness and enhancement of nonlinear characteris-
tics, and the reduction of hysteresis loss near zero load.
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Abbreviations

N reduction Ratio
ZCS, ZFS teeth number of CS and FS
θe kinematic error
∆θ harmonic drive torsional angle
θWG, θCS, θFS angular position of WG, CS, and FS
∆θW, ∆θT, ∆θF torsional angle of WG, FS teeth, and FS cup
∆θu, ∆θd, harmonic drive torsional angle for increasing and decreasing load
∆θuj, ∆θdj estimated hysteresis torsional angle
∆θWu, ∆θWd, wave generator torsional angle for increasing and decreasing load
TWG, TCS, TFS torque of WG, CS, and FS
T1, T2 torque given by the manufacturer
Tf friction torque
T0 (T0

′) no-load preload
Ti (Ti

′) piecewise linear threshold
KT (K′T) combined stiffness of meshing tooth pairs
TT (TT

′) piecewise linear threshold
KFL local Elastic Coefficient
KF, KT, KW stiffness of FS Cup, FS Teeth, and WG
K1, K2, K3 stiffness Given by the Manufacturer
Fs static friction
Fc minimum value of the Coulomb friction
Fv load parameter
Ω lubricant parameter
Ai amplitude for a particular cyclical frequency
Φi phase angle
ωi frequency
a, b(a’, b’) coefficient of combined stiffness
c (c’) coefficient of no-load preload
α gear-tooth angle
δ additional empirical parameter
µc, µl boundary and hydrodynamic friction coefficient
µ friction coefficient
Wl, Wa load carried by the fluid and asperity
λ1, λ2 fluid and asperity load ratio

Appendix A. Dhaouadi’s Hysteresis Model

The hysteresis loop consists of two curves:

hu(t) = f (∆θ(t))− A
β

(
−1 + 2

e−β(Q+∆θ(t))

1 + e−2Q

)
(A1)

hd(t) = f (∆θ(t)) +
A
β

(
−1 + 2

e−β(Q−∆θ(t))

1 + e−2Q

)
(A2)

where Q is the maximum twist angle, and f (∆θ(t)) is the stiffness curve, which can be
obtained by using the following expression:

f (∆θ) = b1∆θ + b2∆θ3 + b3∆θ5 (A3)

where b1, b2, b3, A, and β are constants to be determined.
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Appendix B. Zhang’s Hysteresis Model

The total deformation of the HD can be calculated as:

∆θ =
arctan(CFTF)

CFKF0
− sign(Tw)

CwNKw0

(
1− e−Cw |Tw |

)
(A4)

where KF0, Kw0, Cw, and CF are constants to be determined, N denotes the gear ratio, and
Tw incorporates information about the direction-dependent friction torque.
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