
applied  
sciences

Article

Object-Level Semantic Map Construction for Dynamic Scenes

Xujie Kang 1,2 , Jing Li 3,*, Xiangtao Fan 1, Hongdeng Jian 1 and Chen Xu 1,2

����������
�������

Citation: Kang, X.; Li, J.; Fan, X.; Jian,

H.; Xu, C. Object-Level Semantic Map

Construction for Dynamic Scenes.

Appl. Sci. 2021, 11, 645. https://

doi.org/10.3390/app11020645

Received: 21 November 2020

Accepted: 4 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute (AIR), Chinese Academy
of Sciences, Beijing 100094, China; kangxj@radi.ac.cn (X.K.); fanxt@radi.ac.cn (X.F.); jianhd@radi.ac.cn (H.J.);
xuchen20@mails.ucas.ac.cn (C.X.)

2 University of Chinese Academy of Sciences, No.19 Yuquan Road, Shijingshan District, Beijing 100049, China
3 National Engineering Research Center for Geoinformatics, Aerospace Information Research Institute (AIR),

Chinese Academy of Sciences, No. 20A, Datun Road, Chaoyang District, Beijing 100101, China
* Correspondence: lijing202115@aircas.ac.cn

Featured Application: Robotics, augmented reality, and dense reconstruction.

Abstract: Visual simultaneous localization and mapping (SLAM) is challenging in dynamic envi-
ronments as moving objects can impair camera pose tracking and mapping. This paper introduces
a method for robust dense bject-level SLAM in dynamic environments that takes a live stream of
RGB-D frame data as input, detects moving objects, and segments the scene into different objects
while simultaneously tracking and reconstructing their 3D structures. This approach provides a new
method of dynamic object detection, which integrates prior knowledge of the object model database
constructed, object-oriented 3D tracking against the camera pose, and the association between the
instance segmentation results on the current frame data and an object database to find dynamic
objects in the current frame. By leveraging the 3D static model for frame-to-model alignment, as well
as dynamic object culling, the camera motion estimation reduced the overall drift. According to the
camera pose accuracy and instance segmentation results, an object-level semantic map representation
was constructed for the world map. The experimental results obtained using the TUM RGB-D dataset,
which compares the proposed method to the related state-of-the-art approaches, demonstrating that
our method achieves similar performance in static scenes and improved accuracy and robustness in
dynamic scenes.

Keywords: object tracking; instance segmentation; dynamic simultaneous localization and mapping;
camera pose tracking

1. Introduction

Nowadays, intelligent robots are not only widely used in industry, but also have exten-
sive application prospects in various environments coexisting with humans. For decades,
visual simultaneous localization and mapping (SLAM) systems have been focused on
jointly solving the tasks of tracking the position of a camera as it explores unknown loca-
tions and creating a 3D map of the environment. With the rapid development of computer
vision, visual SLAM has attracted increasing attention due to its diverse application scenar-
ios, low cost, and ability to extract semantic information. The real-time capability of SLAM
methods has made them the cornerstone of ambitious applications, such as autonomous
driving, robot navigation, and augmented/virtual reality. Meanwhile, the wide availabil-
ity of affordable structured light, time-of-flight depth sensors, and computer hardware
upgrades have had enormous impacts on both the democratization of the acquisition
of 3D models in real-time from hand-held cameras and providing robots with powerful
but low-cost 3D sensing capabilities, and triggered extensive research aimed at real-time
3D scanning. Tracking camera motion while maintaining a dense representation of the
3D geometry of its environment in real-time has become more important than ever [1–4].

Appl. Sci. 2021, 11, 645. https://doi.org/10.3390/app11020645 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0352-4075
https://orcid.org/0000-0002-5452-9941
https://doi.org/10.3390/app11020645
https://doi.org/10.3390/app11020645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020645
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/645?type=check_update&version=1


Appl. Sci. 2021, 11, 645 2 of 20

Dense camera pose tracking does not rely on the geometric features of the environment,
but rather fully utilizes the geometric structure and texture information of the environment.
Compared with the traditional SLAM method based on geometric features, dense camera
pose tracking is much more robust in complex environments. State-of-the-art dense visual
SLAM methods can produce impressive reconstructions of large indoor scenes. However,
few mainstream algorithms for dense visual SLAM utilize object-level semantic informa-
tion. Thinking of a scene as a representation of objects, we argue that this approach is a
natural and efficient way to represent the things that are the most important for robotic
scene understanding, mission planning, and physical interaction. It is also highly suitable
as the basis for human–robot communication. Therefore, object-level SLAM has attracted
considerable attention in recent years, in addition to being the development trend of vi-
sual SLAM. However, most such methods have difficulty obtaining better performance in
dynamic environments, because moving objects can significantly interfere with position-
ing, scene segmentation, and map construction. If not actively segmented and detected,
dynamic objects can be fused into the map, which can lead to irreversible corruption. To
design robots that can interact with dynamic scenes smoothly, it is crucial to equip them
with the abilities to (i) discover static and dynamic objects in a scene via segmentation and
motion detection and (ii) track and estimate the 3D geometry of each object independently
in a dynamic environment. These high-level, object-based semantic scene representations
would greatly enhance the perception and physical interaction capabilities of robots.

In this work, we developed an object-oriented dense online SLAM system constructed
based on ElasticFusion [5] with a focus on indoor scene understanding using RGB-D
data. The semantic RGB-D visual SLAM architecture is integrated with a deep learning
network with enhanced semantic instance segmentation and object motion detection for
location and mapping in complex dynamic environments. Our objectives were to take
a live stream of RGB-D frame data as input, to obtain the accurate camera pose, and to
segment the scene into different objects while simultaneously tracking and reconstructing
the 3D shapes of the objects in a dynamic environment. According to prior knowledge of
previously constructed object model databases, the camera pose can be estimated roughly.
Then, the motion information of each object in the database will be identified through
object-oriented 3D tracking against the camera pose, and its motion status will be updated
in the current frame. By creating associations between the results of fusion segmentation
combining the semantic and geometric cues and the object database, the dynamic part in
the current frame will be found and eliminated, so as to obtain the camera pose accurately.
Based on the camera pose accuracy and instance segmentation results, we produced
semantically-labelled surfel (surface element) reconstructions of object instances without
strong a priori knowledge of the object types present in a scene and integrated object
attribute information with the system to improve the system efficiency and accuracy. Our
underlying assumption is that objects of interest can be detected and segmented in real
time using efficient segmentation algorithms. We used a Mask RCNN [6] to provide 2D
instance mask predictions, utilized geometric information in the depth images to enhance
the object segmentation, and then fused these masks online into the surfel reconstruction
along with a 3D “voxel mask” to fuse the instance foreground. This approach enables the
problems in dense and accurate camera pose tracking, semantic instance segmentation,
object dynamic detection, and map construction to be solved in a dynamic environment.
The main contributions of this work can be summarized as follows.

1. An object motion detection method involving object-oriented 3D tracking against the
camera pose based on prior knowledge of a previously constructed object database
is provided.

2. This approach enables dynamic objects to be found in the current frame by creating
associations between the results of the instance segmentation algorithm combining the
semantic and geometric cues and the object database updated by object motion detection.

3. The camera motion estimation method reduces the overall drift by leveraging the 3D static
model for frame-to-model alignment, as well as dynamic object culling in the current frame.



Appl. Sci. 2021, 11, 645 3 of 20

4. To achieve an accurate 3D object-level semantic map representation of a scene, conduct
object motion detection, and perform accurate instance segmentation and camera
pose estimation, ElasticFusion is utilized, creating a complete and novel dynamic
RGB-D SLAM framework.

The remainder of this paper is organized as follows: Section 2 presents the related
work conducted in the past few years on dynamic object-level semantic RGB-D SLAM.
Section 3 describes our proposed approach. The experimental results obtained by testing
the method on the public TUM datasets are given in Section 4. Section 5 provides a
discussion and, finally, Section 6 summarizes the conclusions.

2. Related Work
2.1. Dense SLAM

The arrival of the Microsoft Kinect device and the sudden availability of inexpensive
depth sensors to consumers triggered extensive research aimed at real-time 3D scanning.
Systems such as KinectFusion [1] first enabled mapping of the 3D geometry of arbitrary
indoor scenes accurately and in real-time, by fusing the images acquired by a depth camera
simply by moving a sensor around the environment. Successors to KinectFusion have
quickly addressed some of its shortcomings. Ongoing research has produced systems
with impressive performance, ranging from scalable extensions [7] and loop closure ca-
pabilities [2,8] to methods that consider runtime limitations [9,10] in order to enable 3D
scanning and mapping of large indoor scenes for maximum robustness and ease of use.
Although some researchers have focused on extending the capabilities of such systems
to handle very large scenes or to include loop closure [3], others have made the tracking
more robust [2] or improved the memory and scale efficiency by using point-based in-
stead of volumetric representations [7], leading to increased 3D reconstruction quality [11].
KinectFusion [12] proved that a truncated signed distance function (TSDF)-based map
representation can achieve fast and robust mapping and tracking in small environments.
Subsequent work [13,14] showed that the same principles are applicable to large-scale envi-
ronments by choosing appropriate data structures. In addition, many research results have
been obtained through the expression and organization of dense maps. Surface elements
(surfels) have a long history in computer graphics and have found many applications in
computer vision [5]. Recently, surfel-based map representations were introduced into the
domain of RGBD-SLAM. A map of surfels is similar to a point cloud with the difference that
each element encodes local surface properties—Typically a radius and normal in addition to
the location. In contrast to TSDF-based maps, surfel clouds are naturally memory efficient
and avoid the overhead due to switching representations between mapping and tracking
that is typical of TSDF-based fusion methods. Whelan et al. [3] presented a surfel-based
RGBD-SLAM system for large environments with local and global loop closure. With the
advent of artificial intelligence, robots are required to interact well and intelligently with
the environment. Although the above methods have achieved good results in camera
tracking and map construction, they are assumed to run in static environments and do
not add semantic information that can understand the environment, so they cannot meet
the requirements of embedded unmanned platform intelligence. Because no semantic
information is added, many robots cannot complete complex operations, such as road
kinematics planning, obstacle avoidance, and human-computer interaction.

2.2. Object Semantic SLAM

The computer graphics and vision communities have devoted substantial efforts to
object and scene segmentation. Segmented data can broaden the functionality of visual
tracking and mapping systems, for instance, by enabling robots to detect objects. The
task of target detection is applied to find all the targets or objects of interest in the image
and to determine their positions and sizes, which is one of the core issues in machine
vision. The traditional target detection process often utilizes a sliding window for region
selection and then applies SIFT, HOG, or another method for feature extraction. Finally,



Appl. Sci. 2021, 11, 645 4 of 20

the support vector machine approach and Adaboost are adopted for category judgment.
However, the traditional method has poor robustness, making it incapable of reflecting
the illumination changes, background diversity, etc. In addition, the regional selection is
not targeted, the time complexity is high, and the window is redundant. Some researchers
have proposed segmenting RGBD data based on the geometric properties of surface
normals, mainly by assuming that objects are convex. Moosmann et al. [15] successfully
segmented 3D laser data based on this assumption. The same principle has also been used
by other authors, in order to segment objects in RGBD frames [16–20]. The significant
recent progress in deep learning can provide solutions involving the utilization of semantic
spatial information. From the RCNN to the Fast RCNN and Faster RCNN, deep learning
methods represented by RCNNs in target detection have sharply improved the target
detection accuracy. Subsequently, He et al. added a fully convolutional network to generate
the corresponding MASK branch based on the original Faster RCNN algorithm. The
Mask RCNN method can be used to accomplish various tasks such as target classification,
target detection, and semantic segmentation. Deep learning neural networks are used to
detect and segment objects in visual SLAM and build object-level semantic maps of scenes,
achieving excellent results. Whelan et al. proposed a method of constructing a dense 3D
semantic map called semantic fusion based on a convolutional neural network, which
relied on the elastic fusion SLAM algorithm to provide indoor RGB-D video interframe
for position-pose estimation, utilizing a convolutional neural network to predict the pixel-
level object category label and ultimately combining the Bayesian upgrade strategy with
the conditional random field model. This approach enabled the probability escalation
of CNN prediction values from different perspectives and finally generated a dense 3D
semantic map containing semantic information. Engel et al. [21] proposed a monocular
and semi-dense 3Dsemantic mapping construction method based on a CNN and large
scale direct (LSD) SLAM, where the LSD-SLAM method was used instead of the elastic
fusion method to estimate the camera pose. Sunderhauf et al. [22] proposed an object-
oriented mapping system composed of instances using bounding box detection from a
CNN and an unsupervised geometric segmentation algorithm using RGB-D data. SLAM++
by Salas-Moreno et al. [23] was an early RGB-D object-oriented mapping system. They
used point pair features for object detection and a pose graph for global optimization.
The drawback was the requirement that the full set of object instances, with their very
detailed geometric shapes, had to be known beforehand and preprocessed in an offline
stage before running the algorithm. Stuckler and Behnke [24] also previously tracked object
models learned beforehand by registering them to a multi-resolution surfel map. Tateno
et al. [25] used a pre-trained database of objects to generate descriptors, but they used a
KinectFusion [1] TSDF to segment regions of a reconstructed TSDF volume incrementally
and to match 3D descriptors directly against those of other objects in the database. In
RGB-only SLAM for object detection, Pillai and Leonard [26] used ORB-SLAM [27] to assist
object recognition. They use a semi-dense map to produce object proposals and aggregate
detection evidence across multiple views for object detection and classification. MO-SLAM
by Dharmasiri et al. [28] focused on object discovery through duplicates. The authors used
ORB [29] descriptors to search for sets of landmarks, which could be grouped by single
rigid body transformation.

The above instance detection and segmentation methods based on deep learning do
not fully utilize the scene information obtained by an RGB-D camera, and it is difficult to
obtain accurate object segmentation using only RGB or depth data, or offline processing
is required to obtain prior knowledge of scene objects. In contrast, our system combines
RGB image semantic segmentation based on a deep learning network and depth image
geometric segmentation results to obtain accurate object boundary and semantic category
information without prior knowledge. It also offers methods of fusing labelled image data
into segmented 3D maps, achieving real-time 3D object recognition, further improved
tracking performance, and higher-level, object-based semantic scene descriptions while
introducing the possibility of virtual or even real interaction with the scene.



Appl. Sci. 2021, 11, 645 5 of 20

2.3. Dynamic SLAM

Despite this progress, much work is still based on the fundamental assumption of a
static environment, within which points in the 3D world always maintain the same spatial
positions in the global world, with the only moving object being the camera. Most odometry
methods perform registration between the current image and a previous reference, and the
estimated transformation between these images is assumed to be due to the camera motion.
Traditional SLAM algorithms are based on this assumption and achieving performance
results, whereas robots tend to be artificial dynamic environments and are more concerned
with dynamic objects, such as people, animals, and vehicles. Therefore, the recognition
and 3D tracking of dynamic objects are the core issues of modern SLAM systems. Since it
became possible to obtain better visual SLAM results in static environments, some studies
have addressed visual SLAM in dynamic environments. There are three ways to deal with
dynamic objects in visual SLAM. One deforms the whole world in a non-rigid manner in
order to include a deformable/moving object [4]. The second specifically aims at building
a single static background model while ignoring all possibly moving objects and, thus,
improving the camera tracking accuracy [30–33]. For example, DynaSLAM [33] uses a
CNN to identify dynamic objects and remove them from the image to avoid dynamic object
interference. Zhao et al. [34] proposed a method of detecting potentially dynamic objects
using semantic information and then using a contour refinement algorithm to detect objects
more accurately. Sun et al. [35,36] proposed a motion removal approach to improve RGB-D
SLAM in dynamic environments, as well as a background modeling method to segment
foreground from background. This approach was mostly demonstrated on driving scenar-
ios and was limited to sparse reconstructions. StaticFusion [31] performs segmentation
by coupling camera motion residuals, depth inconsistency, and a regularization term. In
the implicit handling of dynamic elements, it is common to use a robust cost function
within the visual odometry front end, which penalizes the contributions of high-residual
points and implicitly increases the robustness of pose estimation against un-modelled
effects. Meanwhile, Kerl et al. [10,13] demonstrated the robustness against the presence of
small moving objects in the scene. However, these solutions are insufficient and fail when
moving parts occupy a significant portion of the image.

The third means of dealing with dynamic objects in visual SLAM models the dynamic
components by creating sub-maps for every possibly rigidly moving object in the scene
while fusing corresponding information into these sub-maps [37,38]. The SLAMMOT
project [39] represented an important step towards extending the SLAM framework to dy-
namic environments by incorporating the detection and tracking of moving objects into the
SLAM operation. Only very recently has the problem of reconstruction of dense dynamic
scenes in real time been addressed. Xu et al. proposed the MID-Fusion [40] system, which is
a new multi-instance dynamic RGBD SLAM system using a Mask R-CNN to find semantic
instances and an object-level octree-based volumetric representation. Co-fusion [37] is
another real-time dense mapping system capable of reconstructing both a static background
map and dynamic objects from a scene. The corresponding paper presented a real-time
pipeline that can segment and track dynamic objects based on either motion or semantic
cues, reconstructing them separately using a surfel-based representation. DynSLAM [33]
utilizes a mapping system for autonomous driving applications capable of separately
reconstructing both the static environment and moving vehicles. However, the overall
system is not real-time and vehicles constitute the only dynamic object class reconstructed,
so the functionality of this approach is limited to road scenes. Barsan et al. [41] presented
a stereo-based dense mapping algorithm for large-scale dynamic urban environments
that can simultaneously reconstruct the static background, moving objects, and poten-
tially moving but currently stationary objects separately. However, this algorithm cannot
operate in real-time and is mainly designed for large indoor scenes. As in our method,
Runz and Agapito [38] used Mask RCNN predictions to detect object instances. Their
objective was to reconstruct and track moving instances densely using an ElasticFusion [3]
surfel model for each object, as well as for the background static map. They did not at-



Appl. Sci. 2021, 11, 645 6 of 20

tempt to reconstruct high-quality objects as pose-graph landmarks in room-scale SLAM.
Rünz et al. [37] proposed a method of reconstructing and tracking each moving object with
a separate 3D model, being one of the first real-time methods to perform dense tracking and
fusion of multiple objects to handle dynamics explicitly. These approaches have naturally
paved the way towards interaction and dynamic object reasoning.

In addition, motion detection from still cameras has been studied for several years [42,43],
where foreground subtraction [44] and the optical flow [45] have been exploited. However,
these approaches are not directly usable in many applications that involve moving cameras.
Some new research on this problem has appeared in recent years [14,46–48]. These works
have mainly adopted motion segmentation approaches to handle motion detection using a
moving camera. For example, Tan et al. [49] projected keyframes onto the current frame for
appearance and structure comparison, which could reveal changed regions. Keller et al. [7]
used input points with no close model correspondence to seed a region-growing procedure
to segment the current image into static and dynamic parts. Subsequently, model points
matched with dynamic input points are removed from the reconstruction. This approach
can only be utilized once a confident reconstruction of the scene is in place. Wangsiripitak
and Murray [50] proposed edge-based polyhedral tracking to achieve dynamic object
judgment. Further, Jaimez et al. [30] used geometric clustering to divide objects into
dynamic and static parts. Nevertheless, in these approaches, no spatial or temporal
coherence is enforced among the detected dynamic points between consecutive frames.
These methods are more dependent on the shape and color characteristics of the object and
do not have sufficient adaptability to the environment.

3. Methodology
3.1. System Overview

Our proposed method, built on the ElasticFusion [5] framework, enables real-time
dense multi-model dynamic RGBD SLAM at the object level. In addition to obtaining
camera poses accurately, our system can detect, track, and reconstruct multiple objects,
including dynamic and static objects, while precisely segmenting each object instance and
assigning it a corresponding semantic label. Figure 1 illustrates the proposed method in a
detailed flowchart, which involves four steps.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21 
 

 
Figure 1. Overview of the system pipeline. Images data captured by an RGB-D camera serve as the 
input data for the motion detection, segmentation, camera pose tracking, and map construction 
modules, among others. Then, the precise camera pose and object-level semantic map can be ob-
tained. 

Firstly, object motion detection is performed by 3D object tracking based on a priori 
knowledge of the object model database updated by the previous frame to find the mov-
ing object in the object database. 
(1) Secondly, object instance accuracy segmentation is achieved using a combination of 

semantic and geometric cues in the current frame, then associated with the object 
database to find the dynamic part of the current image data. 

(2) Thirdly, the camera pose is obtained precisely through dynamic part elimination in 
the current frame and each object model pose in the database is updated using the 
accurate camera pose.  

(3) Fourthly, the object model is updated and fused with each frame input, and the 3D 
object-level semantic map is reconstructed incrementally. 
The details of each component of the pipeline will be described below. 

3.2. Notation and Preliminaries 
We define the image space domain as Ω ⊂ N2 and define the 3D back-projection of 

point ݑ	 ∈ 	Ω given depth map D as ݑ)݌, (ܦ = -is the intrinsic cam ܭ where ,(ݑ)݀ݑଵିܭ
era matrix and ݑ is the homogeneous pixel coordinate form. We also specify the perspec-
tive projection of 3D point ݌ = ሾݔ, ,ݕ ݑ ሿ் asݖ = (݌)ߨ where ,(݌ܭ)ߨ = ሾݖ/ݔ,  ሿ் denotesݖ/ݕ
the dehomogenization operation. The intensity value of pixel u	 ∈ 	Ω given color image C 
with color ܿ(ݑ) = ሾܿଵ, ܿଶ, ܿଷሿ்  is defined as ݑ)ܫ, (ܥ = (ܿଵ + ܿଶ + ܿଷ)/3 . For each input 
frame at time t, we estimate the global pose of the camera Pt (with respect to a global 
frame F) by registering the current live depth map and color image captured by the cam-
era with the surfel-splatted predicted depth map and color image of the active static model 
from the pose estimate corresponding to the last frame. All camera poses are represented 
by a transformation matrix:  

Figure 1. Overview of the system pipeline. Images data captured by an RGB-D camera serve as the input data for the
motion detection, segmentation, camera pose tracking, and map construction modules, among others. Then, the precise
camera pose and object-level semantic map can be obtained.



Appl. Sci. 2021, 11, 645 7 of 20

(1) Firstly, object motion detection is performed by 3D object tracking based on a priori
knowledge of the object model database updated by the previous frame to find the
moving object in the object database.

(2) Secondly, object instance accuracy segmentation is achieved using a combination of
semantic and geometric cues in the current frame, then associated with the object
database to find the dynamic part of the current image data.

(3) Thirdly, the camera pose is obtained precisely through dynamic part elimination in
the current frame and each object model pose in the database is updated using the
accurate camera pose.

(4) Fourthly, the object model is updated and fused with each frame input, and the 3D
object-level semantic map is reconstructed incrementally.

The details of each component of the pipeline will be described below.

3.2. Notation and Preliminaries

We define the image space domain as Ω ⊂ N2 and define the 3D back-projection of
point u ∈ Ω given depth map D as p(u, D) = K−1ud(u), where K is the intrinsic camera
matrix and u is the homogeneous pixel coordinate form. We also specify the perspective
projection of 3D point p = [x, y, z]T as u = π(Kp), where π(p) = [x/z, y/z]T denotes the
dehomogenization operation. The intensity value of pixel u ∈ Ω given color image C
with color c(u) = [c1, c2, c3]

T is defined as I(u, C) = (c1 + c2 + c3)/3. For each input frame
at time t, we estimate the global pose of the camera Pt (with respect to a global frame F)
by registering the current live depth map and color image captured by the camera with
the surfel-splatted predicted depth map and color image of the active static model from
the pose estimate corresponding to the last frame. All camera poses are represented by a
transformation matrix:

Tcur =

[
Rt tt

0 0 0 1

]
∈ SE3, (1)

where every object model is stored in surfels Ms
m, which have attribute values

(p ∈ R3, n ∈ R3, c ∈ R3, w ∈ R, r ∈ R, t ∈ R2) ∀s < |Mm|, position p ∈ R3, normal n ∈ R3,
color c ∈ N3, weight w ∈ R, radius r ∈ R, initialization timestamp t0, and last up-
dated timestamp t. The radius r of each surfel is intended to represent the local sur-
face area around a given point while minimizing the visible holes, computed using
the method of Salas-Moreno et al. [51]. Additionally, each model is associated with
a class ID Cm ∈ {0 . . . 80} to represent semantic information and an object index ID
Im = m ∀m ∈ {0 . . . N}, static indicators stm ∈ 0, 1, and a rigid pose Tm ∈ SE3. We
define the object model pose Tm as the product of the inverse of the camera pose corre-
sponding to the frame in which the object is observed times the current frame camera pose:

Tm = Tobs
−1Tcur (2)

where Tobs is the precise camera pose corresponding to the frame in which the object is observed
and Tcur is the accurate camera pose of the current frame. Therefore, the defined object pose is
equivalent to the relative conversion matrix of the camera pose between the two frames.

3.3. Object Motion Detection through 3D Tracking Based on Object Model Database

In a dynamic scene, the current frame data captured by an RGB-D sensor include
the dynamic object. Generally, camera pose tracking is based on the assumption that the
environment is static. However, as dynamic objects move independently of the camera,
this assumption will be broken, resulting in inconsistent motion between the dynamic
object and other parts of the image. Thus, dynamic objects inevitably affect the camera pose
tracking and map construction and need to be eliminated. Considering the continuous
motion nature of the moving objects, the method proposed in this paper makes full use of
the scene prior knowledge in the dynamic object data and static object database updated
by the last image frame to obtain motion information for each object in the database in the



Appl. Sci. 2021, 11, 645 8 of 20

current frame. Note that the current frame is not segmented or associated with the object
database at this point, so the dynamic part of the current frame is unknown.

First, the OpenGL rendering pipeline is used to project the objects in the dynamic
object database based on the camera pose corresponding to the last frame to produce a
dynamic object mask. Assuming that moving objects generally undergo continuous motion,
the dynamic part in the current frame is roughly eliminated by overlaying this mask and
the current frame data. In fact, due to the motion of the camera and that of the moving
object itself, the dynamic object mask cannot accurately cover the dynamic part of the
current frame image. Therefore, the boundary of the dynamic object mask is expanded by
5 pixels, finally yielding the dynamic object mask Maskdynamic , as shown in Figure 2. This
processing reduces the number of observations in the current frame data but is nevertheless
preferable to adding outliers in camera pose estimation. Meanwhile, the non-dynamic
map constructed at the camera pose corresponding to the last frame (including the static
object and background models) is rendered. Then, alignment is performed between the
current frame and rendered map by minimizing joint geometric error and photometric
error functions for rough camera pose estimation. The geometric error and photometric
error are defined as follows.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21 
 

  
(a) (b) (c) 

Figure 2. Based on the camera pose corresponding to the previous frame, the dynamic object mask 
is projected from the dynamic object database, and the dynamic object part in the current frame is 
removed. (a) Final dynamic object mask; (b) dynamic part culling in intensity image; (c) dynamic 
part culling in depth image. 

3.3.1. Geometric Error Term 
For the current frame t, we seek to minimize the cost of the point-to-plane ICP regis-

tration error between the 3D back-projected vertices of the current live depth map and the 
predicted depth map of static model from the last frame t − 1: 

௜௖௣௦௧௔௧௜௖ܧ			 = ቐ෍ቀ൫ݒ௜ − ௥ܶ௢௨ݒ௧௜൯ · ݊௜ቁଶ௜ 																					if		݅ ∉ ݅		if																																																									0													ௗ௬௡௔௠௜௖݇ݏܽܯ ∈ 		ௗ௬௡௔௠௜௖݇ݏܽܯ 		 (3)

where ݒ௧௜ is the back-projection of the i-th vertex in the current depth map ܦ௧ and ݒ௜ and ݊௜ are respectively the back-projection of the i-th vertex of the predicted depth map of the 
static model from frame t − 1 and its normal.	 ௥ܶ௢௨ describes the transformation that aligns 
the model in frame t − 1 with that in frame t, ௥ܶ௢௨ݒ௧௜ represents the current frame vertex 
data ݒ௧௜ that is transformed to the camera coordinate system in the previous frame by 
pose ௥ܶ௢௨	and	݇ݏܽܯௗ௬௡௔௠௜௖		is the dynamic object mask rendered by frame t − 1 in the dy-
namic object database. 

3.3.2. Photometric Error Term 
The photometric image registration is defined as minimizing the brightness con-

stancy between the live frame and synthesized view of the 3D model in frame t − 1. The 
cost takes the form: ܧ௥௚௕௦௧௔௧௜௖

= ቐ෍((ܫ௧(ݑ) − ܭ)ߨ)௧ିଵܫ ௥ܶ௢௨ିߨଵ(ݑ, ௨						௧)))ଶܦ 							if		ݑ	 ∉ ݑ		if																																																																												0													ௗ௬௡௔௠௜௖݇ݏܽܯ ∈ 		ௗ௬௡௔௠௜௖݇ݏܽܯ 		 (4)

After the current image RGB data approximately eliminates the dynamic objects in 
the object database, the remaining intensity data ܫ௧(ݑ) and ܫ௧ିଵ(. ) that come from the 
predicted intensity map of the static model (including the background model and static 
objects) from the previous frame t − 1 are used to construct an error equation to iteratively 
calculate the current frame camera pose ௥ܶ௢௨ based on the assumption of photometric 
consistency. Where ିߨଵ(ݑ,  ௧ will beܦ ௧) represents that the current frame depth dataܦ
back-projected into 3D space and ௥ܶ௢௨ିߨଵ(ݑ, ,ݑ)ଵିߨ ௧) will transform vertex dataܦ  ௧) toܦ
the camera coordinate system in the previous frame via pose ௥ܶ௢௨, the pixel coordinates 
in the predicted intensity image will be obtained through perspective projection ܭ)ߨ ௥ܶ௢௨ିߨଵ(ݑ,  .௧)), and, then the gray intensity value will be obtainedܦ

The final overall alignment error term is: ܧ௧௥௔௖௞௦௧௔௧௜௖ = (	 ௜ܹ௖௣ܧ௜௖௣௦௧௔௧௜௖ + ௥௚௕௦௧௔௧௜௖)ೝ்೚ೠ௠௜௡ܧ 	 (5)

Figure 2. Based on the camera pose corresponding to the previous frame, the dynamic object mask
is projected from the dynamic object database, and the dynamic object part in the current frame is
removed. (a) Final dynamic object mask; (b) dynamic part culling in intensity image; (c) dynamic
part culling in depth image.

3.3.1. Geometric Error Term

For the current frame t, we seek to minimize the cost of the point-to-plane ICP
registration error between the 3D back-projected vertices of the current live depth map and
the predicted depth map of static model from the last frame t − 1:

Estatic
icp =

∑
i

((
vi − Trouvi

t
)
·ni)2 if i /∈ Maskdynamic

0 if i ∈ Maskdynamic

(3)

where vi
t is the back-projection of the i-th vertex in the current depth map Dt and vi and

ni are respectively the back-projection of the i-th vertex of the predicted depth map of the
static model from frame t − 1 and its normal. Trou describes the transformation that aligns
the model in frame t − 1 with that in frame t, Trouvi

t represents the current frame vertex
data vi

t that is transformed to the camera coordinate system in the previous frame by pose
Trou and Maskdynamic is the dynamic object mask rendered by frame t − 1 in the dynamic
object database.

3.3.2. Photometric Error Term

The photometric image registration is defined as minimizing the brightness constancy
between the live frame and synthesized view of the 3D model in frame t − 1. The cost
takes the form:



Appl. Sci. 2021, 11, 645 9 of 20

Estatic
rgb =

∑
u
(It(u)− It−1(π

(
KTrouπ−1(u, Dt))

)
))

2 if u /∈ Maskdynamic

0 if u ∈ Maskdynamic

(4)

After the current image RGB data approximately eliminates the dynamic objects in the
object database, the remaining intensity data It(u) and It−1(.) that come from the predicted
intensity map of the static model (including the background model and static objects) from
the previous frame t − 1 are used to construct an error equation to iteratively calculate
the current frame camera pose Trou based on the assumption of photometric consistency.
Where π−1(u, Dt) represents that the current frame depth data Dt will be back-projected
into 3D space and Trouπ−1(u, Dt) will transform vertex data π−1(u, Dt) to the camera
coordinate system in the previous frame via pose Trou, the pixel coordinates in the predicted
intensity image will be obtained through perspective projection π

(
KTrouπ−1(u, Dt)

)
, and,

then the gray intensity value will be obtained.
The final overall alignment error term is:

Estatic
track = min

Trou

(
WicpEstatic

icp + Estatic
rgb

)
(5)

where Wicp is weight of the geometric error term. The cost function is minimized using
the Gauss-Newton approach in a three-level coarse-to-fine scheme to calculate the rough
camera pose Trou relative to the static part of the environment.

This tracking method fully utilizes the geometric and texture information of the
effective observation data in the current frame, increases the constraint conditions of the
camera pose estimation, and improves the camera pose accuracy in real-time. Especially for
ICP iterations, if the number of vertex data is small, camera pose estimation will be affected.

The relatively precise camera pose Trou obtained in the previous step is used to update
each object pose in the dynamic and static object databases according to the following definition:

Tm = Tobs
−1Trou (6)

Then, 3D tracking for each object is performed using the current frame data, the
movement information of the object is updated as the prior knowledge for object motion
judgement in the next frame. The vertex position p, normal vector n, and intensity I stored
in object m are transferred to the current frame camera coordinate system using the object
pose Tm, as follows:

plocal = Tm
−1 p (7)

nlocal= Tm
−1n (8)

Ilocal(π
(

KTm
−1π−1(u, Dobs)

)
= Iobs(u) (9)

where plocal and nlocal are the vertex position and normal vector, respectively, in the camera
coordinate system corresponding to the current frame and Ilocal is the intensity value of the
vertex in the current image plane. Similar to the method used for camera pose estimation,
the pose change T∆

m of object m against the camera pose Trou is estimated by minimizing
an energy that combines geometric error with photometric error between the data in the
current frame and m transferred using pose Tm:

Em
track =

min
T∆

m

(
WicpEm

icp + Em
rgb

)
(10)

where Em
icp and Em

rgb are the object geometric error and photometric consistency error,

respectively, against the current frame data. T∆
m can be obtained using the Gauss–Newton

approach in a three-level coarse-to-fine scheme. If T∆
m > ε (translation threshold 0.2, rotation

angle threshold 0.1), which indicates that object moves independently from the camera



Appl. Sci. 2021, 11, 645 10 of 20

in the current frame, then the object is treated as a dynamic object and inserted into the
dynamic object database. Otherwise, the object is treated as a static object and inserted into
the static object database.

3.4. Object Instance Segmentation and Data Association with Object Database

In this step, the current frame RGB-D data can be accurately segmented into object
instances using the algorithm provided in [38], combined with semantic and geometric
cues, which provide the foundation for recognition of the dynamic part in the current frame,
object model reconstruction, and fusion. Meanwhile, using Trou, the segmentation result is
associated with the object database to identify the dynamic object part in the current frame
or to create a new object. Figure 3 display the flowchart of the segmentation algorithm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21 
 

 
Figure 3. Flowchart of object instance segmentation based on geometric and semantic cues. 

In the segmentation stage, the deep neural network Mask-RCNN [6] is used to pro-
vide object masks with semantic labels in semantic cues. Although this algorithm is im-
pressive and provides good object masks, it tends to provide imperfect object boundaries 
and cannot be executed at the frame rate. Therefore, geometric segmentation, which pro-
duces higher-quality instance boundaries rapidly but tends to result in over-segmentation 
by assuming that the object convexity is taken out, is performed. Each stage of results 
processing of geometric segmentation on current frame depth data is shown in Figure 4: 
(a) represents the depth data processed by bilateral filtering; (b) represents the original 
boundary result generated after geometric segmentation; (c) represents the boundary re-
sult after dilation and erode operations that connected boundary inner points and elimi-
nated isolated noise points; and (d) represents the corresponding color display for each 
component surrounded by the segmentation boundary after statistical analysis. Through 
statistical overlay analysis shown in Figure 3, we fuse two segmentation results to obtain 
high-quality segmentation and semantic recognition results in real time, compensating for 
the shortcomings of both the semantic and geometric cues. The boundary of the semantic 
segmentation mask becomes the boundary of one or more geometric segmentation com-
ponents where the overlap rate reaches 65%. The final segmentation result is represented 
as instance collection {ܥ௜	, i	௜|ܮ → 	0. . ܰ}, where ܥ௜ is the segmentation instance, ܮ௜ is the 
semantic category, and ܰ is the instance number. 

  
(a) (b) 

Figure 3. Flowchart of object instance segmentation based on geometric and semantic cues.

In the segmentation stage, the deep neural network Mask-RCNN [6] is used to provide
object masks with semantic labels in semantic cues. Although this algorithm is impressive
and provides good object masks, it tends to provide imperfect object boundaries and cannot
be executed at the frame rate. Therefore, geometric segmentation, which produces higher-
quality instance boundaries rapidly but tends to result in over-segmentation by assuming
that the object convexity is taken out, is performed. Each stage of results processing of
geometric segmentation on current frame depth data is shown in Figure 4: (a) represents
the depth data processed by bilateral filtering; (b) represents the original boundary result
generated after geometric segmentation; (c) represents the boundary result after dilation
and erode operations that connected boundary inner points and eliminated isolated noise
points; and (d) represents the corresponding color display for each component surrounded
by the segmentation boundary after statistical analysis. Through statistical overlay analysis
shown in Figure 3, we fuse two segmentation results to obtain high-quality segmentation
and semantic recognition results in real time, compensating for the shortcomings of both
the semantic and geometric cues. The boundary of the semantic segmentation mask
becomes the boundary of one or more geometric segmentation components where the
overlap rate reaches 65%. The final segmentation result is represented as instance collection
{ Ci , Li| i→ 0 . . . N}, where Ci is the segmentation instance, Li is the semantic category,
and N is the instance number.

Next, the fusion segmentation results are associated with the object database through
Trou, as shown in Figure 5. The OpenGL pipeline is used to render the model ID image
from the dynamic and static object databases updated by the current frame. The numbers
of pixels in the overlapping part between instances Ci in the segmentation results and
each ID Im in the model ID rendering image are counted. If the pixel number is more than
65% ·|Ci| and the semantic category information is consistent between Ci and m, then an
association is created. If m is dynamic, then Ci is treated as the dynamic part Cdynamic

i in the



Appl. Sci. 2021, 11, 645 11 of 20

current frame. If Ci is not associated with any object model in the database, a new object
model is created.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21 
 

 
Figure 3. Flowchart of object instance segmentation based on geometric and semantic cues. 

In the segmentation stage, the deep neural network Mask-RCNN [6] is used to pro-
vide object masks with semantic labels in semantic cues. Although this algorithm is im-
pressive and provides good object masks, it tends to provide imperfect object boundaries 
and cannot be executed at the frame rate. Therefore, geometric segmentation, which pro-
duces higher-quality instance boundaries rapidly but tends to result in over-segmentation 
by assuming that the object convexity is taken out, is performed. Each stage of results 
processing of geometric segmentation on current frame depth data is shown in Figure 4: 
(a) represents the depth data processed by bilateral filtering; (b) represents the original 
boundary result generated after geometric segmentation; (c) represents the boundary re-
sult after dilation and erode operations that connected boundary inner points and elimi-
nated isolated noise points; and (d) represents the corresponding color display for each 
component surrounded by the segmentation boundary after statistical analysis. Through 
statistical overlay analysis shown in Figure 3, we fuse two segmentation results to obtain 
high-quality segmentation and semantic recognition results in real time, compensating for 
the shortcomings of both the semantic and geometric cues. The boundary of the semantic 
segmentation mask becomes the boundary of one or more geometric segmentation com-
ponents where the overlap rate reaches 65%. The final segmentation result is represented 
as instance collection {ܥ௜	, i	௜|ܮ → 	0. . ܰ}, where ܥ௜ is the segmentation instance, ܮ௜ is the 
semantic category, and ܰ is the instance number. 

  
(a) (b) 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21 
 

 
(c) (d) 

Figure 4. Each stage processing results of geometric segmentation on current frame depth data (a) 
Depth data processed by bilateral filtering; (b) raw geometric segmentation results; (c) dilation and 
erode segmentation results; (d) final statistical results of geometric components (each color repre-
sents a component), showing that the potted plant is over-segmented in multiple components. 

Next, the fusion segmentation results are associated with the object database through ௥ܶ௢௨, as shown in Figure 5. The OpenGL pipeline is used to render the model ID image 
from the dynamic and static object databases updated by the current frame. The numbers 
of pixels in the overlapping part between instances ܥ௜ in the segmentation results and 
each ID ܫ௠ in the model ID rendering image are counted. If the pixel number is more than 
65%	 ·  ௜ and m, thenܥ ௜| and the semantic category information is consistent betweenܥ|
an association is created. If m is dynamic, then ܥ௜ is treated as the dynamic part ܥ௜ௗ௬௡௔௠௜௖ 
in the current frame. If ܥ௜ is not associated with any object model in the database, a new 
object model is created. 

 
Figure 5. Segmentation results are associated with the object model database to find the dynamic 
part in the current frame, create a new object, and transfer the semantic information. 

3.5. Accurate Camera Pose Tracking 
Accurate camera pose tracking play a very important role in map construction. In 

this step, using the culling dynamic part ܥ௜ௗ௬௡௔௠௜௖ in the current frame, which was ac-
quired in the previous step, the accurate camera pose ௖ܶ௨௥ can be obtained by performing 
alignment between the current frame data without the dynamic part and rendering the 
map data from previous frame t − 1 by minimizing the geometric and photometric error 
functions. The geometric and photometric error functions are respectively defined as fol-
lows: 

Figure 4. Each stage processing results of geometric segmentation on current frame depth data
(a) Depth data processed by bilateral filtering; (b) raw geometric segmentation results; (c) dilation
and erode segmentation results; (d) final statistical results of geometric components (each color
represents a component), showing that the potted plant is over-segmented in multiple components.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21 
 

 
(c) (d) 

Figure 4. Each stage processing results of geometric segmentation on current frame depth data (a) 
Depth data processed by bilateral filtering; (b) raw geometric segmentation results; (c) dilation and 
erode segmentation results; (d) final statistical results of geometric components (each color repre-
sents a component), showing that the potted plant is over-segmented in multiple components. 

Next, the fusion segmentation results are associated with the object database through ௥ܶ௢௨, as shown in Figure 5. The OpenGL pipeline is used to render the model ID image 
from the dynamic and static object databases updated by the current frame. The numbers 
of pixels in the overlapping part between instances ܥ௜ in the segmentation results and 
each ID ܫ௠ in the model ID rendering image are counted. If the pixel number is more than 
65%	 ·  ௜ and m, thenܥ ௜| and the semantic category information is consistent betweenܥ|
an association is created. If m is dynamic, then ܥ௜ is treated as the dynamic part ܥ௜ௗ௬௡௔௠௜௖ 
in the current frame. If ܥ௜ is not associated with any object model in the database, a new 
object model is created. 

 
Figure 5. Segmentation results are associated with the object model database to find the dynamic 
part in the current frame, create a new object, and transfer the semantic information. 

3.5. Accurate Camera Pose Tracking 
Accurate camera pose tracking play a very important role in map construction. In 

this step, using the culling dynamic part ܥ௜ௗ௬௡௔௠௜௖ in the current frame, which was ac-
quired in the previous step, the accurate camera pose ௖ܶ௨௥ can be obtained by performing 
alignment between the current frame data without the dynamic part and rendering the 
map data from previous frame t − 1 by minimizing the geometric and photometric error 
functions. The geometric and photometric error functions are respectively defined as fol-
lows: 

Figure 5. Segmentation results are associated with the object model database to find the dynamic
part in the current frame, create a new object, and transfer the semantic information.

3.5. Accurate Camera Pose Tracking

Accurate camera pose tracking play a very important role in map construction. In this
step, using the culling dynamic part Cdynamic

i in the current frame, which was acquired in
the previous step, the accurate camera pose Tcur can be obtained by performing alignment



Appl. Sci. 2021, 11, 645 12 of 20

between the current frame data without the dynamic part and rendering the map data
from previous frame t − 1 by minimizing the geometric and photometric error functions.
The geometric and photometric error functions are respectively defined as follows:

Estatic
icp =

∑
i

((
vi − Tcurvi

t
)
·ni)2 if i /∈ Cdynamic

i

0 if i ∈ Cdynamic
i

(11)

The geometric error function (11) represents that after the current frame depth data
accurately removes the dynamic part, the remaining vertex data vi

t and the vertex data vi

that come from the predicted depth map of the static model (including the background
model and static objects) from the previous frame t − 1 are used to calculate the precise
current frame camera pose Tcur based on the point-surface ICP iterative algorithm.

Estatic
rgb =

∑
u
(It(u)− It−1(π

(
KTcurπ−1(u, Dt))

)
)

2 if u /∈ Cdynamic
i

0 if u ∈ Cdynamic
i

(12)

In photometric error function (12), It(u) is the current frame gray intensity map after
removing the dynamic part, It−1(·) provides the color attached to a vertex on the model in
frame t − 1, and Cdynamic

i is the dynamic object part in the current frame. After acquiring
the accurate camera pose Tcur, each object model pose is redefined in the database for object
model updating and subsequent fusion. The new object pose is set as 4D identity matrix
and Tobs=Tcur:

Tm
dynamic = Tm T∆

m (13)

Tm
static= Tobs

−1Tcur (14)

Tm
new (15)

where T∆
m is the amount of change in the object pose relative to the camera movement

and Tm
new is newly created object model pose.

3.6. Object Model Fusion, Semantic Map Optimization, and Construction

When the first RGB-D data frame is input, a background model and object model
database are created through image data segmentation and recognition with the camera
pose as the identity matrix. Then, an object-level map representation is built for the scene.
When the subsequent frame comes in, our proposed method is performed step by step.
At first, the object motion information is obtained through 3D tracking against the rough
camera pose in the current frame.

Next, the object instance segmentation results produced by the fusion segmentation
algorithm combining semantic and geometric cues are used to associate them with the
object model database, aiming to find the dynamic part in the current frame, transfer the
object semantic category information, and create a new object. Accurate camera pose
tracking can be achieved by culling the dynamic part in the current frame data. Each
object model pose is updated based on the accurate camera pose. When Ci is associated
with m in the database, m will be updated using Ci data. Ci data are transferred to the
camera coordinate system in which the object is observed using object pose Tm. Then, the
fusing algorithm provided by [3,7] is performed between the data from Ci and the raw
data stored in m. Note that dynamic and static objects share the same fusion algorithm, but
the dynamic object model, a pedestrian, as a non-rigid object, was created directly using Ci
data regardless of the model created previously. The new object model, treated as a static
object, is created directly using Ci data, which are not associated with any object model in
the database.

Due to the existence of accumulated camera pose error, we adopted the ElasticFu-
sion [3] strategy to optimize the deformation map generated by static data, including



Appl. Sci. 2021, 11, 645 13 of 20

the static object model and background model. Finally, we constructed the object-level
semantic map accurately.

4. Results

We evaluated our system on a Linux system using a laptop (Dell Precision 7530 GPU
workstation) with a 12 Intel Core i7-8750H CPU, 2.20 GHz frequency, 16 GB RAM memory,
6G NVIDIA corporation GP104GLM. As our workstation only has one GPU, the image
semantic instance segmentation was processed offline using a Mask R-CNN on the GPU
with the publicly available weights and implementation without fine-tuning. Our input
was standard 640 × 480 resolution RGB-D video. Each object constructed was stored into
the dynamic or static object database with surfels representation.

4.1. Object 3D Tracking for Motion Detection

We performed object 3D tracking on TUM RGB-D dataset fr3/sit-xyz and estimated
the object motion detection result.fr3/sit-xyz is a low dynamic environment dataset with a
frame rate of 30 frames/s, in which the object pedestrian moved slightly. If low dynamic
object motion can be detected, then high dynamic object motion can also be detected under
the premise of accurate object instance segmentation. Figure 6 presents the evaluation
results. The static objects, such as dining tables, TVs, and potted plants, are tracked. The
motion tracking results show that the angle change against the current camera pose does
not exceed 0.008 rad and that the translation change does not exceed 0.01 m. For dynamic
objects, such as a pedestrian walking normally, the average change in angle against the
current camera pose is 0.1776 rad, with a variance of 0.0410, and the average change in
translation against the current camera pose is 0.2262 m, with a variance of 0.0308. Therefore,
to find actual dynamic objects as much as possible, we set the translation threshold to a
low value of 0.2 m and the angle threshold to a low value of 0.1 m to judge the dynamic
and static objects in the scene.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21 
 

object model and background model. Finally, we constructed the object-level semantic 
map accurately. 

4. Results 
We evaluated our system on a Linux system using a laptop (Dell Precision 7530 GPU 

workstation) with a 12 Intel Core i7-8750H CPU, 2.20 GHz frequency, 16 GB RAM 
memory, 6G NVIDIA corporation GP104GLM. As our workstation only has one GPU, the 
image semantic instance segmentation was processed offline using a Mask R-CNN on the 
GPU with the publicly available weights and implementation without fine-tuning. Our 
input was standard 640 × 480 resolution RGB-D video. Each object constructed was stored 
into the dynamic or static object database with surfels representation. 

4.1. Object 3D Tracking for Motion Detection 
We performed object 3D tracking on TUM RGB-D dataset fr3/sit-xyz and estimated 

the object motion detection result.fr3/sit-xyz is a low dynamic environment dataset with 
a frame rate of 30 frames/s, in which the object pedestrian moved slightly. If low dynamic 
object motion can be detected, then high dynamic object motion can also be detected un-
der the premise of accurate object instance segmentation. Figure 6 presents the evaluation 
results. The static objects, such as dining tables, TVs, and potted plants, are tracked. The 
motion tracking results show that the angle change against the current camera pose does 
not exceed 0.008 rad and that the translation change does not exceed 0.01 m. For dynamic 
objects, such as a pedestrian walking normally, the average change in angle against the 
current camera pose is 0.1776 rad, with a variance of 0.0410, and the average change in 
translation against the current camera pose is 0.2262 m, with a variance of 0.0308. There-
fore, to find actual dynamic objects as much as possible, we set the translation threshold 
to a low value of 0.2 m and the angle threshold to a low value of 0.1 m to judge the dynamic 
and static objects in the scene. 

(a) 

Figure 6. Cont.



Appl. Sci. 2021, 11, 645 14 of 20
Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21 
 

(b) 

(c) 

(d) 

Figure 6. The different objects motion detection result against the current camera pose: (a) Static object dining table; (b) 
static object TV; (c) static object potted plant; (d) dynamic object pedestrian. 
Figure 6. The different objects motion detection result against the current camera pose: (a) Static object dining table; (b)
static object TV; (c) static object potted plant; (d) dynamic object pedestrian.



Appl. Sci. 2021, 11, 645 15 of 20

4.2. Camera Pose Estimation Accuracy

We evaluated the camera pose estimation accuracy in static and dynamic environments
by employing the widely used TUM RGB-D dataset [52]. The dataset provides RGB-D
sequences with ground truth camera trajectories recorded by a motion capture system.
We report the commonly used root mean square error (RMSE) of the absolute trajectory
error (ATE) and relative pose error. As shown in Figure 7, because our proposed method
was developed based on the ElasticFusion framework, the camera pose estimation has
accuracy comparable to that of the ElasticFusion [3] method in a static scene. Meanwhile,
in a dynamic environment, inspired by the MaskFusion [38] and Co-Fusion [37] methods,
our proposed method, which eliminates the dynamic part in the current frame and tracks
all static objects models for camera pose estimation, achieves higher accuracy than the
other methods. In general, the experimental results, which compare the proposed method
to the related state-of-the-art approaches, demonstrate that our method achieves similar
performance in static scenes, and improved accuracy and robustness in dynamic scenes.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

4.2. Camera Pose Estimation Accuracy 
We evaluated the camera pose estimation accuracy in static and dynamic environ-

ments by employing the widely used TUM RGB-D dataset [52]. The dataset provides RGB-
D sequences with ground truth camera trajectories recorded by a motion capture system. 
We report the commonly used root mean square error (RMSE) of the absolute trajectory 
error (ATE) and relative pose error. As shown in Figure 7, because our proposed method 
was developed based on the ElasticFusion framework, the camera pose estimation has 
accuracy comparable to that of the ElasticFusion [3] method in a static scene. Meanwhile, 
in a dynamic environment, inspired by the MaskFusion [38] and Co-Fusion [37] methods, 
our proposed method, which eliminates the dynamic part in the current frame and tracks 
all static objects models for camera pose estimation, achieves higher accuracy than the 
other methods. In general, the experimental results, which compare the proposed method 
to the related state-of-the-art approaches, demonstrate that our method achieves similar 
performance in static scenes, and improved accuracy and robustness in dynamic scenes. 

(a) 

 
(b) 

Figure 7. Quantitative comparison of camera pose estimation between the proposed method and 
other methods. (a) Relative pose error. (b) Absolute trajectory error. 

4.3. Map Construction 
As the object model constructed has no true value, we qualitatively and intuitively 

viewed the constructed model, as shown in Figure 8. Figure 8a–c depict static object mod-
els constructed in the scene, namely, those of a TV, potted plant, and chair. Figure 8d 
shows the dynamic object models constructed at different moments. The entire model 
constructed in the scene is provided in Figure 9. Figure 8a–c are an overlay of the static 
object and background models, an overlay of the static and dynamic object models, and 
the semantic label map representation of the scene, respectively. Static object TV model 
construction with different 3D tracking results is shown in Figure 10. 

Figure 7. Quantitative comparison of camera pose estimation between the proposed method and other methods. (a) Relative
pose error. (b) Absolute trajectory error.

4.3. Map Construction

As the object model constructed has no true value, we qualitatively and intuitively
viewed the constructed model, as shown in Figure 8. Figure 8a–c depict static object models
constructed in the scene, namely, those of a TV, potted plant, and chair. Figure 8d shows
the dynamic object models constructed at different moments. The entire model constructed
in the scene is provided in Figure 9. Figure 8a–c are an overlay of the static object and
background models, an overlay of the static and dynamic object models, and the semantic
label map representation of the scene, respectively. Static object TV model construction
with different 3D tracking results is shown in Figure 10.



Appl. Sci. 2021, 11, 645 16 of 20Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
(a) (b) (c) (d) 

Figure 8. Static object models in the static object database for a (a) TV, (b) potted plant, and (c) 
chair. (d) Dynamic object model in the dynamic object database at different moments. 

 
(a) (b) (c) 

Figure 9. Scene map construction in surfel-based representation: (a) Static object model and back-
ground model representation; (b) overlay of dynamic pedestrian and static object models at a cer-
tain moment; (c) semantic label map representation of the scene. 

(a) (b) (c) 

Figure 10. Object TV model fuse construction with different 3D tracking results displayed: (a) Ac-
curate 3D tracking result and object model fuse construction; (b,c) 3D tracking results with errors 
and object model fuse construction with ghosts. 

5. Discussion 
5.1. Object Motion Detection 

Our object motion detection system is based on the assumption that moving objects 
generally undergo continuous motion. Using the object database maintained by the last 
frame data, the dynamic objects in the current frame are removed and the rough camera 
pose is obtained. This pose can serve as a good initial value of the camera pose for object 
motion detection, enabling the motion status of each object in the object database to be 
obtained in current frame. The motion status of each object is updated in real time accord-
ing to the object 3D tracking results. Note that we use the current frame raw data to per-
form object 3D tracking. Our method only performs motion detection on large objects with 
a large number of data stored. Since small objects (such as tea cups and pencils) do not 
have sufficient data constraints for object 3D tracking, unreliable tracking results may be 
produced. In addition, small moving objects affect the camera pose estimation less than 
large objects. Therefore, in order to reduce the memory consumption of the system, 
smaller objects are ignored in the motion detection and our system only reconstructs and 
tracks the objects occupying more than 0.5% of pixels in the image. The advantage of our 
method is that it performs 3D tracking for object motion detection in 3D space while fully 
utilizing the depth information and gray texture information stored in object. This motion 

Figure 8. Static object models in the static object database for a (a) TV, (b) potted plant, and (c) chair. (d) Dynamic object
model in the dynamic object database at different moments.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
(a) (b) (c) (d) 

Figure 8. Static object models in the static object database for a (a) TV, (b) potted plant, and (c) 
chair. (d) Dynamic object model in the dynamic object database at different moments. 

 
(a) (b) (c) 

Figure 9. Scene map construction in surfel-based representation: (a) Static object model and back-
ground model representation; (b) overlay of dynamic pedestrian and static object models at a cer-
tain moment; (c) semantic label map representation of the scene. 

(a) (b) (c) 

Figure 10. Object TV model fuse construction with different 3D tracking results displayed: (a) Ac-
curate 3D tracking result and object model fuse construction; (b,c) 3D tracking results with errors 
and object model fuse construction with ghosts. 

5. Discussion 
5.1. Object Motion Detection 

Our object motion detection system is based on the assumption that moving objects 
generally undergo continuous motion. Using the object database maintained by the last 
frame data, the dynamic objects in the current frame are removed and the rough camera 
pose is obtained. This pose can serve as a good initial value of the camera pose for object 
motion detection, enabling the motion status of each object in the object database to be 
obtained in current frame. The motion status of each object is updated in real time accord-
ing to the object 3D tracking results. Note that we use the current frame raw data to per-
form object 3D tracking. Our method only performs motion detection on large objects with 
a large number of data stored. Since small objects (such as tea cups and pencils) do not 
have sufficient data constraints for object 3D tracking, unreliable tracking results may be 
produced. In addition, small moving objects affect the camera pose estimation less than 
large objects. Therefore, in order to reduce the memory consumption of the system, 
smaller objects are ignored in the motion detection and our system only reconstructs and 
tracks the objects occupying more than 0.5% of pixels in the image. The advantage of our 
method is that it performs 3D tracking for object motion detection in 3D space while fully 
utilizing the depth information and gray texture information stored in object. This motion 

Figure 9. Scene map construction in surfel-based representation: (a) Static object model and background model representa-
tion; (b) overlay of dynamic pedestrian and static object models at a certain moment; (c) semantic label map representation
of the scene.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21 
 

 
(a) (b) (c) (d) 

Figure 8. Static object models in the static object database for a (a) TV, (b) potted plant, and (c) 
chair. (d) Dynamic object model in the dynamic object database at different moments. 

 
(a) (b) (c) 

Figure 9. Scene map construction in surfel-based representation: (a) Static object model and back-
ground model representation; (b) overlay of dynamic pedestrian and static object models at a cer-
tain moment; (c) semantic label map representation of the scene. 

(a) (b) (c) 

Figure 10. Object TV model fuse construction with different 3D tracking results displayed: (a) Ac-
curate 3D tracking result and object model fuse construction; (b,c) 3D tracking results with errors 
and object model fuse construction with ghosts. 

5. Discussion 
5.1. Object Motion Detection 

Our object motion detection system is based on the assumption that moving objects 
generally undergo continuous motion. Using the object database maintained by the last 
frame data, the dynamic objects in the current frame are removed and the rough camera 
pose is obtained. This pose can serve as a good initial value of the camera pose for object 
motion detection, enabling the motion status of each object in the object database to be 
obtained in current frame. The motion status of each object is updated in real time accord-
ing to the object 3D tracking results. Note that we use the current frame raw data to per-
form object 3D tracking. Our method only performs motion detection on large objects with 
a large number of data stored. Since small objects (such as tea cups and pencils) do not 
have sufficient data constraints for object 3D tracking, unreliable tracking results may be 
produced. In addition, small moving objects affect the camera pose estimation less than 
large objects. Therefore, in order to reduce the memory consumption of the system, 
smaller objects are ignored in the motion detection and our system only reconstructs and 
tracks the objects occupying more than 0.5% of pixels in the image. The advantage of our 
method is that it performs 3D tracking for object motion detection in 3D space while fully 
utilizing the depth information and gray texture information stored in object. This motion 

Figure 10. Object TV model fuse construction with different 3D tracking results displayed: (a) Accurate 3D tracking result
and object model fuse construction; (b,c) 3D tracking results with errors and object model fuse construction with ghosts.

5. Discussion
5.1. Object Motion Detection

Our object motion detection system is based on the assumption that moving objects
generally undergo continuous motion. Using the object database maintained by the last
frame data, the dynamic objects in the current frame are removed and the rough camera
pose is obtained. This pose can serve as a good initial value of the camera pose for object
motion detection, enabling the motion status of each object in the object database to be
obtained in current frame. The motion status of each object is updated in real time according
to the object 3D tracking results. Note that we use the current frame raw data to perform
object 3D tracking. Our method only performs motion detection on large objects with a
large number of data stored. Since small objects (such as tea cups and pencils) do not
have sufficient data constraints for object 3D tracking, unreliable tracking results may
be produced. In addition, small moving objects affect the camera pose estimation less
than large objects. Therefore, in order to reduce the memory consumption of the system,
smaller objects are ignored in the motion detection and our system only reconstructs and
tracks the objects occupying more than 0.5% of pixels in the image. The advantage of



Appl. Sci. 2021, 11, 645 17 of 20

our method is that it performs 3D tracking for object motion detection in 3D space while
fully utilizing the depth information and gray texture information stored in object. This
motion detection strategy finds hidden moving objects, which move perpendicular to the
viewpoint of the camera, more easily than methods performed in 2D space with only using
epipolar constraints between the previous and current frames. In addition, the accuracy of
object segmentation directly affects the object 3D tracking results.

5.2. Object Instance Segmentation and Association

The object instance segmentation provides the data foundation for 3D object tracking
and recognition of the dynamic part in the current frame. Inaccurate instance segmentation
will lead to object motion detection errors and inaccurate camera pose estimation. For
example, as the geometric shapes of potted plants are irregular, the object mask generated
by the Mask-RCNN [6] tends to have the overall outline of the periphery of the object, so
the interior contains some pixels that are not the potted plants. As the camera perspective
changes, the pixels that are not potted plants will change, and the 3D tracking results
will inevitably produce errors. Thus, potted plants may be treated as dynamic objects.
Therefore, a fusion segmentation algorithm combining geometric and semantic cues is used
to segment the object instance precisely in the current frame, which guarantees reliable
object motion detection and camera pose estimation.

Our strategy for finding the dynamic part in the current frame involves utilizing
the raw data for the current frame raw data and 3D object tracking to update the motion
status of each object in object database. Then, the correlation between the object instance
segmentation results and object database is established by using Trou. Finally, the dynamic
part in the current frame is identified accurately according to the object motion information
in object database.

5.3. Camera Pose Estimation Accuracy

The surfel-based map constructed previously can be used to convey the temporal and
spatial consistency of the geometric and semantic information. Therefore, the camera pose
estimation is more accurate due to its leveraging of the 3D static model for frame-to-model
alignment, rather than frame-to-frame alignment. The Co-Fusion [37] and Mask-Fusion [38]
approaches use background data except for the previously recognized objects to estimate
the camera pose. This method camera pose estimation has the drawback that when the
recognized objects occupy most of a frame, the tracking results will be inaccurate as the
background data will be less effective for camera pose tracking. However, in our method,
all static object model data are used to estimate the camera pose, providing an additional
data source for camera pose tracking and improved accuracy.

5.4. Object Model Fusion and Updating

The object model in the object database is updated by the previous frame. The static
and dynamic object models share the same fusion method based on the object model pose.
As the dynamic object is a non-rigid object, the data fusion between the current frame and
model constructed previously will cause model ghosting. Therefore, the pedestrian model
constructed previously is cleared, and a new model is generated according to the current
frame data.

5.5. System Efficiency

In object 3D tracking, the depth information and gray-scale texture information are
both used so the processed data has been massively increased compared with the 2D
tracking method. To achieve the real-time or quasi-real-time performance of the algorithm,
we perform this task with GPU. If there are 3–4 objects tracking in the scene at the same
time, the system test can execute at a rate of approximately 20–25 fps. Nevertheless, our
algorithm can handle multiple moving objects in the scene by simply taking up more GPU
computing resources. However, if data occlusion occurs due to move overlap on these



Appl. Sci. 2021, 11, 645 18 of 20

moving objects, our system will be helpless because the depth data and grayscale texture
data of the same object used for 3D tracking would be different at different moments after
the objects overlap. As a result, 3D object tracking results would have large errors.

6. Conclusions

This paper presented a new object-level RGB-D dense SLAM approach for accurate
motion estimation of an RGB-D camera in the presence of moving objects, while construct-
ing an object-level semantic map of the scene. There are three important innovations in
this method. First, object motion detection is performed in 3D space. Compared with the
method in 2D space, the 3D object tracking method against the camera pose makes full
use of the depth and gray texture information stored in the object and is more robust for
detecting potential moving objects following the camera movement. Second, the method
of establishing an association between instance segmentation and an object database with
motion information could accurately find the dynamic part of the current frame. Third,
our method fully utilizes the static data in the current frame as a data source for camera
pose tracking, eliminating the interference from the dynamic data and thereby improv-
ing the camera pose accuracy. The quantitative and qualitative results demonstrate that
our method can accurately detect dynamic objects in a scene and eliminate the effects of
dynamic objects on camera pose tracking and map construction. The camera positioning
accuracy can reach the level of state-of-the-art techniques when the tested sequences in-
clude several moving objects. We found that small objects are potentially difficult to track,
and it remains a topic for future work to optimize the method for according data.

Author Contributions: Conceptualization: J.L. and X.K.; methodology: X.K.; software: X.K.; vali-
dation: X.K.; formal analysis: X.K. and H.J.; investigation: X.K., C.X., and J.L.; resources: J.L. and
X.F.; data curation: X.K.; writing—original draft preparation: X.K.; writing—review and editing:
J.L.; visualization: X.K.; supervision: J.L. and X.F.; project administration: J.L. and X.F.; funding
acquisition: J.L. and X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded and supported by the Strategic Priority Research Program of the
Chinese Academy of Sciences (grant no. XDA19080101). This work was also partially supported by
Key Deployment Program of Chinese Academy of Sciences (no. KFZD-SW-317). This research was
funded by the National Key Research and Development Program of China (no. 2019YFC1511304),
and the National Natural Science Foundation of China (no. 41101436). This research was also partially
funded by the National Natural Science Foundation of China (No. 41901328).

Institutional Review Board: Not applicable.

Informed Consent: Not applicable.

Data Availability Statement: I use public dataset to verify my algorithm, and the public dataset link
already writed in reference [52].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Newcombe, R.A.; Izadi, S.; Hilliges, O.; Molyneaux, D.; Kim, D.; Davison, A.J.; Kohli, P.; Shotton, J.; Hodges, S.; Fitzgibbon, A.W.

KinectFusion: Real-time Dense Surface Mapping and Tracking. In Proceedings of the IEEE International Symposium on Mixed
and Augmented Reality, Basel, Switzerland, 26–29 October 2011; pp. 127–136.

2. Whelan, T.; Kaess, M.; Fallon, M.; Johannsson, H.; Mcdonald, J. Kintinuous: Spatially Extended KinectFusion. Robot. Auton. Syst.
2012, 69, 3–14. [CrossRef]

3. Whelan, T.; Leutenegger, S.; Moreno, R.; Glocker, B.; Davison, A. ElasticFusion: Dense SLAM Without A Pose Graph. In
Proceedings of the Robotics: Science and Systems, Rome, Italy, 13–17 July 2015. [CrossRef]

4. Newcombe, R.A.; Fox, D.; Seitz, S.M. DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-time. In
Proceedings of the Computer Vision & Pattern Recognition, Boston, MA, USA, 7–12 June 2015.

5. Whelan, T.; Salas-Moreno, R.F.; Glocker, B.; Davison, A.J.; Leutenegger, S. ElasticFusion: Real-time dense SLAM and light source
estimation. Int. J. Robot. Res. 2016, 35, 1697–1716. [CrossRef]

6. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV); IEEE: Piscataway, NJ, USA, 2017.

http://doi.org/10.1016/j.robot.2014.08.019
http://doi.org/10.15607/RSS.2015.XI.001
http://doi.org/10.1177/0278364916669237


Appl. Sci. 2021, 11, 645 19 of 20

7. Keller, M.; Lefloch, D.; Lambers, M.; Izadi, S.; Weyrich, T.; Kolb, A. Real-Time 3D Reconstruction in Dynamic Scenes Using
Point-Based Fusion. In Proceedings of the International Conference on 3d Vision, Seattle, WA, USA, 29 June–1 July 2013.

8. Henry, P.; Krainin, M.; Herbst, E.; Ren, X.; Fox, D. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments. Int. J. Robot. Res. 2013, 31, 647–663. [CrossRef]

9. Steinbrücker, F.; Sturm, J.; Cremers, D. Volumetric 3D Mapping in Real-time on a CPU. In Proceedings of the IEEE International
Conference on Robotics and Automation, Hong Kong, China, 31 May–7 June 2014; pp. 2021–2028.

10. Kerl, C.; Sturm, J.; Cremers, D. Dense Visual SLAM for RGB-D Cameras. In Proceedings of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 2100–2106.

11. Lefloch, D.; Weyrich, T.; Kolb, A. Anisotropic Point-based Fusion. In Proceedings of the International Conference on Information
Fusion, Washington, DC, USA, 6–9 July 2015.

12. Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.A.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D.; Davison,
A.J. KinectFusion: Real-time 3D Reconstruction and Interaction using a Moving Depth Camera. In Proceedings of the Acm
Symposium on User Interface Software & Technology, Santa Barbara, CA, USA, 16–19 October 2011.

13. Kerl, C.; Sturm, J.; Cremers, D. Robust Odometry Estimation for RGB-D Cameras. In Proceedings of the Robotics and Automation
(ICRA), 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013.

14. Chen, T.; Lu, S. Object-Level Motion Detection from Moving Cameras. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 2333–2343.
[CrossRef]

15. Moosmann, F.; Pink, O.; Stiller, C. Segmentation of 3D Lidar Data in Non-flat Urban Environments using a Local Convexity
Criterion. In Proceedings of the Intelligent Vehicles Symposium, Xi’an, China, 3–5 June 2009.

16. Whelan, T.; Kaess, M.; Finman, R.E.; Leonard, J.J. Efficient Incremental Map Segmentation in Dense RGB-D Maps. In Proceedings
of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014.

17. Karpathy, A.; Miller, S.; Li, F.F. Object Discovery in 3D Scenes via Shape Analysis. In Proceedings of the IEEE International
Conference on Robotics & Automation, Karlsruhe, Germany, 6–10 May 2013.

18. Stein, S.C.; Schoeler, M.; Papon, J.; Bernstein, F.W. Object Partitioning Using Local Convexity. In Proceedings of the Computer
Vision & Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.

19. Tateno, K.; Tombari, F.; Navab, N. Real-time and Scalable Incremental Segmentation on Dense SLAM. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots & Systems, Hamburg, Germany, 28 September–2 October 2015.

20. Uckermann, A.; Elbrechter, C.; Haschke, R.; Ritter, H. 3D Scene Segmentation for Autonomous Robot Grasping. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots & Systems, Vilamoura, Portugal, 7–12 October 2012.

21. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-Scale Direct Monocular SLAM. In Computer Vision—ECCV 2014; Springer:
Cham, Switzerland, 2014.

22. Sunderhauf, N.; Pham, T.T.; Latif, Y.; Milford, M.; Reid, I. Meaningful Maps with Object-oriented Semantic Mapping. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28
September 2017; pp. 5079–5085.

23. Salas-Moreno, R.F.; Newcombe, R.A.; Strasdat, H.; Kelly, P.H.J.; Davison, A.J. SLAM++: Simultaneous Localisation and Mapping
at the Level of Objects. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR,
USA, 23–28 June 2013; pp. 1352–1359.

24. Stückler, J.; Behnke, S. Model Learning and Real-Time Tracking using Multi-Resolution Surfel Maps. In Proceedings of the
Twenty-sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012.

25. Tateno, K.; Tombari, F.; Navab, N. When 2.5D is not Enough: Simultaneous Reconstruction, Segmentation and Recognition on
Dense SLAM. In Proceedings of the IEEE the International Conference on Robotics & Automation, Stockholm, Sweden, 16–21
May 2016.

26. Pillai, S.; Leonard, J. Monocular SLAM Supported Object Recognition. In Proceedings of the Robotics: Science and Systems,
Rome, Italy, 13–17 July 2015.

27. Mur-Artal, R.; Tardós, J.D. ORB-SLAM: Tracking and Mapping Recognizable Features. In Proceedings of the Workshop on Multi
View Geometry in Robotics, Berkeley, CA, USA, 13 July 2014.

28. Dharmasiri, T.; Lui, V.; Drummond, T. MO-SLAM: Multi Object SLAM with Run-time Object Discovery through Duplicates. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, Daejeon, South Korea, 9–14 October 2016.

29. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G.R. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011.

30. Jaimez, M.; Kerl, C.; Gonzalez-Jimenez, J.; Cremers, D. Fast Odometry and Scene Flow from RGB-D Cameras based on Geometric
Clustering. In Proceedings of the IEEE International Conference on Robotics & Automation, Singapore, Singapore, 29 May–3
June 2017.

31. Scona, R.; Jaimez, M.; Petillot, Y.R.; Fallon, M.; Cremers, D. StaticFusion: Background Reconstruction for Dense RGB-D SLAM in
Dynamic Environments. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
QLD, Australia, 21–25 May 2018; pp. 1–9.

32. Barnes, D.; Maddern, W.; Pascoe, G.; Posner, I. Driven to Distraction: Self-Supervised Distractor Learning for Robust Monocular
Visual Odometry in Urban Environments. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 1894–1900.

http://doi.org/10.1177/0278364911434148
http://doi.org/10.1109/TCSVT.2016.2587387


Appl. Sci. 2021, 11, 645 20 of 20

33. Berta, B.; Facil, J.M.; Javier, C.; Jose, N. DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes. IEEE Robot. Autom.
Lett. 2018, 3, 4076–4083.

34. Zhao, L.; Liu, Z.; Chen, J.; Cai, W.; Wang, W.; Zeng, L. A Compatible Framework for RGB-D SLAM in Dynamic Scenes. IEEE
Access 2019, 7, 75604–75614. [CrossRef]

35. Sun, Y.; Liu, M.; Meng, Q.H. Active Perception for Foreground Segmentation: An RGB-D Data-Based Background Modeling
Method. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1596–1609. [CrossRef]

36. Sun, Y.; Liu, M.; Meng, M.Q.H. Motion Removal for Reliable RGB-D SLAM in Dynamic Environments. Robot. Auton. Syst. 2018,
108, 115–128. [CrossRef]

37. Rünz, M.; Agapito, L. Co-Fusion: Real-time Segmentation, Tracking and Fusion of Multiple Objects. In Proceedings of the 2017
IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore, 29 May–3 June 2017.

38. Rünz, M.; Agapito, L. MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects. In
Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 16–20
October 2018.

39. Wang, C.C.; Thorpe, C.; Hebert, M.; Thrun, S.; Durrant-Whyte, H. Simultaneous Localization, Mapping and Moving Object
Tracking. Int. J. Robot. Res. 2007, 26, 889–916. [CrossRef]

40. Xu, B.; Li, W.; Tzoumanikas, D.; Bloesch, M.; Leutenegger, S. MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic
SLAM. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24
May 2019.

41. Barsan, I.A.; Liu, P.; Pollefeys, M.; Geiger, A. Robust Dense Mapping for Large-Scale Dynamic Environments. In Proceedings of
the 2018 IEEE International Conference on Robotics and Automation (ICRA), Singapore, Singapore, 29 May–3 June 2017.

42. Derome, M.; Plyer, A.; Sanfourche, M.; Besnerais, G.L. Moving Object Detection in Real-Time Using Stereo from a Mobile Platform.
Unmanned Syst. 2015, 3, 253–266. [CrossRef]

43. Kundu, A.; Krishna, K.M.; Sivaswamy, J. Moving Object Detection by Multi-view Geometric Techniques from a Single Camera
Mounted Robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, St. Louis, MO, USA,
10–15 October 2009.

44. Bayona, Á.; SanMiguel, J.C.; Martínez, J.M. Stationary Foreground Detection using Background Subtraction and Temporal
Difference in Video Surveillance. In Proceedings of the 2010 IEEE International Conference on Image Processing, 26–29 September
2010; pp. 4657–4660.

45. Sun, Y.; Liu, M.; Meng, Q.H. Invisibility: A Moving-object Removal Approach for Dynamic Scene Modelling using RGB-D
Camera. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, China, 5–8
December 2017.

46. Leonardo, S.; André, C.; Luiz, G.A.; Tiago, N. Stairs and Doors Recognition as Natural Landmarks Based on Clouds of 3D
Edge-Points from RGB-D Sensors for Mobile Robot Localization. Sensors 2017, 17, 1–16.

47. Yazdi, M.; Bouwmans, T. New Trends on Moving Object Detection in Video Images Captured by a moving Camera: A Survey.
Comput. Sci. Rev. 2018, 28, 157–177. [CrossRef]

48. Vertens, J.; Valada, A.; Burgard, W. SMSnet: Semantic Motion Segmentation using Deep Convolutional Neural Networks. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2018.

49. Tan, W.; Liu, H.; Dong, Z.; Zhang, G.; Bao, H. Robust Monocular SLAM in Dynamic Environments. In Proceedings of the IEEE
International Symposium on Mixed & Augmented Reality, Adelaide, SA, Australia, 1–4 October 2013.

50. Wangsiripitak, S.; Murray, D.W. Avoiding Moving Outliers in Visual SLAM by tracking Moving Objects. In Proceedings of the
2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 375–380.

51. Salas-Moreno, R.F.; Glocken, B.; Kelly, P.H.J.; Davison, A.J. Dense Planar SLAM. In Proceedings of the 2014 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), Munich, Germany, 10–12 September 2014; pp. 157–164.

52. Sturm, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A Benchmark for the Evaluation of RGB-D SLAM Systems. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots & Systems, Vilamoura, Portugal, 7–12 October 2012.

http://doi.org/10.1109/ACCESS.2019.2922733
http://doi.org/10.1109/TASE.2019.2893414
http://doi.org/10.1016/j.robot.2018.07.002
http://doi.org/10.1177/0278364907081229
http://doi.org/10.1142/S2301385015400026
http://doi.org/10.1016/j.cosrev.2018.03.001

	Introduction 
	Related Work 
	Dense SLAM 
	Object Semantic SLAM 
	Dynamic SLAM 

	Methodology 
	System Overview 
	Notation and Preliminaries 
	Object Motion Detection through 3D Tracking Based on Object Model Database 
	Geometric Error Term 
	Photometric Error Term 

	Object Instance Segmentation and Data Association with Object Database 
	Accurate Camera Pose Tracking 
	Object Model Fusion, Semantic Map Optimization, and Construction 

	Results 
	Object 3D Tracking for Motion Detection 
	Camera Pose Estimation Accuracy 
	Map Construction 

	Discussion 
	Object Motion Detection 
	Object Instance Segmentation and Association 
	Camera Pose Estimation Accuracy 
	Object Model Fusion and Updating 
	System Efficiency 

	Conclusions 
	References

