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Abstract: Over the past decade, deep learning-based computer vision methods have been shown
to surpass previous state-of-the-art computer vision techniques in various fields, and have made
great progress in various computer vision problems, including object detection, object segmentation,
face recognition, etc. Nowadays, major IT companies are adding new deep-learning-based computer
technologies to edge devices such as smartphones. However, since the computational cost of deep
learning-based models is still high for edge devices, research is being actively carried out to compress
deep learning-based models while not sacrificing high performance. Recently, many lightweight
architectures have been proposed for deep learning-based models which are based on low-rank
approximation. In this paper, we propose an alternating tensor compose-decompose (ATCD) method
for the training of low-rank convolutional neural networks. The proposed training method can
better train a compressed low-rank deep learning model than the conventional fixed-structure based
training method, so that a compressed deep learning model with higher performance can be obtained
in the end of the training. As a representative and exemplary model to which the proposed training
method can be applied, we propose a rank-1 convolutional neural network (CNN) which has a
structure alternatively containing 3-D rank-1 filters and 1-D filters in the training stage and a 1-
D structure in the testing stage. After being trained, the 3-D rank-1 filters can be permanently
decomposed into 1-D filters to achieve a fast inference in the test time. The reason that the 1-D
filters are not being trained directly in 1-D form in the training stage is that the training of the 3-D
rank-1 filters is easier due to the better gradient flow, which makes the training possible even in
the case when the fixed structured network with fixed consecutive 1-D filters cannot be trained
at all. We also show that the same training method can be applied to the well-known MobileNet
architecture so that better parameters can be obtained than with the conventional fixed-structure
training method. Furthermore, we show that the 1-D filters in a ResNet like structure can also be
trained with the proposed method, which shows the fact that the proposed method can be applied to
various structures of networks.

Keywords: deep learning; convolutional neural networks; low rank; deep compression; MobileNet

1. Introduction

Deep learning-based computer vision shows good performance in various computer
vision areas such as image segmentation [1,2], image synthesis [3], facial recognition [4],
classification [5], person re-identification [6], and object detection [7,8]. However, in spite
of the remarkable achievements in difficult computer vision tasks, conventional deep
convolutional neural networks (CNNs) use a high number of parameters which limits
their use on devices with limited resources such as smartphones, embedded systems, etc.
Even though it has been known that there exist a lot of redundancy between the parameters
and the feature maps in deep models, over-parametrized CNN models are used due to
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the reason that over-parametrization makes the training of the network easier as has been
shown in the experiments in [9]. The reason for this phenomenon is believed to be due to a
better gradient flow in over-parametrized networks.

Meanwhile, it has been shown in [10] that even with the use of regularization methods,
there still exists excessive capacity in trained networks, which again implies the fact that
the redundancy between the parameters is still large. Therefore, many researches focus on
finding a better network structure so that the parameters can be expressed in a structured
subspace with smaller number of coefficients. The research topic on compressing large-
scale deep learning models is increasing in importance as it is necessary to use compressed
deep learning models in edge devices such as smartphones and IoT devices. While early
works focused on compressing the parameters of pre-trained large scale deep learning
models [11–22], studies are also actively under way to limit the number of parameters
by proposing small networks in the first place [23–37]. Most recently, researches have
prevailed on how to efficiently use these compressed models on edge devices [38–41].
We will provide a detailed overview of these research trends in Section 2.

In this paper, we propose a training method for the training of low-rank convolu-
tional neural networks, which we call the alternating tensor compose-decompose (ATCD)
method. The proposed training method can better train compressed low rank models
than existing training methods, thus obtaining a compressed deep learning model with
higher performance. In general, when training deep learning models, the same structure
of the neural network is used during the training and the testing stages. Conventional
tensor decomposing networks are trained with the fixed-structure based training method,
i.e., they are trained in the decomposed form. We call the conventional training method the
fixed-structure based training method. In comparison, the proposed training method do
not use a fixed structure of neural network in the training stage, but allows the tensors to
be alternatingly composed and decomposed so that a better gradient flow can flow through
the tensors in the backpropagation step. This better gradient flow results in better param-
eter values than with conventional training method so that the compressed model can
achieve a higher performance. As an example of the proposed training method, we apply
it to the rank-1 CNN, where the rank-1 CNN is iteratively and alternatingly composed into
a 3-D rank-1 CNN structure and decomposed into 1-D vectors in the training stage, where
the 3-D rank-1 filters are constructed by the outer products of the 1-D vectors. The number
of parameters in the 3-D rank-1 filters are the same as in the 3-D filters in standard CNNs,
allowing a good gradient flow in the backpropagation stage. The difference with the back-
propagation stage in standard CNNs is that the gradient flow flows also through the 1-D
vectors from which the 3-D rank-1 filters are constructed, updating the parameters in the
1-D vectors also. After the backpropagation step, the 3-D filters lose their rank-1 property.
However, at the next composition step, the parameters in the 3-D filters are updated again
by the outer product operation to be projected onto the rank-1 subspace. By iterating this
two-step update, all the 3-D filters in the network are trained to minimize the loss function
while maintaining their rank-1 property. This is different from approaches which try to
approximate the trained filters by low rank approximation after the training has been
finished, e.g., like the low rank approximation in [14] or from approaches which use the
same fixed CNN structure both in the training and the testing stages. The composition
operation is included in the training phase in our network, which directs the parameter
update in a different direction from that of standard CNNs, directing the solution to live
on a rank-1 subspace.

In the testing phase, we do not need the tensor composing stage anymore, and the
3-D rank-1 filters can be permanently decomposed into 1-D filters. So in the testing stage,
the rank-1 CNN is now reconstructed into a 1-D rank-1 CNN structure with the trained 1-D
vectors used as the 1-D filters. So the rank-1 CNN has the same accuracy as the 3-D rank-1
CNN, but has the same inference speed as the 1-D rank-1 CNN, i.e., the inference speed is
exactly the same as that of the Flattened network. Moreover, with the proposed method,
the network can be trained even in the case when the Flattened network cannot be trained
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at all. In other words, the proposed training method can be applied to train networks with
very limited gradient paths due to the low rank property which cannot be trained with
conventional training methods.

We also show how the same training method can be applied to the well-known Mo-
bileNet. We first show how the channel-wise filters can be expressed as a linear combination
of low rank filters, and then show how the proposed alternating tensor compose-decompose
(ATCD) training method can be applied to the training of the low rank filters. The low rank
filters are composed into the MobileNet structure again at the end of the training. Thereby,
better parameters are obtained than with conventional training with fixed MobileNet
structure.

2. Related Works

In this section, we summarize the works related to our work in accordance with
the evolving trend of research in this field. However, it should be noted that our work
is somewhat unique and different from the related works in the aspect that we did not
compress the parameters of pre-trained models or propose a new model architecture,
but propose a new training method to train existing factorized structures to have better
parameter values.

2.1. Works on Compressing the Parameters of Pre-Trained CNNs

Early works on compressing the CNN focused on how to compress the pre-trained
parameters without loss of information. As has been well summarized in [42], researches on
the compression of deep models can be categorized into works which try to eliminate
unnecessary weight parameters [11,12], works which try to compress the parameters by
projecting them onto a low rank subspace [13–16], and works which try to group similar
parameters into groups and represent them by representative features [18–22]. These works
follow the common framework of first training the original uncompressed CNN model
by back-propagation to obtain the uncompressed parameters, and then trying to find a
compressed expression for these parameters to construct a new compressed CNN model.

2.2. Works on Designing a Compressed Model

Compared to the works of compressing the pre-trained parameters, researches which
try to restrict the number of parameters in the first place by proposing small networks are
also actively in progress. However, as mentioned above, the reduction in the number of
parameters changes the gradient flow, so the networks have to be designed carefully to
achieve a trained network with good performance. For example, MobileNets [23] and Xcep-
tion networks [24] use depthwise separable convolution filters, while the SqueezeNet [25]
uses a bottleneck approach to reduce the number of parameters. MobileNet was modified
in version 2 model using inverted residuals [26]. Recently, Google announced the Efficient-
Net [27] which scales up the MobileNet and the ResNet to obtain a new family of efficient
CNN models, while CondenseNet [28] and ShuffleNet [29] are using group convolutions
to reduce the number of convolutions. Other models use 1-D filters to reduce the size
of networks such as the highly factorized Flattened network [30], or the models in [31]
where 1-D filters are used together with other filters of different sizes. Recently, Google’s
Inception model has also adopted 1-D filters in version 4 [43]. One difficulty in using 1-D
filters is that 1-D filters are not easy to train, and therefore, they are used only partially
like in the Google’s Inception model, or in the models in [31] etc., except for the Flattened
network which is constituted of consecutive 1-D filters only. However, only three layers
of 1-D filters are used in the experiments in [30], which is maybe due to the difficulty of
training 1-D filters with many layers.

Until now, all the efficient neural network architectures have been developed manually
by human experts. Though still in the early stage, there are researches ongoing to automat-
ically searching for architectures that are efficient and satisfy the resource or computation
constraints [32–37]. However, it is known that such an automatic neural architecture search
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is extremely difficult, and therefore, in practice, the manually well-designed architectures
are still widely used.

2.3. Works on Edge AI

Now that many efficient and compressed CNN architectures have been proposed,
many researchers and major IT companies are focusing on how to shift these compression
models to edge devices as customers spend more time on mobile devices [38–41,44–48].
Particularly, in [38], Eshratifar et al. propose an efficient training for intelligent mobile
cloud computing services, while in [39] Li et al. proposed how to accelerate the inference
in DNN via edge computing. In [40], a deep learning architecture for intelligent mobile
cloud computing services called BottleNet is proposed, which reduces the feature size
needed to be sent to the cloud. Furthermore, Bateni and Lie propose a timing-predictable
runtime system that is able to guarantee deadlines of DNN workloads via efficient approxi-
mation [41]. It is believed that Edge AI research and algorithms on both commercial and
academic laboratories are expected to be very active in the next three to five years.

3. Preliminaries for the Proposed Method

The following works have to be understood to understand the proposed method.
The work of bilateral-projection based 2-D principal component analysis (B2DPCA) gave
us the insight for bilateral filters and the tensor compose-decompose procedure, which we
utilized to train the rank-1 Net.

3.1. Bilateral-Projection Based 2DPCA

In [49], a bilateral-projection based 2-D principal component analysis (B2DPCA) has
been proposed, which minimizes the following energy functional:

[Popt, Qopt] = argmin
P,Q

‖X− PCQT‖2
F, (1)

where X ∈ Rn×m is the two dimensional image, P ∈ Rm×l and Q ∈ Rn×r are the left- and
right- multiplying projection matrices, respectively, and C = PTXQ is the extracted feature
matrix for the image X. The optimal projection matrices Popt and Qopt are simultaneously
constructed, where Popt projects the column vectors of X to a subspace, while Qopt projects
the row vectors of X to another one. It has been shown in [49], that the advantage of
the bilateral projection over the unilateral-projection scheme is that X can be represented
effectively with smaller number of coefficients than in the unilateral case, i.e., a small-sized
matrix C can well represent the image X. This means that the bilateral-projection effectively
removes the redundancies among both rows and columns of the image. Furthermore, since

C = PTXQ =


pT

1 Xq1 pT
1 Xq2 ... pT

1 Xqr
pT

2 Xq1 pT
2 Xq2 ... pT

2 Xqr
...

...
...

...
pT

l Xq1 pT
l Xq2 ... pT

l Xqr



=


< X, p1qT

1 > < X, p1qT
2 > ... < X, p1qT

r >
< X, p2qT

1 > < X, p2qT
2 > ... < X, p2qT

r >
...

...
...

...
< X, plqT

1 > < X, plqT
2 > ... < X, plqT

r >

,

(2)

it can be seen that the components of C are the 2-D projections of the image X onto the
2-D planes p1qT

1 , p1qT
2 , ...plqT

r made up by the outer products of the column vectors of P
and Q. The 2-D planes have a rank of one, since they are the outer products of two 1-D
vectors. Therefore, the fact that X can be well represented by a small-sized C also implies
the fact that X can be well represented by a few rank-1 2-D planes, i.e., only a few 1-D
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vectors p1, ...pl , q1, ....qr, where l << m and r << n.
In the case of (1), the learned 2-D planes try to minimize the loss function

L = ‖X− PCQT‖2
F, (3)

i.e., try to learn to best approximate X. A natural question arises, if good rank-1 2-D planes
can be obtained to minimize other loss functions too, e.g., loss functions related to the
image classification problem, such as

L = ‖ytrue − y(X, P, C, Q)‖2
F, (4)

where ytrue denotes the true classification label for a certain input image X, and y(X, P, C, Q)
is the output of the network constituted by the outer products of the column vectors in the
learned matrices P and Q. In this paper, we extend this case to the rank-1 3-D filter case,
where the rank-1 3-D filter is constituted as the outer product of three column vectors from
three different learned matrices, and show that good parameters can be learned for the
image classification task. Furthermore, these learned rank-1 3-D filters can be decomposed
into rank-1 1-D filters for fast inference speed.

3.2. Flattened Convolutional Neural Networks

In [30], the ‘Flattened CNN’ has been proposed for fast feed-forward execution by
separating the conventional 3-D convolution filter into three consecutive 1-D filters. The 1-D
filters sequentially convolve the input over different directions, i.e., the lateral, horizontal,
and vertical directions. Figure 1 shows the network structure of the Flattened CNN.
The Flattened CNN uses the same network structure in both the training and the testing
phases. This is in comparison with our proposed model, where we use a different network
structure in the training phase as will be seen later.

Figure 1. The structure of the Flattened network. The same network structure of sequential use of
1-D filters is used in the training and testing phases. Here, ∗ denotes the convolution operator.

However, the consecutive use of 1-D filters in the training phase makes the training
difficult. This is due to the fact that the gradient path becomes longer than in normal
CNN, and therefore, the gradient flow vanishes faster while the error accumulates more.
Another reason is that the reduction in the number of parameters causes a gradient flow
different from that of the standard CNN, which is more difficult to find an appropriate
solution for the parameters. This fact coincides with the experiments in [9] which show
that the gradient flow in a network with small number of parameters cannot find good
parameters. Therefore, a particular weight initialization method has to be used together
with this setting. Furthermore, in [30], the networks in the experiments have only three
layers of convolution, which is maybe due to the fact of the difficulty in training networks
with more layers.
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4. Application of the Proposed Training Method to the Rank-1 CNN

As an example of how the tensor composing-decomposing method can be applied to
train low-rank CNNs, we apply the proposed training method to the rank-1 CNN which
is composed of mere rank-1 convolutional filters. In comparison with other CNN models
which use 1-D rank-1 filters, we propose the use of 3-D rank-1 filters(W) in the training
stage, where the 3-D rank-1 filters are constructed by the outer product of three 1-D vectors,
say p, q, and t:

W = p⊗ q⊗ t. (5)

This is an extension of the 2-D rank-1 planes used in the B2DPCA, where the 2-D planes
are constructed by W = p⊗ q = pqT . Figure 2 shows the training and the testing phases
of the proposed method. The structure of the proposed network is different for the training
phase and the testing phase. In comparison with the Flattened network (Figure 1), in the
training phase, the gradient flow first flows through the 3-D rank-1 filters and then through
the 1-D vectors. Therefore, the gradient flow is different from that of the Flattened network
resulting in a different and better solution of parameters in the 1-D vectors. The solution
can be obtained even in large networks with the proposed method, for which the gradient
flow in the Flattened network cannot obtain a solution at all. Furthermore, at test time,
i.e., at the end of optimization, we can use the 1-D vectors directly as 1-D filters in the same
manner as in the Flattened network, resulting in the same inference speed and number of
operations as the Flattened network (Figure 2).

Figure 2. Proposed rank-1 neural network with different network structures in training and test-
ing phases. Here, ∗ denotes the convolution operator.

4.1. Construction of the 3-D Rank-1 Filters

We first observe that a 2-D convolution can be seen as shifting inner products, where
each component y(r) at position r of the output matrix Y is computed as the inner product
of a 2-D filter W and the image patch X(r) centered at r:

y(r) =< W, X(r) > . (6)

If W is constructed by the outer product of two 1-D vectors p and q, i.e., W = p⊗ q =
pqT , then W becomes a 2-D rank-1 filter. In this case, it can be observed that

y(r) =< W, X(r) >=< pqT , X(r) >= pTX(r)q. (7)
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As has been explained in the case of B2DPCA, since p is multiplied to the rows of
X(r), p tries to extract the features from the rows of X(r) which can minimize the loss
function. That is, p searches the rows in all patches X(r), ∀r for some common features
which can reduce the loss function, while q looks for the features in the columns of the
patches. In analogy to the B2DPCA, this bilateral projection removes the redundancies
among the rows and columns in the 2-D filters.

In convolutional neural networks, the input X3D and the convolutional filter W3D are
both three dimensional, where the third dimension refers to the depth of the input, i.e.,
the numer of input channels. In this case, the 3-D rank-1 filter W3D is constructed by the
outer product of three 1-D vectors p, q, and t,

W3D = p⊗ q⊗ t, (8)

where the length of t is the same as the depth of the input X3d. In analogy to the B2DPCA,
the 3-D rank-1 filters which are learned by the three dimensional multilateral projection
will have less redundancies among the rows, columns, and the channels than the normal
3-D filters in standard CNNs.

The three dimensional convolution of the 3-D rank-1 filter W3D and X3D can be
expressed by the sum of channel-wise 2-D convolutions. Let W(i)

3D denote the i’s 3-D

rank-1 filter that results in the i’s output channel Y(i), and W(i)
2D the 2-D rank-1 filter that

relates with Y(i), which is constructed by the outer product of two 1-D vectors pl and qr.
We construct a rank-1 2-D filter for each output channel Y(i),

W(1)
2D = p1 ⊗ q1,

W(2)
2D = p1 ⊗ q2,

...
W(i)

2D = pl ⊗ qr,
W(i+1)

2D = pl ⊗ qr+1,
...

W(q)
2D = pm ⊗ qn.

(9)

The total number of 2-D filters is q = m× n, where q is the number of output channels.
Then, the 3-D rank-1 filters can be constructed by

W(i)
3D = W(i)

2D ⊗ ti = pl ⊗ qr ⊗ ti. (10)

Furthermore, let X(j) denote the j’s 2-D channel in X3d. Then the 3-D convolution
which results in the i’s output channel Y(i) can be expressed as

Y(i) = X ∗W(i)
3D =

N

∑
j=1

ti[j](X(j) ~ W(i)
2D), (11)

where ∗ and ~ denote the 3-D and the 2-D convolution operations, respectively, and ti[j]
refers to the j’s component of the vector ti. Figure 3 visualizes how the 3-D rank-1 filters
are constructed and how they convolve with the 2-D channels in X3d.

As explained above, at test time, we can use the trained 1-D vectors as the 1-D filters,
so that in the test time only 1-D convolutions are used. As has been shown in [30], when
using only 1-D convolutions, the number of operations reduces to

Ix × Iy × (Cout + fx + fy), (12)

instead of
Ix × Iy × Cout × fx × fy, (13)
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where Ix and Iy are the width and height of the input feature map, respectively, Cout is the
number of output channels, and fx and fy are the width and height of the filter.

Figure 3. Constitution of the 3-D rank-1 filters in the training phase. The 3-D filters

W(1)
3D , W(2)

3D , ...., W(q)
3D that are convolved with the 3-D input X3d are constructed by the outer products

of the 2-D filters W(1)
2D , W(2)

2D , ...., W(q)
2D and the 1-D filters t1, t2, ...., tq, respectively, where the 2-D filters

are again constructed by the outer products of the 1-D filters p1, p2, ..., pm and q1, q2, ...., qn according
to Equation (9).

4.2. Training Process

Figure 4 explains the training process with the proposed network structure in detail.
At every epoch of the training phase, we first take the outer product of the three 1-D vectors
p, q, and t. Then, we assign the result of the outer product to the weight values of the 3-D
convolution filter, i.e., for every weight value in the 3-D convolution filter W, we assign

wi,j,k = piqjtk, ∀i,j,k∈Ω(W) (14)

where, i, j, k correspond to the 3-D coordinates in Ω(W), the 3-D domain of the 3-D convo-
lution filter W. Since the matrix constructed by the outer product of vectors has always a
rank of one, the 3-D convolution filter W is a rank-1 filter.

During the back-propagation phase, every weight value in W will be updated by

w′i,j,k = wi,j,k − α
∂L

∂wi,j,k
, (15)

where ∂L
∂wi,j,k

denotes the gradient of the loss function L with respect to the weight wi,j,k, and

α is the learning rate. In standard convolutional neural networks, w′i,j,k in (15) is the final
updated weight value at each update step. However, the updated filter W′ normally is not
a rank-1 filter. This is due to the fact that the update in (15) is done in the direction which
considers only the minimizing of the loss function and not the rank of the filter.

With the proposed training network structure, we take a further update step, i.e.,
we update the 1-D vectors p, q, and t:

p′i = pi − α
∂L
∂pi

, ∀i∈Ω(p) (16)
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q′j = qj − α
∂L
∂qj

, ∀j∈Ω(q) (17)

t′k = tk − α
∂L
∂tk

, ∀k∈Ω(t) (18)

Here, ∂L
∂pi

, ∂L
∂qj

, and ∂L
∂tk

can be calculated as

∂L
∂pi

= ∑
j

∑
k

∂L
∂wi,j,k

∂wi,j,k

∂pi
= ∑

j
∑
k

∂L
∂wi,j,k

qjtk, (19)

∂L
∂qj

= ∑
i

∑
k

∂L
∂wi,j,k

∂wi,j,k

∂qj
= ∑

i
∑
k

∂L
∂wi,j,k

pitk, (20)

∂L
∂tk

= ∑
i

∑
j

∂L
∂wi,j,k

∂wi,j,k

∂tk
= ∑

i
∑

j

∂L
∂wi,j,k

piqj. (21)

Figure 4. Steps in the training phase of the proposed rank-1 network.

At the next feed forward step in the back-propagation, an outer product of the updated
1-D vectors p, q, and t is taken to concatenate them back into a 3-D convolution filter W′′,
which we call the tensor composing step:

w′′i,j,k = p′iq
′
jt
′
k = (pi − α ∂L

∂pi
)(qj − α ∂L

∂qj
)(tk − α ∂L

∂tk
)

= piqjtk − α(piqj
∂L
∂tk

+ qjtk
∂L
∂pi

+ pitk
∂L
∂qj

) + α2(pi
∂L
∂qj

∂L
∂tk

+ qj
∂L
∂pi

∂L
∂tk

+ tk
∂L
∂pi

∂L
∂tk

)− α3 ∂L
∂pi

∂L
∂qj

∂L
∂tk

= wi,j,k − α∆i,j,k, ∀i,j,k,

(22)
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where

∆i,j,k = piqj
∂L
∂tk

+ qjtk
∂L
∂pi

+ pitk
∂L
∂qj
− α(pi

∂L
∂qj

∂L
∂tk

+ qj
∂L
∂pi

∂L
∂tk

+ tk
∂L
∂pi

∂L
∂tk

) + α2 ∂L
∂pi

∂L
∂qj

∂L
∂tk

. (23)

As the outer product of 1-D vectors always results in a rank-1 filter, W′′ is a rank-1
filter as compared with W′ which is not. Comparing (15) with (22), we get

w′′i,j,k = w′i,j,k − α(∆i,j,k −
∂L

∂wi,j,k
). (24)

Therefore, we can say that ∆i,j,k− ∂L
∂wi,j,k

is the incremental update vector which projects

W′ back onto the rank-1 subspace. The use of rank-1 filters are not constrained to replace
the filters in the standard CNN structure but can also replace the full-rank filters in ResNet
or DenseNet-like architectures. In this case, the rank-1 filters can also reduce the parameters
and accelerate the inference speed in ResNet or DenseNet architectures.

5. Application of the Proposed Training Method to the MobileNet

Here, we show that the proposed rank-1 network training method can also be applied
to train the well-known MobileNet (version 1). However, the performance becomes better
when the parameters are obtained by the proposed method, than when obtained by the
original MobileNet type training method. The main idea of applying the proposed training
method to the training of the MobileNet is that we can extend the separate 2-D filters to 3-D
filters by the outer product of rank-1 2-D filters with rank-1 1-D vectors resulting in rank-1
3-D filters, train the rank-1 3-D filters with the ATCD training method, and then compress
the rank-1 3-D filters back to full-rank 2-D filters. In the original version (version 1) of
the MobileNet, the 2-D images are separately convolved with 2-D filters, and then are
combined by 1× 1 convolutions. The output of a single layer of the original version of the
MobileNet can be written as

Y(m) =
N

∑
j=1

am[j](X(j) ~ W(j)), m = 1, ..., q, (25)

where Y(m) is the m’s output channel, X(j) is the j’s input channel, W(j) is the j’s filter that
convolves with the j’s input channel, ~ is the 2-D convolution operator, and am is the m’s
1× 1 convolution filter that produces the m’s output channel. Meanwhile, the outputs
Ŷ(i), i = 1, ..., K which are obtained by the convolutions of the 3-D rank-1 filters and the
input channels as shown in Figure 3 become

Ŷ(i) =
N

∑
j=1

ti[j](X(j) ~ Ŵ(i)), i = 1, ..., K. (26)

It has to be noted that the index of Ŵ(i) in (26) is i (the index of output channels)
compared to (25) where the index of W(j) is j (the index of input channels).

Now, adding an extra layer which computes the linear combinations of the outputs
Ŷ(i), i = 1, ..., K in (26) by 1× 1 convolutions with the filters km, m = 1, ..., q, we have

Y(m) =
K

∑
i=1

km[i]Ŷ(i), m = 1, ..., q. (27)

By putting (26) into (27) and rearranging the order of summation, we get,

Y(m) =
N

∑
j=1

[
X(j) ~

(
K

∑
i=1

km[i]ti[j]Ŵ(i)

)]
. (28)
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After the values of km[i] and ti[j] are all fixed for all m, i, and j, i.e., after they have
been trained, we can arbitrarily construct the vectors am, m=1,...,q and bj, j=1,...,N so that the
entries in the vectors are assigned as follows:

am[j] = km[i], bj[i] = ti[j]. (29)

Then, we can rewrite (28) as

Y(m) =
N

∑
j=1

[
X(j) ~

(
K

∑
i=1

am[j]bj[i]Ŵ(i)

)]
, (30)

which can now be rewritten as

Y(m) =
N

∑
j=1

am[j]

[
X(j) ~

(
K

∑
i=1

bj[i]Ŵ(i)

)]
. (31)

By letting

W(j) =
K

∑
i=1

bj[i]Ŵ(i), (32)

the formula becomes the same as that for the Mobilenet described in (25). This means that
after being training by the proposed method, we can implement the inference system also
in the Mobilenet style. It has to be noticed that even though Ŵ(i) is a two dimensional
rank-1 filter, since it is composed of the outer product of two 1-D vectors, the filter W(j)

can have a rank of K, as the summation of K independent rank-1 filters results in a rank-K
filter. As shown in the experiments, the proposed method learns better parameters due to
the over-parametrization produced by the outer product into a 3-D filter, and therefore,
the MobileNet constructed by the proposed rank-1 training method has a higher accuracy
than that of the original MobileNet which is trained with a smaller number of parameters.
Therefore, the proposed training method can contribute to obtain MobileNets with higher
classification accuracies.

6. Experiments

We compared the performance of the proposed ATCD training method with the con-
ventional fixed structure training method for the rank-1 CNN and the MobileNet on various
datasets. We also compared the validation and testing accuracies with a standard full-rank
CNN. We used the same number of layers for all the models, where for the fixed structured
Flattened CNN we regarded the combination of the lateral, vertical, and horizontal 1-D
convolutional layers as a single layer. Furthermore, we used the same numbers of input
and output channels in each layer for all the models, and also the same ReLU(Rectified
Linear Unit), batch normalization, and dropout operations.

Tables 1–4 show the different structures of the models used for each dataset in the
training stage. The outer product operation of the three 1-D filters p, q, and t into a 3-D
rank-1 filter w is denoted as w .

= p ⊗ q ⊗ t in the tables. We did not elaborate on the
structures to produce the optimal performances, but only tried to make them the same for
fair comparison. Furthermore, we did not use any recent structures with extra components
like skip-connections, element-wise or channel-wise concatenations, multi-scale filters,
such as the ResNet or DenseNet, but intentionally used simple VGG-like structures with
simple consecutive convolutional filters to see only the effect of the proposed training
method. However, to verify the fact that the proposed training method can be applied also
to the training of rank-1 filters inside a ResNet or DenseNet structure, we further performed
an experiment on the CIFAR10 dataset with the ResNet structure where we replaced all
the convolutional filters with the rank-1 filters and then applied our ATCD training method.
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Table 1. Structure of convolutional neural network (CNN)1 for the MNIST dataset.

Standard CNN Flattened CNN Proposed CNN

Conv1: 64 filters, each filter constituted as:

1× 3× 3 conv 1× 1× 1× conv, 1× 3× 1 conv, w1
.
= p1(1× 3× 1)⊗ q1(1× 1× 3)⊗ t1(1× 1× 1)

1× 1× 3 conv 1× 3× 3 conv

Conv2: 64 filters, each filter constituted as:

64× 3× 3 conv 64× 1× 1 conv, 1× 3× 1 conv, w2
.
= p2(1× 3× 1)⊗ q2(1× 1× 3)⊗ t2(64× 1× 1)

1× 1× 3 conv 64× 3× 3 conv

Max Pool ( 1
2 )

Conv3: 144 filters, each filter constituted as:

64× 3× 3 conv 64× 1× 1 conv, 1× 3× 1 conv w3
.
= p3(1× 3× 1)⊗ q3(1× 1× 3)⊗ t3(64× 1× 1)

1× 1× 3 conv 64× 3× 3 conv

Conv4: 144 filters, each filter constituted as:

144× 3× 3 conv 144× 1× 1 conv, 1× 3× 1 conv w4
.
= p4(1× 3× 1)⊗ q4(1× 1× 3)⊗ t4(144× 1× 1)

1× 1× 3 conv 144× 3× 3 conv

Max Pool ( 1
2 )

Conv5: 144 filters, each filter constituted as:

144× 3× 3 conv 144× 1× 1 conv , 1× 3× 1 conv w5
.
= p5(1× 3× 1)⊗ q5(1× 1× 3)⊗ t5(144× 1× 1)

1× 1× 3 conv 144× 3× 3 conv

Conv6: 256 filters, each filter constituted as:

144× 3× 3 conv 144× 1× 1 conv, 1× 3× 1 conv w6
.
= p6(1× 3× 1)⊗ q6(1× 1× 3)⊗ t6(144× 1× 1)

1× 1× 3 conv 144× 3× 3 conv

Conv7: 256 filters, each filter constituted as:

256× 3× 3 conv 256× 1× 1 conv, 1× 3× 1 conv w7
.
= p7(1× 3× 1)⊗ q7(1× 1× 3)⊗ t7(256× 1× 1)

1× 1× 3 conv 256× 3× 3 conv

FC 2048 + Batch Normalization + ReLU + Drop Out (P = 0.5)

FC 1024 + Batch Normalization + ReLU + Drop Out (P = 0.5)

FC 10 + ReLU + Drop Out (P = 0.5)

Soft-Max

The datasets that we used in the experiments were the MNIST, the CIFAR10, CI-
FAR100, and the ‘Dog and Cat’ datasets (https://www.kaggle.com/c/dogs-vs-cats). We
used different structures for different datasets, which we denoted as CNN1, CNN2, CNN3,
and CNN4 in the tables, corresponding to the MNIST, CIFAR10, CIFAR100, and ‘Dog
and Cat’ datasets, respectively. The MNIST and the CIFAR-10 datasets both consisted of
60,000 images in 10 different classes, divided into 50,000 training images and 10,000 test
images, where the images in the CIFAR-10 dataset were colour images of size 32 × 32,
while those in the MNIST dataset were gray images of size 28 × 28. The CIFAR-100 data
set consisted of 100 classes, each with 500 training and 100 test color images of size 32
× 32. The ‘Dog and Cat’ dataset contained 25,000 color images of dogs and cats of size
224× 224, which we divided into 24,900 training and 100 test images for the validation
test along the training. At the end of each training session, we tested the final testing
accuracy of the ‘Dog and Cat’ dataset by taking the average of the 100 test images. Then,
the final testing accuracy was obtained by taking the mean of 10 of such sessions. For the
experiments on the MNIST, the CIFAR10, and the CIFAR100 datasets, we trained on 50,000
images, and then tested on 100 batches each consisting of 100 random test images, and
calculated the overall average accuracy both for the validation along the training and for

https://www.kaggle.com/c/dogs-vs-cats
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the final testing. We plotted for every training epoch the validation accuracy values in
Figures 5–9. The number of epochs in the figures were determined to be greater than the
epochs for which the validation accuracies with the proposed model sufficiently converged,
and which resulted in graphs from which it became possible to visually compare the results
of the different methods. Figures 5–9 show the validation accuracies for every epoch along
the training process for a single training for each model. Even though it is customary to
learn a model only once in deep learning, we performed multiple training sessions for each
dataset, and obtained different models at the end of each training. Then, we calculated
the means and the standard deviations of the different final accuracy values of the testing
datasets for each trained model, and recorded them in Table 5. For the experiments on
MNIST, CIFAR10, and CIFAR100 datasets, 20 training sessions were performed, and for the
’Dog and Cat’ dataset, which took a long time to train, 10 training sessions were performed
to obtain the values in Table 5. The slight differences between the testing accuracies of
the different models are due to the different initialization of convolutional filters and the
randomness of the stochastic gradient descent-based backpropagation.

Figure 5. Comparison of validation accuracies on the CIFAR10 dataset.

The rank-1 CNN trained with the proposed training method achieved slightly larger
validation and testing accuracies on the MNIST dataset than the standard full-rank CNN
and the Flattened CNN trained with the conventional fixed-structure training method
(Figure 10 and Table 5). This is maybe due to the fact that the MNIST dataset was in its
nature a low-ranked one, for which the proposed method could find the best approxima-
tion since the proposed method constrains the filters to a low rank sub-space. With the
CIFAR10 and the CIFAR100 dataset, the accuracy was slightly less than that of the standard
CNN which is maybe due to the fact that the images in the CIFAR10 and the CIFAR100
datasets were of higher ranks than those in the MNIST dataset. However, the validation
accuracy of the rank-1 CNN trained with the proposed method was higher than that of
the Flattened CNN trained with the conventional fixed structure training method on the
CIFAR10 dataset which shows the fact that the better gradient flow in the proposed training
method achieves a better solution. With the CIFAR100 dataset, the Flattened CNN could
not be trained by conventional fixed structure training methods due to the deep structure
of the CNN4 structure. The ‘Dog and Cat’ dataset was used in the experiments to verify the
validness of the proposed training method on real-sized images and on a deep structure.
In this case, again the Flattened network could not be trained with the conventional fixed
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structure training method. This is maybe due to the limitation to produce a gradient flow
in deep structures with the direct fixed 1-D structure of the Flattened CNN. The standard
CNN trained with conventional training method and the proposed rank-1 CNN trained
with the proposed training method achieved similar validation accuracies as can be seen in
Figure 6. The validation accuracies for the CIFAR100 dataset are shown in Figure 7. Again,
it can be seen that the rank-1 CNN trained with the proposed ATCD method achieved
similar validation and testing accuracies to the standard CNN.

Table 2. Structure of CNN2 for CIFAR-10 dataset.

Standard CNN Flattened CNN Proposed CNN

Conv1: 64 filters, each filter constituted as:

3× 3× 3 conv 3× 1× 1 conv, 1× 3× 1 conv w1
.
= p1(1× 3× 1)⊗ q1(1× 1× 3)⊗ t1(3× 1× 1)

1× 1× 3 conv 3× 3× 3 conv

ReLU + Batch Normalization

Conv2: 64 filters, each filter constituted as:

64× 3× 3 conv 64× 1× 1 conv, 1× 3× 1 conv w2
.
= p2(1× 3× 1)⊗ q2(1× 1× 3)⊗ t2(64× 1× 1)

1× 1× 3 conv 64× 3× 3 conv

ReLU + Max Pool ( 1
2 ) + Drop Out (P = 0.5)

Conv3: 144 filters, each filter constituted as:

64× 3× 3 conv 64× 1× 1 conv, 1× 3× 1 conv w3
.
= p3(1× 3× 1)⊗ q3(1× 1× 3)⊗ t3(64× 1× 1)

1× 1× 3 conv 64× 3× 3 conv

ReLU + Batch Normalization

Conv4: 144 filters, each filter constituted as:

144× 3× 3 conv 144× 1× 1 conv, 1× 3× 1 conv w4
.
= p4(1× 3× 1)⊗ q4(1× 1× 3)⊗ t4(144× 1× 1)

1× 1× 3 conv 144× 3× 3 conv

ReLU + Max Pool ( 1
2 ) +Drop Out (P = 0.5)

Conv5: 256 filters, each filter constituted as:

144× 3× 3 conv 144× 1× 1 conv, 1× 3× 1 conv w5
.
= p5(1× 3× 1)⊗ q5(1× 1× 3)⊗ t5(144× 1× 1)

1× 1× 3 conv 144× 3× 3 conv

ReLU + Batch Normalization

Conv6: 256 filters, each filter constituted as:

256× 3× 3 conv 256× 1× 1 conv, 1× 3× 1 conv w6
.
= p6(1× 3× 1)⊗ q6(1× 1× 3)⊗ t6(256× 1× 1)

1× 1× 3 conv 256× 3× 3 conv

ReLU + Max Pool ( 1
2 ) + Drop Out (P = 0.5)

FC 1024 + Batch Normalization + ReLU + Drop Out (P = 0.5)

FC 512 + Batch Normalization + ReLU + Drop Out (P = 0.5)

FC 10

Soft-Max
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Table 3. Structure of CNN3 for ‘Dog and Cat’ dataset.

Standard CNN Proposed CNN

Conv1: 64 filters, each filter constituted as:

3× 3× 3 conv w1
.
= p1(1× 3× 1)⊗ q1(1× 1× 3)⊗ t1(3× 1× 1) 3× 3× 3 conv

Conv2: 64 filters, each filter constituted as:

64× 3× 3 conv w2
.
= p2(1× 3× 1)⊗ q2(1× 1× 3)⊗ t2(64× 1× 1) 64× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

Conv3: 144 filters, each filter constituted as:

64× 3× 3 conv w3
.
= p3(1× 3× 1)⊗ q3(1× 3× 1)⊗ t3(64× 1× 1) 64× 3× 3 conv

ReLU

Conv4: 144 filters, each filter constituted as:

144× 3× 3 conv w4
.
= p4(1× 3× 1)⊗ q4(1× 1× 3)⊗ t4(144× 1× 1) 144× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

Conv5: 256 filters, each filter constituted as:

144× 3× 3 conv w5
.
= p5(1× 3× 1)⊗ q5(1× 1× 3)⊗ t5(144× 1× 1) 144× 3× 3 conv

ReLU

Conv6: 256 filters, each filter constituted as:

256× 3× 3 conv w6
.
= p6(1× 3× 1)⊗ q6(1× 1× 3)⊗ t6(256× 1× 1) 256× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

Conv7: 256 filters, each filter constituted as:

256× 3× 3 conv w7
.
= p7(1× 3× 1)⊗ q7(1× 1× 3)⊗ t7(256× 1× 1) 256× 3× 3 conv

ReLU

Conv8: 484 filters, each filter constituted as:

256× 3× 3 conv w8
.
= p8(1× 3× 1)⊗ q8(1× 1× 3)⊗ t8(256× 1× 1) 256× 3× 3 conv

ReLU

Conv9: 484 filters, each filter constituted as:

484× 3× 3 conv w9
.
= p9(1× 3× 1)⊗ q9(1× 1× 3)⊗ t9(484× 1× 1) 484× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

Conv10: 484 filters, each filter constituted as:

484× 3× 3 conv w10
.
= p10(1× 3× 1)⊗ q10(1× 1× 3)⊗ t10(484× 1× 1) 484× 3× 3 conv

ReLU

Conv11: 484 filters, each filter constituted as:

484× 3× 3 conv w11
.
= p11(1× 3× 1)⊗ q11(1× 1× 3)⊗ t11(484× 1× 1) 484× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

FC 1024 + Batch Normalization + ReLU

FC 512 + Batch Normalization + ReLU

FC 2

Soft-Max
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Table 4. Structure of CNN4 for CIFAR-100 dataset.

Standard CNN Proposed CNN

Conv1: 64 filters, each filter constituted as:

3× 3× 3 conv w1
.
= p1(1× 3× 1)⊗ q1(1× 1× 3)⊗ t1(3× 1× 1) 3× 3× 3 conv

Batch Normalization + ReLU + Drop Out (P = 0.5)

Conv2: 64 filters, each filter constituted as:

64× 3× 3 conv w2
.
= p2(1× 3× 1)⊗ q2(1× 1× 3)⊗ t2(64× 1× 1) 64× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

Conv3: 144 filters, each filter constituted as:

64× 3× 3 conv w3
.
= p3(1× 3× 1)⊗ q3(1× 3× 1)⊗ t3(64× 1× 1) 64× 3× 3 conv

Batch Normalization + ReLU + Drop Out (P = 0.4)

Conv4: 144 filters, each filter constituted as:

144× 3× 3 conv w4
.
= p4(1× 3× 1)⊗ q4(1× 1× 3)⊗ t4(144× 1× 1) 144× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

Conv5: 256 filters, each filter constituted as:

144× 3× 3 conv w5
.
= p5(1× 3× 1)⊗ q5(1× 1× 3)⊗ t5(144× 1× 1) 144× 3× 3 conv

Batch Normalization + ReLU + Drop Out (P = 0.4)

Conv6: 256 filters, each filter constituted as:

256× 3× 3 conv w6
.
= p6(1× 3× 1)⊗ q6(1× 1× 3)⊗ t6(256× 1× 1) 256× 3× 3 conv

Batch Normalization + ReLU + Drop Out (P = 0.4)

Conv7: 256 filters, each filter constituted as:

256× 3× 3 conv w7
.
= p7(1× 3× 1)⊗ q7(1× 1× 3)⊗ t7(256× 1× 1) 256× 3× 3 conv

Batch Normalization + ReLU + Max Pool ( 1
2 )

Conv8: 484 filters, each filter constituted as:

256× 3× 3 conv w8
.
= p8(1× 3× 1)⊗ q8(1× 1× 3)⊗ t8(256× 1× 1) 256× 3× 3 conv

Batch Normalization + ReLU+ Drop Out (P = 0.4)

Conv9: 484 filters, each filter constituted as:

484× 3× 3 conv w9
.
= p9(1× 3× 1)⊗ q9(1× 1× 3)⊗ t9(484× 1× 1) 484× 3× 3 conv

Batch Normalization + ReLU + Drop Out (P = 0.4)

Conv10: 484 filters, each filter constituted as:

484× 3× 3 conv w10
.
= p10(1× 3× 1)⊗ q10(1× 1× 3)⊗ t10(484× 1× 1) 484× 3× 3 conv

Batch Normalization + ReLU+Max Pool ( 1
2 )

484× 3× 3 conv w10
.
= p10(1× 3× 1)⊗ q10(1× 1× 3)⊗ t10(484× 1× 1) 484× 3× 3 conv

Batch Normalization + ReLU+ Drop Out (P = 0.4)

FC 2048 Batch Normalization + ReLU + Drop Out (P = 0.5)

FC 1024 + Batch Normalization + ReLU + Drop Out (P = 0.5)

FC 512 + Batch Normalization + ReLU + Drop Out (P = 0.5)

FC 100

Soft-Max
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Figure 6. Comparison of validation accuracies on the ‘Dog and Cat’ dataset.

Figure 7. Comparison of validation accuracies on the CIFAR100 dataset.

Figure 8. Comparison of validation accuracies on the CIFAR10 dataset with the ResNet structure.
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Figure 9. Comparison of validation accuracies on the CIFAR10 dataset with the proposed and the
standard training methods for the MobileNet.

Table 5. Comparison of accuracy and inference time between the different training methods with different architectures.
Mean and std. stands for average and standard deviation. The values in the inference times are the mean and the standard
deviation values, respectively, where the unit is second for the average value.

Architecture Method Accuracy Accuracy CPU Inference Time GPU Inference Time
Mean Std. Mean (sec) Std. Mean (sec) Std.

Standard 0.9888 8.01 ×10−4 0.01834 0.43 ×10−3 0.00242 1.38 ×10−5

CNN1 Type Flattened 0.9850 9.16 ×10−4 0.00931 0.25 ×10−3 0.00132 0.76 ×10−5

Proposed 0.9911 5.08 ×10−4 0.00931 0.25 ×10−3 0.00132 0.76 ×10−5

Standard 0.8422 4.19 ×10−3 0.01337 0.22 ×10−3 0.00178 1.01 ×10−5

CNN2 Type Flattened 0.7777 6.58 ×10−3 0.00732 0.18 ×10−3 0.00082 0.54 ×10−5

Proposed 0.8213 3.40 ×10−3 0.00732 0.18 ×10−3 0.00082 0.54 ×10−5

CNN3 Type Standard 0.9450 1.32 ×10−2 0.04490 1.22 ×10−3 0.00788 2.46 ×10−5

Proposed 0.9413 1.55 ×10−2 0.02452 1.07 ×10−3 0.00374 2.13 ×10−5

CNN4 Type Standard 0.5851 3.38 ×10−3 0.04383 1.21 ×10−3 0.00748 2.51 ×10−5

Proposed 0.5750 5.50 ×10−3 0.02371 1.15 ×10−3 0.00363 2.11 ×10−5

The number of operations reduced according to (12). So, for example, for the first
layer of the structure CNN3, the number of operations for the standard CNN and the
rank-1 (type-1) became Ix × Iy × Cout × fx × fy = 224× 224× 64× 3× 3 = 28,901,376 and
Ix × Iy × (Cout + fx + fy) = 224× 224× (64 + 3 + 3) = 3,512,320, respectively. Therefore,
the computation operations in the first convolutional layer in the CNN3 model was about
eight times more with the standard CNN. Table 6 summarizes the number of parameters
for the different models and structures. We also performed experiments on the inference
times for the different models on CPU and GPU environments, and recorded the values
in the fifth and sixth columns in Table 5. We used Tensorflow version 0.12.1 and ran it on
Window10 OS, with NVIDIA 1080Ti GPU, Intel i9 CPU and 16 GB RAM memory. It should
be noted that the Flattened model and the proposed model had the same inference speed
as the structures in the testing time werere the same. Compared to the reduction ratio of
the number of parameters, the increase in the inference speed was not that high, which is
mainly due to the fact that the Tensorflow framework was not optimized for factorized
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neural networks and that the loading of the image took a long time in the inference stage.
We believe that in the future, the speed of factorized filtering will increase with a framework
optimized for them.

Figure 8 compares the validation accuracies of the networks with ResNet structures
composed of standard 3-D filters and rank-1 3-D filters, respectively, where the rank-1
3-D filters were trained with the proposed training method. We used the 56-layer ResNet
structure for CIFAR10 as proposed in [50], and replaced all the standard 3-D filters by
rank-1 3-D filters in the ResNet in the experiments with the proposed training method.
As can be seen, the rank-1 ResNet trained with the proposed method achieved similar
validation accuracy to the normal ResNet, which shows that the proposed training method
can be applied to diverse network structures containing low-rank filters.

Table 6. Comparison of numbers of parameters in convolutional filters.

Standard CNN CNN1 CNN2 CNN3 CNN4

Standard CNN 1,415,232 825,408 9,258,480 9,222,768

Proposed 157,752 137,072 1,029,904 964,236

Reduction Ratio 11.1% 16.6% 11.1% 10.4%

Figure 10. Comparison of validation accuracies on the MNIST dataset.

Finally, Figure 9 compares the validation accuracies of the MobileNet when trained
with the normal method and with the proposed training method. We used the CNN4
structure and replaced all the 3-D convolution operations with the depth-wise separable
2-D convolutions + 1× 1 pointwise convolutions as suggested in the MobileNet structure.
It can be seen that the proposed training method could accelerate the training process and
achieved a better validation accuracy than the standard training method, which is due
to the intentional over-parametrization obtained by the outer product with the proposed
method. Figure 11 shows the means and the positive standard deviations of the validation
accuracies for different training sessions. It can be seen that the standard deviations at the
early epochs of the training with the standard training method were large, while with the
proposed training method the variation was not so large. However, after a long time of
training, the final validation accuracies all converged to a similar value for each training
session as shown by the standard deviation that decreased at the end of the training.
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Figure 11. Comparison of mean validation accuracies on the CIFAR10 dataset with the proposed and
the standard training methods for the MobileNet. (a) Mean validation accuracies of the proposed
training method (vertical bars show the positive standard deviation); (b) mean validation accuracies
of the standard training method (vertical bars show the positive standard deviation).

7. Conclusions

We proposed a training method which alternatively composes and decomposes the
filters in the training stage for better training of low rank filters. As an exemplary case,
we showed that a rank-1 CNN can be trained with the proposed method, which cannot be
trained with conventional training methods. We used 3-D rank-1 filters in convolutional
neural networks in the training phase, so that the redundancy in the filters are reduced by
the rank deficient property of the rank-1 filters. The proposed training method updates
the 3-D filter parameters and projects them back onto the rank-1 subspace at each epoch
to find good parameter values for the 1-D vectors which constitute the 3-D filters. At test
time, the trained 1-D vectors can be used directly as 1-D filters which filter the image
by 1-D convolution instead of the 3-D convolution for fast inference. We showed in the
experiments that the accuracy performance of the rank-1 CNN is almost the same as the
standard CNN while reducing the number of parameters up to about 11%, and the number
of operations up to about 12% in the convolution filters compared with the standard CNN.
We also showed that the proposed method can also be used in the ResNet structure and
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showed that the proposed training method can be utilized for a better training of the
MobileNet. This suggests the possibility that the proposed rank-1 training method can also
be used with diverse structures such as the ResNet or other small-sized networks, to obtain
a more efficient network structure.

In this paper, we applied the proposed training method to well-known deep learning
models that can be factorized. Whether the proposed training method can be applied to
other complicated models still leaves much room. Combining the proposed method with
the existing training method and applying it to other complex deep learning models can
be an additional topic of this study. Moreover, the experimental results showed that the
inference time was not reduced as much as the decrease in the number of parameters,
which is due to the fact that existing deep learning frameworks are not optimized for
factorized models. Therefore, in order to accelerate the inference speed, further studies on
hardware designs that can effectively adopt factorized models should be carried out in
the future.
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