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Abstract: This work deals with the control of power electronics converters. In that context, the
majority of the problems of interest can be translated into two main problems: stabilization control
problems and tracking control problems. Numerous methods exist in the literature to propose
solutions which are based on several ways of handling them in a more appropriate context: linear,
nonlinear, switching, and hybrid control, to cite the most important. In recent years, a considerable
effort has been made to derive control design methods taking into account the specificities and
properties of the complex behavior of these systems, going beyond the numerous techniques based
on approximated models or focused on the specific converter topology under study and, in that way,
making a step towards a desirable genericity level. It is the objective of this work to go a step further
trying to tackle the control of power converters in a unified way. The idea is to avoid, as much as
possible, the use of approximations and exploit all the mathematical properties of the associated
switched models. Writing them in a specific way, it is possible to deal with a lot of problems of
interest whose solutions are based on assumptions which are the expressions of some kind of practical
feasibility, and then closely related to the existence of solutions to the studied problems. In some
cases, the resulting controls have an inevitable complexity level which reflects one of the problems
under study. For such situations, the implementation issues are important and are not discussed in
details in this paper. The proposed methods are illustrated by numerical simulations conducted with
the help of PSIM software. This research work is decomposed into two parts, the first one focused on
stabilization problems is developed in this paper. The other one concerning the tracking problems
will be developed in a future paper.

Keywords: power converters; unified modeling; nonlinear control; power electronics

1. Introduction

Even if the control of power converters is a topic which soon interested the control
community [1–3], recent years have seen a renewed interest due to the increasing im-
portance of renewable energies, which are an alternative to the fossil ones, leading to a
compelling need of processing power energy provided by multiple available sources with
an adequate efficiency level [4–6]. In that context, power converters play a central role and,
motivated by the significant recent progresses done in the domain of materials, electronic
devices or components [7,8], as well as in the one of control of switched or more generally
hybrid systems [9,10], several new perspectives exist to easily address, at least from a
theoretical point of view, problems whose solutions are difficult to obtain by the use of
standard techniques more or less well suited.

Indeed, power converters are switched systems that can be handled in several ways,
but the discontinuous nature of their operation is a source of complexity which is not easy
to capture by the standard mathematical tools. A general model describing a large class of
power converters is a bilinear differential model whose state, composed of currents and
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voltages, belongs to a finite dimensional vector space and the control variables associated
with the switches devices belong to a finite discrete set [1]. In many practical cases, for ex-
ample for DC-DC converters, the objective is to maintain the system around an equilibrium
state. In such a situation, a possible approach consists in deducing an averaged model
which, although bilinear, exhibits constrained continuous control variables allowing the use
of all the methods developed for nonlinear systems (feedback linearization, sliding mode,
flatness, and passivity (see, e.g., [11] and references therein)). To go a step further in the
simplification of the control design problem, it is possible to linearize the averaged bilinear
model around a desired operation state and invoke the powerful robust linear control
design techniques (see, e.g., [12–14]). Among the main limitations of these approaches, we
can point out a difficulty to quantify the precision of the resulting approximations and the
fact that the deduced control laws are, in general, only valid locally. The control design
problem is more complicated for the DC-AC converters where the objective is to enforce
the output of the converter to follow a given reference, for example a sinusoidal signal
whose frequency and amplitude are a priori prescribed. In that case, the associated control
design problem can be formulated as a tracking problem [2] for which a solution with
qualified properties, e.g. stability and performances, is not so easy to determine.

Recently, some efforts have been made to propose efficient control design techniques for
switched systems, a subclass of hybrid systems whose control is a switching rule that selects,
at each instant of time, a mode within a set of possible modes, each of them representing
a dynamical subsystem [9,10]. These techniques, well adapted for taking into account the
explicit discontinuous nature of the dynamics of power converters, have been successfully
applied to the control of DC-DC converters. Among the numerous works, we can cite [15–18],
where the problem is formulated in terms of a switched system whose modes are described
by affine differential models. It is possible to show that the obtained switching rules can
be interpreted, in general, as sliding mode control laws with sliding surfaces implicitly
determined in terms of state space variables and whose stability properties are proven without
invoking the equivalent control paradigm [19], the application of which, in that context, may
not be so easy. To constrain the resulting switching frequency to adequate values regarding
semiconductor limitations, some of these results have been extended to take into account
these specific and important implementation constraints [18,20]. In [18], a sampling time is
explicitly introduced. In [20], the problem translated into the hybrid model paradigm [10] is
solved through time or space regularization approaches. The models used in all the works
described above are closely related to the one developed in this paper. They belong to the
class of polytopic and switched models more recently investigated (see, e.g., [17,21–23]).

The main objective of this work is to propose a generic way for solving several control
problems of interest associated with a large class of power converters. The idea is to
formulate these problems in a general setting and propose solutions which are justified
and qualified from a theoretical point of view using efficient theoretical and numerical
tools. A crucial step consists in manipulating the original bilinear converter model in
a way to allow exhibiting a constant dynamical matrix (i.e., independent of the control
variable). The resulting model is closely related to the switched model considered in
the literature (e.g, [15,17]), but the main difference, which could appear as a detail but
is central, resides in the possibility of writing the dynamical equation as a sum of a first
term, linear with respect to the state, and a second one, which is a bilinear matrix function
of the state and control variables. Moreover, the matrix associated with the linear part is
Hurwitz. This important particularity allows solving control problems which cannot be
easily solved when considering the original switched model. Associated with the modified
switched model, it is also possible to define a relaxed model whose control variables are
continuous and belong to the interval [0, 1]. Among the main properties of this relaxed
model, the following ones are central. Firstly, the model is convex with respect to the
control variables. Secondly, the solution set of initial value problems of the switched
model (trajectories) is dense in the solution set of initial value problems of the relaxed
one for the C0 Whitney topology on the infinite interval [0, ∞) [24,25]. This last property
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is very important from a practical point of view. It means that a trajectory of the relaxed
model can be arbitrarily approached by a trajectory of the switched one. A similar result is
obtained in [26], where the connection between the two systems is used to solve optimal
control problems. In the context of power converters, a control law developed from the
relaxed model can be translated into a control compatible with the switched model using,
for example a Pulse Width Modulator (PWM) of appropriate frequency or a hysteresis
device [27]. This specificity can also be used to transform a variable frequency control into
a control of a fixed desired frequency, simply by appropriately filtering the first one to
deduce its associated duty-cycle, used after as the input of a PWM. Some care has to be
taken to prevent undesirable effects such as steady state errors (see [28] for details). Finally,
the approaches proposed in this paper could be extended in the context of hybrid model
paradigm proposed in [20] with the associated time and space regularization techniques.
This extension is not considered in this work and could be addressed in a near future. Due
to space limitation, the case of stabilization and tracking problems is treated in two separate
papers. The present paper deals with control laws design closely related to stabilization
problems. It is organized as follows.

The next section introduces the main assumptions and the different steps which
lead to the general switched model considered in this paper. Intimately related to it, the
relaxed model is also introduced and their relation is quickly invoked. Section 3 deals
with the important problem of stabilization of a given equilibrium state. An important
assumption is central for deriving the main result of the section. It is shown that this
assumption is automatically satisfied for a large class of power converters, at least for
the ones considered in all the works invoked above. Two important extensions of the
stabilization problem are also proposed. In the first one, an integral action is added to
reject some constant perturbations. The cases of a constant perturbation affecting the input
voltage or a constant variation of the output load can be rejected using this approach
for perturbations of a reasonable amplitude. The second one considers the rejection of
measurable perturbations. The cases of perturbations affecting input voltage or output load
can be considered as measurable if a voltage or a current sensor is added to the converter.
Then, the stabilization control law can be modified to take into account the information
concerning the perturbations. The end of the section is devoted to numerical experiments
which illustrate the potential of the proposed control laws for a boost converter. The paper
ends with a short conclusion giving some lines of future research.

Notations: The notations are quite standard. Along the paper, matrices of appropriate
dimensions are denoted by capital letters. R denotes the set of real numbers, R ≥ 0 (R ≥ 0)
denotes the set of positive real numbers (strictly positive real numbers). For a symmetric
matrix P, P < 0 (P ≤ 0) means that P is negative definite (negative semidefinite). P > 0
means that symmetric matrix P is positive definite (i.e., −P < 0). For matrices A and
B, A < B means that A− B < 0. For a matrix A or a vector y, AT and yT denote their
transposes. The Euclidian norm of a vector y is denoted by |y|. The matrix denoted by
diag(A1, A2, . . . , AN) is a block diagonal matrix whose diagonal blocks of appropriate
dimensions are A1, A2, . . ., AN . I denotes the identity matrix of appropriate dimensions

2. A Generalized Converter Model

The main assumptions concerning the converters under study can be summarized as
follow

(i) The circuits are composed of inductors, capacitors, resistors, diodes, and semiconduc-
tor switches.

(ii) The circuits are fed by voltage sources and fed loads of constant resistance, current, or
power nature.

(iii) The converters is assumed to be operating in continuous conduction mode (CCM).
(iv) The different controlled semiconductor switches can be replaced by an association of

appropriate variables ui, which take values 0 and 1 (open and closed, respectively).
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(v) If we need m variables ui to describe the circuit operation, we have 2m configurations,
each of them represented by a passive circuit.

If these assumptions are met, a general model for a converter can be expressed by the
following differential system

dx(t)
dt

= (A0 +
m
∑

i=1
ui(t)Aui )x(t) + (B0 +

m
∑

i=1
ui(t)Bui )vin(t)

y(t) = (C0 +
m
∑

i=1
ui(t)Cui )x(t)

(1)

where variables and matrices are defined as follows

- x(t) ∈ Rn is the state-vector essentially composed of inductor currents and capacitor
voltages.

- y(t) ∈ Rp is the output vector.
- ui(t) is a variable associated to the ith switch, ui = 0 (open or off) or 1 (closed or

on), i = 1, ..., m, which correspond to control inputs.
- A0, B0, C0, Aui , Bui , and Cui , i = 1, ..., m are constant matrices of appropriate dimen-

sions.
- vin(t) is a voltage source (when vin(t) is a constant voltage, we replace vin(t) by Vin).

A0 is supposed to be Hurwitz. As is shown below, this assumption is not restrictive
for almost all the converters of interest. We also introduce the following matrices associated
with a configuration of variables u1u2...um.

Au1(t)u2(t)...um(t) =
m

∑
i=1

ui(t)Aui , Bu1(t)u2(t)...um(t) =
m

∑
i=1

ui(t)Bui , Cu1(t)u2(t)...um(t) =
m

∑
i=1

ui(t)Cui (2)

Model (1) introduced in [1] is nonlinear, more precisely bilinear, the control is discrete
and belongs to the set {0, 1}m. To solve many control problems based on model (1), it is
possible to write it in a more appropriate way. To obtain such a model, remark that matrix
Au1(t)u2(t)...um(t) can also be written as

Au1(t)u2(t)...um(t) = (1− u1(t))(1− u2(t))...(1− um(t)) A00...0

+(1− u1(t))(1− u2(t))...um(t) A00...01

+(1− u1(t))(1− u2(t))...(1− um−2(t))um−1(t)(1− um(t)) A00...010

+(1− u1(t))(1− u2(t))...(1− um−2(t))um−1(t)um(t) A00...011

+(1− u1(t))(1− u2(t))...um−2(t)(1− um−1(t))(1− um(t)) A00...0100

+(1− u1(t))(1− u2(t))...um−2(t)(1− um−1(t))um(t) A00...0101 + · · ·

(3)

Define the following auxiliary functions

λ1(t) = (1− u1(t))(1− u2(t))...(1− um(t))
λ2(t) = (1− u1(t))(1− u2(t))...um(t)
λ3(t) = (1− u1(t))(1− u2(t))...(1− um−2(t))um−1(t)(1− um(t))
λ4(t) = (1− u1(t))(1− u2(t))...(1− um−2(t))um−1(t)um(t)
λ5(t) = (1− u1(t))(1− u2(t))...um−2(t)(1− um−1(t))(1− um(t))
λ6(t) = (1− u1(t))(1− u2(t))...um−2(t)(1− um−1(t))um(t)

...
λ2m(t) = u1(t) u2(t)...um−2(t) um−1(t) um(t)

(4)

and associated with each of them, the following matrices are defined

A1 = A00...0 = 0, A2 = A00...01, A3 = A00...010, A4 = A00...011, A5 = A00...0100, · · · , A2m = A11...1 (5)
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We can remark that Ai = Abin(i−1) where bin(i− 1) is the 2m-digits binary expression
of i− 1. Functions λi(t) have the following important property:

2m

∑
i=1

λi(t) = [1− u1(t) + u1(t)][1− u2(t) + u2(t)] · · · [1− um(t) + um(t)] = 1 (6)

Doing the same for matrices Bu1(t)u2(t)...um(t) and Cu1(t)u2(t)...um(t), a new expression for
model (1) is obtained as

dx(t)
dt

= (A0 +
M
∑

i=1
λi(t)Ai)x(t) +

M
∑

i=1
λi(t)Bivin(t)

y(t) = (C0 +
M
∑

i=1
λi(t)Ci)x(t)

(7)

where M = 2m, λ(t) =
[

λ1(t) · · · λM(t)
]T ∈ ΛS, ΛS being defined as

ΛS =

{
λ ∈ {0, 1}M :

M

∑
i=1

λi = 1

}
(8)

Noting that, for λ ∈ ΛS, B0 =
M
∑

i=1
λiB0, matrix B0 has been included in matrices Bi.

Remark 1. As previously done for B0, matrices A0 and C0 can be included in matrices Ai and Ci,
respectively. In that case, model (7) becomes

dx(t)
dt

=
M
∑

i=1
λi(t)Aix(t) +

M
∑

i=1
λi(t)Bivin(t)

y(t) =
M
∑

i=1
λi(t)Cix(t)

(9)

where λ : R→ ΛS. This model has previously been considered in works related to power converters
(see, for example, [15,17]). Finally, it is possible to write the previous model in another classical
form corresponding to what is called a "switched model" [15,18], given by dx(t)

dt
= Aσ(t)x(t) + Bσ(t)vin(t)

y(t) = Cσ(t)x(t)
(10)

where σ(t) is the switching control strategy defined by

σ : R → {1, 2, · · · , M}
t → σ(t) = i

(11)

Remark 2. Model (7) can represent numerous converters of interest. Indeed, when vin(t) and
y(t) are DC voltages, the converter is a DC-DC converter. If y(t) is an AC voltage and vin(t) is a
DC one, the converter is a DC-AC converter. If vin(t) is an AC voltage, depending on the nature
of y(t), the converter will be an AC-DC or an AC-AC converter. It is possible to extend all the
considered models to the case of multi-sources. In that case, vin(t) is a vector whose dimension is
equal to the number of sources. However, for simplicity, only mono-source converters are considered,
the extension to multi-sources converters being possible without any difficulty.

As is shown below, the advantage of model (7) is to propose a decomposition of the
dynamical equation as a sum of a linear term and a bilinear matrix function of state and
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control variables x and λ. This specificity suggests writing model (7) in the following form,
more adapted to deal with the control design problems investigated in the sequel:

dx(t)
dt

= A0x(t) +
M
∑

i=1
Bi(x(t), vin(t))λi(t)

y(t) = C0x(t) +
M
∑

i=1
Di(x(t))λi(t), λ : R→ ΛS

(12)

where Bi(x(t), vin(t)) = Aix(t) + Bivin(t) and Di(x(t)) = Cix(t). For simplicity, when
vin(t) = Vin, we denote Bi(x(t), vin(t)) by Bi(x(t)). As pointed out above, the model is
bilinear with a discrete control belonging to ΛS. An associated relaxed or embedded model
can be defined as follows:

dx(t)
dt

= A0x(t) +
M
∑

i=1
Bi(x(t), vin(t))λi(t)

y(t) = C0x(t) +
M
∑

i=1
Di(x(t))λi(t), λ : R→ ΛR

(13)

where now

ΛR =

{
λ ∈ [0, 1]M :

M

∑
i=1

λi = 1

}
(14)

There is a close connection between models (12) and (13). As developed in [25], for
arbitrary close initial conditions, the solution set of initial value problems of (12) is dense in
the solution set of initial value problems of (13) for the C0 Whitney topology on the infinite
interval [0, ∞). More precisely, there exist approximating trajectories of (12), of a given
trajectory of (13), approximations in the weighted norm [0, ∞), | f (t)| = supt≥0{| f (t)|r(t)}
where r : R≥0 → R>0. This result is of importance for practical applications because it
is possible to connect controls designed from models (12) and (13). A trajectory of (13)
can be arbitrarily approached by a trajectory of (12). A practical way can be to average a
control developed from (12) leading to a control applicable for (13). Inversely, a control
law developed from model (13) can be translated into a control compatible with model
(12) using, for example, a PWM or a hysteresis comparator. Some care has to be taken to
prevent some undesirable effects [28]. These connections and other ones are discussed in
details, for example, for linear switched systems, in [29]. However, here, the important
difference is that the modes are affine.

3. Stabilization Problem

In this section, we suppose that vin(t) = Vin. In practical situations, one of the common
stabilization problems is to maintain voltage and currents around some specific values.
Strictly speaking, defining a classical notion of equilibrium state for systems described
by model (12) is meaningless. By contrast, it is possible to define equilibrium points for
system described by model (13). Because its trajectories can be arbitrarily approximated by
the ones of model (12), the set of equilibrium points associated with (13) is of a particular
interest for controls designed from model (12). These relations are particularly analyzed
in [30] where the notion of solution for (12) is discussed (Caratheodory, Filippov’s solutions,
etc.). Introduce the following notations:

B0(x) =
[

B1(x(t)) · · · BM(x(t))
]

and D0(x) =
[

D1(x(t)) · · · DM(x(t))
]

(15)

The set of equilibrium points associated with (13) can be expressed as

Xeq = {xe ∈ Rn, λe ∈ ΛR : A0 xe + B0(xe)λe = 0} (16)
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and model (12) is given by dx(t)
dt

= A0x(t) + B0(x(t))λ(t)

y(t) = C0x(t) + D0(x(t))λ(t) λ : R→ ΛS

(17)

Associated with each xe ∈ Xeq, we can define an output ye. The set of admissible
outputs is given by

Yeq =
{

ye ∈ Rp, xe ∈ Xeq, λe ∈ ΛR : ye = C0 xe + D0(xe)λe
}

(18)

Related to the practical problem of interest, a boost or buck property of the converter
can be invoked. In general, such a property is associated with the gain G(λe) between
the voltage Vin and an admissible output ye. Then, the set of the admissible gains of the
converter G(λe) can be defined as follows

ye = G(λe)Vin where G(λe) ∈ Geq (19)

with

Geq =

G(λe) ∈ Rp, λe ∈ ΛR : G(λe) = −
[

M

∑
i=1

λei(C0 + Ci)

][
M

∑
i=1

λei(A0 + Ai)

]−1[ M

∑
i=1

λeiBi

] (20)

Assumption A1. We consider that voltage and currents are accessible for measurements; thus, the
complete state is measurable for control.

Consider an equilibrium point xe ∈ Xeq and introduce the error signal

e(t) = x(t)− xe (21)

Then, the stabilization problem can be defined as follows:

Problem 1. Design a control law λ : R→ ΛS, such that, for any initial condition e(0) ∈ Rn,
the error dynamic is asymptotically stable, ensuring that

lim
t→∞

e(t) = 0 (22)

and, for all t > 0, the error e(t) is bounded implying that the state x(t) is also bounded with

lim
t→∞

x(t) = xe (23)

3.1. Main Result

The error dynamic is given by

de(t)
dt = dx(t)

dt = A0x(t) + B0(x(t))λ(t)
= A0e(t) + [B0(x(t))λ(t) + A0xe]
= A0e(t) + [B0(x(t))λ(t)− B0(xe)λe]

(24)

Because A0 is Hurwitz, given a positive definite symmetric matrix Q ∈ Rn×n, there
always exists a positive definite symmetric matrix P ∈ Rn×n satisfying the following
Lyapunov inequality

AT
0 P + PA0 + 2Q < 0 (25)

To solve the stabilization problem, we introduce the following important assumption.
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Assumption A2. Given xe ∈ Xeq and x(t) ∈ Rn, x(t) 6= xe, there exist λ(t) ∈ ΛR, ΛR defined
in (14) and a positive definite symmetric matrix Q1, 0 < Q1 ≤ Q such that

e(t)T P[B0(x(t))λ(t)− B0(xe)λe] < −e(t)T PA0e(t)− e(t)TQ1e(t) (26)

Assumption A2 ensures that there exists a control λ : R → ΛR which stabilizes the
equilibrium point xe for (13). This assumption is always satisfied for a large class of
converters, as shown in the following lemma.

Lemma 1. We have the following properties:

(i) For a given positive definite symmetric matrix Q, suppose that there exists a positive definite
symmetric matrix Sλe ∈ Rn×nsuch that

M

∑
i=1

λei (A0 + Ai)
TSλe + Sλe

M

∑
i=1

λei (A0 + Ai) + 2Q < 0,
M

∑
i=1

λei = 1 (27)

Then, Assumption A2 is satisfied with P = Sλe .
(ii) For a given positive definite symmetric matrix Q, suppose that there exists a positive definite

symmetric matrix S ∈ Rn×nsuch that

(A0 + Ai)
TS + S(A0 + Ai) + 2Q < 0, i = 1, . . . , M (28)

Then, Assumption A2 is satisfied with P = S.

Proof. Suppose (27) is satisfied by a matrix Sλe . Then,

eTSλe [B0(x)λ− B0(xe)λe] = eTSλe [B0(x)(λ− λe) + (B0(x)− B0(xe))λe]

= eTSλe [B0(x)(λ− λe) +
[

A1e · · · AMe
]
λe]

= eTSλe B0(x)(λ− λe) + eTSλe

M

∑
i=1

λei (A0 + Ai)e− eTSλe A0e

For λ = λe, we have

eTSλe A0e + eTSλe [B0(x)λe − B0(xe)λe]) = eTSλe

M

∑
i=1

λei (A0 + Ai)e < −eTQe (29)

from (27). By continuity arguments, there always exists a neighborhood of λe such that

eTSλe A0e + eTSλe [B0(x)λ− B0(xe)λe]) = eTSλe

M

∑
i=1

λei (A0 + Ai)e + eTSλe B0(x)(λ− λe) < −eTQe (30)

then Assumption A2 is satisfied and (i) follows. The proof of (ii) is obtained remarking
that, if S satisfies (28), it satisfies (27) for all λe ∈ ΛR, meaning that condition (28) is stronger
than condition (27).

We remark that, in Lemma 1, Assumption A2 is satisfied for a matrix Sλe or S satisfying,
respectively, inequalities (27) or (28). Such non-unique matrices can be found using an
LMI solver. An important fact is that, in the context of Lemma 1, the existence of λ
satisfying Assumption A2 is independent of the selected matrices Q and Sλe (or S), only the
satisfaction of (27) or (28) being needed. However, it is possible to select them to guarantee
some optimality properties, as shown below. It is also worth remarking that, if there exists
a matrix S satisfying (28), it also satisfies (25). This can be deduced by remarking that
A1 = 0. However, the converse is not true: a matrix P satisfying (25) might not satisfy (28).
Moreover, a solution (25) may not be a solution of (27) and conversely a solution of (27)
may not be a solution of (25). An interesting question is: Are there systems described by (1)
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which do not satisfy conditions of Lemma 1, but satisfy Assumption A2? It is not easy to
answer such a question because checking whether Assumption A2 is satisfied is a difficult
task due to its dependence with respect to the state of the system. We introduce now a key
lemma, important for deriving the main result of this section.

Lemma 2. Consider xe ∈ Xeq and matrix P solution of (25). Suppose that Assumption A2 is
verified. Then, we have

min
λ∈ΛS

eT(t)P[A0e(t) + B0(x(t))λ + A0xe] < −e(t)TQ1e(t) (31)

Proof. We have by convexity

min
λ∈ΛS

eT(t)P[A0e(t) + B0(x(t))λ + A0xe] = min
λ∈ΛR

eT(t)P[A0e(t) + B0(x(t))λ + A0xe]

= e(t)T PA0e(t) + min
λ∈ΛR

e(t)T P[B0(x(t))λ + A0xe]

= eT(t)PA0e(t) + min
λ∈ΛR

e(t)T P[B0(x)λ− B0(xe)λe]

< −e(t)TQ1e(t) by assumption A2

(32)

The main result of this section can now be stated. Its simple proof results from the
above lemma.

Theorem 1. Consider the system (12), xe ∈ Xeq and matrix P solution of (25). Suppose that
Assumptions A1 and A2 are satisfied. The control λ(t) defined by

λ(t) = arg
{

min
d∈ΛS

eT(t)P[A0e(t) + B0(x(t))d + A0xe]

}
(33)

solves Problem 1. In addition, the error signal satisfies

J(e) =
∫ ∞

0
eT(t)Q1e(t)dt ≤ 1

2
eT(0)Pe(0) (34)

Proof. Consider the Lyapunov function V(e(t)) = 1
2 eT(t)Pe(t). Then,

dV(e(t))
dt

= e(t)T P
de(t)

dt
= e(t)T P(A0e(t) + B0(x(t))λ(t) + A0xe) (35a)

= min
d∈ΛS

[
e(t)T P(A0e(t) + B0(x(t))d + A0xe

]
(35b)

< −e(t)TQ1e(t) by Lemma 2. (35c)

Since
dV(e)

dt
< 0 for all e 6= 0, we conclude that lim

t→∞
e(t) = 0. Now, integrating (35c)

from zero to infinity and taking into account that V(e(∞)) = 0, we obtain (34).

Remark 3. - When m = 1, the control proposed in the previous theorem can be formulated in
a simple way. This case is particularly important because it corresponds to the important class
of converters controlled by one variable. Several converters belong to this class. The matrix
B0(x(t)) and the control λ(t) are then given by

B0(x(t)) =
[

B1(x(t)) B2(x(t))
]
, λ(t) =

[
λ1(t) λ2(t)

]T (36)

Theorem 1 leads to the following corollary whose simple proof is omitted.
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Corollary 1. Consider the system (1) with m = 1 and suppose that Assumptions A1 and A2
are satisfied. Then, the control

If eT(t)P[(A2 − A1)x(t) + (B2 − B1)Vin] > 0 then λ(t) =

[
1
0

]
or u(t) = 0

If eT(t)P[(A2 − A1)x(t) + (B2 − B1)Vin] ≤ 0 then λ(t) =

[
0
1

]
or u(t) = 1

(37)

solves Problem 1.

- The control can also be written as

λ(t) = arg
{

min
d∈ΛS

eT(t)P[A0e(t) + B0(x(t))d + A0xe]

}
= arg

{
min
d∈ΛS

eT(t)PB0(x(t))d
}

(38)

- From inequality (34), we see that an over bound of the integral of error depends explicitly on
matrix P. To go in the sense of a minimization of the integral of error, a possible way could be
to minimize the trace of P under the constraint (25). The resulting optimization problem is an
LMI optimization problem which can be solved by efficient numerical tools.

To end with this paragraph, note that, if (28) is satisfied, the control proposed in
Theorem 1 whose alternate expression is given in the previous remarks, can be simplified.
Indeed, to deduce λ(t), quadratic expressions with respect to the current state x(t) must be
evaluated. In fact, if (28) is satisfied, such expressions can be replaced by linear expressions
with respect to the state simplifying drastically the control implementation. In that case,
the following corollary can be proved.

Corollary 2. Consider xe ∈ Xeq and matrix P satisfying (28). The control λ(t) defined by

λ(t) = arg
{

min
d∈ΛS

e(t)T PB0(xe)d
}

(39)

solves Problem 1. In addition, the error signal satisfies

J(e) =
∫ ∞

0
e(t)TQ1e(t)dt ≤ 1

2
e(0)T Pe(0) (40)

Proof. Consider the Lyapunov function V(e) = 1
2 e(t)T Pe(t). Then,

dV(e)
dt = e(t)T P de(t)

dt = e(t)T P[A0e(t) + B0(x(t))λ(t)− B0(xe)λe]
= e(t)T P[A0e(t) + B0(x(t))λ(t)− B0(xe)λe]

(41)

Note that we have

A0e(t) =
[

A0e(t) A0e(t) . . . A0e(t)
]


d1
d2
...

dM

,
M

∑
i=1

di = 1

B0(x(t))d =
[

A1x + B1Vin A2x + B2Vin . . . AMx + BMVin
]


d1
d2
...

dM
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and

e(t)T P[A0e(t) + B0(x(t))d + A0xe] = e(t)T P
[

(A0 + A1)e(t) (A0 + A2)e(t) . . . (A0 + AM)e(t)
]
d

+ e(t)T P(
[

A1xe + B1Vin A2xe + B2Vin . . . AMxe + BMVin

]
d− B0(xe)λe)

Then,

dV(e)
dt = e(t)T P[A0e(t) + B0(x(t))λ(t) + A0xe]

= e(t)T P
[

(A0 + A1)e(t) (A0 + A2)e(t) . . . (A0 + AM)e(t)
]
λ(t)

+ mind∈ΛS e(t)T P[B0(xe)d − B0(xe, )λe]

= e(t)T P
[

(A0 + A1)e(t) (A0 + A2)e(t) . . . (A0 + AM)e(t)
]
λ(t)

+ mind∈ΛS e(t)T PB0(xe)(d− λe)

≤ e(t)T P
[

(A0 + A1)e(t) (A0 + A2)e(t) . . . (A0 + AM)e(t)
]
λ(t)

< −e(t)TQe(t)

(42)

by (28) and convexity arguments. The last part of corollary can be proved as for
Theorem 1.

To summarize the developments of this section, the stabilization problem can be
solved following the main steps described below

1. From the elementary electrical equations describing the converter operation, derive
the bilinear model (1).

2. It is then possible to compute matrices Ai, Bi and Ci of the polytopic model (7).
3. Compute a matrix P solution of (25). This can be done for example using the efficient

techniques developed in the LMI-toolbox of MATLAB. A solution always exists.
4. The control expression is then deduced from Theorem 1.

To simplify the control expression following the lines of Corollary 2, it is necessary to
replace matrix P of Step 3 by a matrix P solution of (28). A solution P can be computed
using the LMI toolbox of MATLAB.

3.2. Integral Action

The control developed in the previous section allows stabilizing the converter around
a desired equilibrium point but, in practical applications, as expected, it cannot reject
disturbances on the input voltage or the load or cope with uncertainties. To take them into
account, at least for perturbations of "reasonable amplitude", a cascade control structure
can be implemented using an outer voltage proportional-integral (PI) control providing the
reference of the inner loop. When the internal loop controller is nonlinear (e.g., a sliding
mode control), a linear approximation of the closed-loop system is derived and the linear
control methods can be used to design a PI control loop [14]. Here, we show how the
stabilization control can be extended to deal with the design of a PI control. An integrator
is added at the output of the system leading to an additional state equation written as

dxI(t)
dt

= y(t)− yre f (43)

where yre f ∈ Yeq is the constant vector of output reference signal and Yeq is defined by (18).
The extended state-space model obtained by taking X(t) =

[
x(t) xI(t)

]T as state vector

is given by  dX(t)
dt

= AX 0(t) + B0(X(t))λ(t) +HXe +He

y(t) = C0X(t) +D0(X(t))λ(t)
(44)
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where

A0 =

 A0 0

C0 0

, B0(X(t)) =

[
B0(x(t))
D0(x(t))

]
, H =

[
0 0
−C0 0

]
, He =

[
0

−D0(xe)λe

]

C0 =
[

C0 0
]
, D0(X(t)) = D0(x(t)), Xe =

[
xe

xIe

]
, xIe ∈ Rp

(45)

Note that, for all xIe ,∈ Rp

[
A0 0

C0 0

][
xe
xIe

]
+

[
B0(xe)
D0(xe)

]
λe +

[
0 0
−C0 0

][
xe
xIe

]
+

[
0

−D0(xe)λe

]
= 0 (46)

Then, the set of equilibrium points for model (44) is defined as

Xe =

{
Xe =

[
xe
xIe

]
∈ Rn+p, λe ∈ ΛR : A0Xe + B0(Xe)λe +HXe +He = 0

}
(47)

If Xe ∈ Xe and the error signal is defined as

eI(t) = X(t)− Xe

we have

deI(t)
dt

=
dX(t)

dt
= A0X(t) + B0(X(t))λ(t) +HXe +He = A0eI(t) + B0(X(t))λ(t)−B0(Xe)λe (48)

Define the following LMI optimization problem

δmax = Arg
[

max
δ>0

δ

]

under


AT

0 P + PA0 − δ
(

A−1
0

)T
CT

0 C0 − δCT
0 C0 A−1

0 + 2Q < 0

P =

 P −δ
(

A−1
0

)T
CT

0

−δC0 A−1
0 δI

 > 0

(49)

being P and Q the matrices involved in (25). Optimization problem (49) always has a
solution because, by continuity arguments, there always exists a neighborhood of 0, e.g., ∆,
such that, for all δ ∈ ∆, the constraints of problem (49) are satisfied if (25) is satisfied. In
fact, optimization problem (49) allows the determination of the maximal set ∆, denoted
as ∆max and defined by ∆max = [0, δmax]. To extend the stabilization problem taking into
account an integral action, introduce the following assumption that, in that context, is very
similar to Assumption A2. First, introduce the following matrix

Q =

[
Q 0
0 0

]
(50)

Assumption A3. Given Xe ∈ Xe and X(t) ∈ Rn+p, X(t) 6= Xe, there exist λ(t) ∈ ΛR and a
positive definite symmetric matrix Q1, 0 < Q1 ≤ Q such that

eI
T(t)P [B0(X(t))λ−B0(Xe)λe] ≤ −eI

T(t)AT
0PeI(t)− eI

T(t)QeI(t) (51)
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We can state the following lemma involved in the proof of the main result of this para-
graph.

Lemma 3. Consider Xe ∈ Xe and matrix P obtained from optimization problem (49). Suppose
that Assumption A3 is satisfied. Then,

(i) For all 0 < δ ≤ δmax, the matrix P = PT > 0 verifies

AT
0P + PA0 + 2Q ≤ 0 (52)

(ii) We have

min
λ∈ΛS

eT
I (t)P [A0eI(t) + B0(X(t))λ +A0Xe +HXe +He] ≤ −eT(t)Q1e(t) (53)

Proof. (i) is obtained by direct substitution and (ii) by arguments similar to those for
Lemma 2.

An important remark is that, if conditions of Lemma 2 are satisfied, they are sufficient
to guarantee that Assumption A3 is also satisfied; then, we can conclude that Assumption
A3 is satisfied for a large class of power converters. This fact results from the structure of As-
sumption A3 being very similar to the one of Assumption A1. The main theorem providing
a solution to the stabilization problem with integral action can now be introduced.

Theorem 2. Assumptions A1 and A3 are satisfied. Then, for all 0 < δ ≤ δmax, the control

λ(t) = arg
{

min
d∈ΛS

eT
I (t)P [A0eI(t) + B0(X(t))d +A0Xe +HXe +He]

}
(54)

is such that the states of system (44) are bounded and we have

lim
t→∞

x(t) = xe

Consequently, lim
t→∞

y(t) = yre f .

Proof. Consider the Lyapunov function V(eI(t)) = 1
2 eT

I (t)PeI(t). Then

dV(eI(t))
dt

= eT
I (t)P

deI(t)
dt

= eI(t)TP(A0eI(t) + B0(X(t))λ(t) +A0Xe +HXe +He)r (55a)

= min
d∈ΛS

[
eT

I (t)P(AeI(t) + B0(X(t))d +A0Xe +HXe +He

]
(55b)

≤ −eT
I Q1eI by Lemma 3. (55c)

Define the sets

ΩV̇ =
{

eI ∈ Rn+p : V̇(eI) = 0
}

, ΩQ1 =
{

eI ∈ Rn+p : eT
I Q1eI = 0

}
(56)

A basis of ΩQ1 is given by
[

0 I
]T . If, for eI ∈ Rn+p, we have V̇(eI) = 0, then

eT
I Q1eI = 0. To show it, we proceed by contradiction. Suppose that, for eI ∈ Rn+p such

that V̇(eI) = 0, we have eT
I Q1eI 6= 0. Then, by (55c), V̇(eI) < 0 which is a contradiction.

Then, V̇(eI) = 0 implies eT
I Q1eI = 0 and ΩV̇ ⊆ ΩQ1 . The largest invariant set contained in

ΩV̇ is also included in ΩQ1 . By the Lasalle principle [31], we have

lim
t→∞

eI(t) =
[

0
xIe

]
(57)
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for some xIe and then lim
t→∞

x(t) = xe.

Remark 4. (i) The control of Theorem 2 can also be written as

λ(t) = arg
{

min
d∈ΛS

eT
I (t)PB0(X(t))d

}
(58)

(ii) When m = 1, Control (4) is expressed as

If

 x(t)− xe∫ t

0
(y(t)− yre f )dt

T

P
[

(A2 − A1)x(t) + (B2 − B1)Vin
(C2 − C1)x(t)

]
> 0

Then, λ(t) =
[

1
0

]
or u(t) = 0

Otherwize λ(t) =
[

0
1

]
or u(t) = 1

(59)

The main steps to design an integral control are summarized as follows:

1. Apply the three first steps of the stabilization control design procedure.
2. Then, the matrices of the extended model (44) can be easily deduced.
3. The extended matrix P is obtained solving the LMI optimization problem (49). This

problem always has a solution.
4. The control is defined by (58).

3.2.1. Rejection of a Measured Perturbation

In practical problems, a converter is affected by two main disturbances: the changes in
the output load (load disturbance) and the changes in the input voltage (line disturbance).
The problem of rejection of perturbations is a problem extensively studied in the control
design literature. Many approaches exist and, among them, we can cite, for example, the
ones based on robust transfer matrix norm minimization [32] or on the use of some kind of
adaptation schemes consisting in reconstructing a signal of interest used appropriately by
the controller [17,33]. In addition, it is important to mention the techniques of robust design
to synthesize a unique controller able to operate in a wide range of their main variables
involving disturbances [14]. Here, we suppose that perturbations are measurable and that
these measures can be used by the control. For the previously evoked example, a current
sensor can provide information that the control law strategy can use. When a perturbation
affects the converter, the model (1) is rewritten as

dx(t)
dt

= (A0 +
m
∑

i=1
ui(t)Aui )x(t) + (B0 +

m
∑

i=1
ui(t)Bui )Vin + (Bw0 +

m
∑

i=1
ui(t)Bwui )w(t)

y(t) = (C0 +
m
∑

i=1
ui(t)Cui )x(t) + (Dw0 +

m
∑

i=1
ui(t)Dwui )w(t)

(60)

where Bw0, Bwui ∈ Rn×r, Dw0, Dwui ∈ Rp×r and w(t) ∈ Rr is the vector of perturbations
supposed measurable, the other matrices being defined as previously. Following the
approach developed in Section 3.1, we can introduce the matrices

Bwu1(t)u2(t)...um(t) =
m

∑
i=1

ui(t)Bwui =
M

∑
i=1

λi(t)Bwi (61)

Dwu1(t)u2(t)...um(t) =
m

∑
i=1

ui(t)Dwui =
M

∑
i=1

λi(t)Dwi (62)

where λ : R→ ΛS and the model can be written as



Appl. Sci. 2021, 11, 631 15 of 27

 dx(t)
dt

= A0 x(t) + B0(x(t), w(t))λ(t)

y(t) = C0x(t) + D0(x(t), w(t))λ(t)
(63)

with

B0(x, w) =
[

B1(x, w) · · · BM(x, w)
]

and D0(x, w) =
[

D1(x, w) · · · DM(x, w)
]

(64)

being Bi(x, w) = Aix + Bwiw + BiVin and Di(x, w) = Cix + Dwiw.
The results of the previous sections can be extended. In general, the perturbations are

time-varying signals, and, in many practical problems, the objective is to maintain some
physical variables around appropriate constant values. Most of them are not always state
variables but rather functions of them. For example, if despite the presence of time-varying
perturbation at the output, the objective is to maintain constant the voltage and power
output, the voltage output being in general a state variable, the output current will have to
vary to compensate the perturbations effects. This suggests that, while a subset of state
variables is maintained around a specific value, the others may vary in a way allowing to
attain the fixed control objectives. More formally, the problem is translated into the one
where the state variables are constrained to belong to the following set

Xe = {xe : R→ Rn, λe : R→ ΛR, : A0xe(t) + B0(xe(t), w(t))λe(t) = 0} (65)

If the error signal is e(t) = x(t)− xe(t), we have

de(t)
dt

= A0 x(t) + B0(x(t), w(t))λ(t)− dxe(t)
dt

(66)

= A0 e(t) + B0(x(t), w(t))λ(t) + A0xe(t)−
dxe(t)

dt
(67)

Problem 2. Design a control law λ : R→ ΛS, such that, for any initial condition e(0) ∈ Rn,
the error dynamic is asymptotically stable, ensuring that

lim
t→∞

e(t) = 0 (68)

and, for all t > 0, the error e(t) is bounded implying that the state x(t) is also bounded with

lim
t→∞

x(t) ∈ Xe (69)

Assumption A2 becomes

Assumption A4. Given xe(t) ∈ Xe, x(t) ∈ Rn and w(t) ∈ Rr, there exist λ(t) ∈ ΛR and a
positive definite symmetric matrix Q1, 0 < Q1 ≤ Q such that

eT(t)P[B0(x(t), w(t))λ− B0(xe(t), w(t))λe] ≤ −eT(t)A0Pe(t)− eT(t)Q1e(t) + eT(t)P
dxe(t)

dt
(70)

As for Problem 1, the existence of λ(t) satisfying Assumption A4 implies that a control
exists to reject the perturbations. Theorem 1 can be easily extended and becomes

Theorem 3. Consider the system (60), xe(t) ∈ Xe and matrix P solution of (25). Suppose that
Assumptions A1 and A4 are satisfied. Then, the control λ(t) defined by

λ(t) = arg
{

min
d∈ΛS

eT(t)P
[

A0e(t) + B0(x(t), w(t))d + A0xe(t)−
dxe(t)

dt

]}
(71)
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solves Problem 2. In addition, the error signal satisfies

J(e) =
∫ ∞

0
eT(t)Q1e(t)dt ≤ 1

2
eT(0)Pe(0) (72)

The proof is very similar to the one for Theorem 1.

Remark 5. We can note that the control can also be written as

λ(t) = arg
{

min
d∈ΛS

eT(t)PB0(x(t), w(t))d
}

(73)

and the knowledge of
dxe(t)

dt
is no longer needed to deduce the control. Observe that the controls

proposed in Theorems 1–3 are structurally similar (see Remarks 2 and 3). In the context of the
control of power converters, they can be interpreted as sliding mode controls whose nonlinear sliding
surfaces are implicitly defined. The proofs of stability are derived without invoking the equivalent
control paradigm.

Remark 6. Another important remark concerns the case where vin(t) is not constant, but it is
measured or a priori known. In that case, vin(t) can be included in the perturbation w(t) and the
model is written as


dx(t)

dt
= (A0 +

m
∑

i=1
ui(t)Aui )x(t) + (Bw0 +

m
∑

i=1
ui(t)Bwui )w(t)

y(t) = (C0 +
m
∑

i=1
ui(t)Cui )x(t) + (Dw0 +

m
∑

i=1
ui(t)Dwui )w(t)

(74)

The previous approach can be applied to this particular case.

The main steps to derive a rejection perturbation control can now be summarized

1. From the elementary electrical equations describing the converter operation, derive
the bilinear model (60).

2. It is then possible to compute the matrices Ai, Bwi, Ci and Dwi of the polytopic
model (63).

3. Compute a matrix P solution of (25). A solution always exists.
4. The control expression is then deduced from Theorem 3.

4. Simulation Results

A set of simulations were developed using PSIM software in order to validate the pro-
posed concepts. The boost converter was selected for examples with different complexity
to validate the cases proposed in the theoretical development. To introduce the effect of
the losses in the models, only the parasitic resistances of the inductor and the capacitor
have been considered for simplicity. The parasitic resistances of power semiconductors
are not considered but they can be included without modifying considerably the form of
the model. Similarly, considering that switching losses could be included approximately
as an equivalent series resistance [34], its inclusion in the model could be also developed
for further analysis. Then, looking for simplicity, we consider a boost converter whose
parameters are given in Table 1.
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Table 1. Parameters of the boost converter.

Parameter Value Unit

Vin 150 V
L 100 µH
C 2 µF
R 100 Ω
rL 2 Ω
rC 0.2 Ω

4.1. Stabilization

The elementary equations describing the behavior of the boost converter depicted in
Figure 1 are given by

L
diL(t)

dt
= Vin − (1− u1(t))y(t)− rLiL(t)

C
dvC(t)

dt
= (1− u1(t))iL(t)−

y(t)
R

=
y(t)− vC(t)

rC

(75)

+
−#$%

&'

(

+
−)*

+,

-
&* .

)'

+/

0(2)

Figure 1. Boost Converter circuit diagram: u1 = 1 when S1 = 1, S2 = 0 and u1 = 0 when
S1 = 0, S2 = 1.

Taking the state vector, x(t) =
[

iL(t) vC(t)
]
, we have



dx(t)
dt

=


[
− rL+αrC

L − α
L

α
C − α

RC

]
︸ ︷︷ ︸

A0

+

[ αrC
L

α
L

− α
C 0

]
︸ ︷︷ ︸

Au1

u1(t)

x(t) +

[ 1
L

0

]
︸ ︷︷ ︸

B0

Vin

y(t) =

[ αrC α
]︸ ︷︷ ︸

C0

+
[
−αrC 0

]︸ ︷︷ ︸
Cu1

u1(t)

x(t)

(76)

with α = R/(R + rC). We can verify that A0 is Hurwitz and determine the different
matrices Ai, Bi and Ci of the model (12).

A1 = 0× Au1 = 0 A2 = 1× Au1 =

[ αrC
L

α
L

− α
C 0

]
(77)

B1 = B2 = B0 =

[
1
L
0

]
, C1 = 0× Cu1 = 0, C2 = 1× Cu1 =

[
−αrC 0

]
, C0 =

[
αrC α

]
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Then,

B0(x) =
[

A1x + B1Vin A2x + B2Vin
]

and D0(x) =
[

C1x C2x
]

(78)

The equilibrium points are given by[
− rL+αrC

L − α
L

α
C − α

RC

]
xe +

[ 1
L
0

]
Vin(λe1 + λe2) +

[ αrC
L

α
L

− α
C 0

]
xeλe2 = 0 (79)

with λe =
[

λe1 λe2

]T ∈ ΛR. Then, because λe1 + λe2 = 1, we have

xe = −
{[
− rL+αrC

L − α
L

α
C − α

RC

]
+ λe2

[ αrC
L

α
L

− α
C 0

]}−1[ 1
L
0

]
Vin (80)

The set of equilibrium states is defined by

Xeq =

{
xe =

[
Vin

rL + αrC(1− λe2 ) + αR(1− λe2 )
2

(1− λe2 )RVin

rL + αrC(1− λe2 ) + αR(1− λe2 )
2

]T

, λe2 ∈ [0, 1]

}
(81)

At the equilibrium, the output voltage writes

ye = C0xe + D0(xe)λe =
[

α(1− λe2)rC α
]
xe

leading to a voltage gain of the converter given by

G(λe) =
R(1− λe2)

rL + αrC(1− λe2) + αR(1− λe2)
2 (82)

The maximal gain is deduced from

dG(λe)

dλe

∣∣∣∣
λemax

= 0⇒ (1− λe2max
)2 =

rL
αR

and G(λemax) =
R

2
√

αRrL + αrC
(83)

The desired output voltage is taken equal to 350 V, which corresponds to λe2 = 0.632.
The equilibrium of interest and matrix P obtained for Q = I are given by

xe =

[
9.36
350

]
, P = 10−3

[
1.85 0.08
0.08 0.04

]
(84)

Figure 2 shows the output voltage and the inductor current for the control derived
from Theorem 1. We can see that, with the proposed control strategy, the output voltage
can be maintained at a desired value if no perturbation affects the converter. However,
when a perturbation affects the output voltage (variation of load) or if the input voltage
Vin changes, the output voltage of the converter deviates from the desired value. If the
perturbations are constant signals, a way to recover the desired output value is to introduce
an integral action in the controller. This is done in the following paragraph.
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Figure 2. Inductor current and output voltage start-up transient response waveforms.

4.2. Integral Control

Now, the problem is to consider that constant perturbations can affect the converter
(for example, Vin and charge). To reject them, we introduce an integral action and apply
the results of Section 3.2. For the above values of P and Q, the optimization problem (49)
leads to δmax = 140.54428. We consider as before a reference for the output voltage equal
to 350 V. We take δ = δmax. For this value of δ, the matrix PI is given by

PI =

 0.00185 0.00008 0.01378
0.00008 0.00004 0.00055
0.01378 0.00055 140.54428

 (85)

Figure 3 shows the main converter signals for a scenario which consists in a variation
of input voltage from 160 to 200 V at 0.05 s, from 200 to 140 V at 0.1 s, and from 140 to 180 V
at 0.15 s. This numerical experiment demonstrates the efficiency of the proposed control to
cope with considerable input voltage disturbances.

Figure 4 shows the main converter signals for a scenario which includes a variation of
the load resistance R from 160 to 80 Ω at 0.05 s, from 80 to 200 Ω at 0.1 s and from 200 to the
nominal value of 100 Ω at 0.15 s. This numerical experiment demonstrates the efficiency of
the proposed control.
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Figure 3. Response to increasing and decreasing variations of the input voltage.

Figure 4. Response to increasing and decreasing variations of the output load.
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4.3. Rejection of Measured Perturbation

In this paragraph, we suppose that the load is varying, the state measurable and the
load current is considered as a measurable perturbation. For the boost converter depicted
in Figure 5, the basic equations are

L
diL(t)

dt
= Vin − (1− u1(t))y(t)− rLiL(t)

C
dvC(t)

dt
= (1− u1(t))iL(t)− i0(t) =

y(t)− vC(t)
rC

(86)

+
−#$%
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(

+

−
y

)*

+,
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)'
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)/
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Figure 5. Boost Converter with a variation of load represented by i0.

Taking the state vector, x(t) =
[

iL(t) vC(t)
]

and w(t) = i0(t) we have



dx(t)
dt

=


 − rL+rC

L − 1
L

1
C 0


︸ ︷︷ ︸

A0

+

 rC
L

1
L

− 1
C 0


︸ ︷︷ ︸

Au1

u1(t)


x(t) +

 1
L

0


︸ ︷︷ ︸

B0

Vin +


 rC

L

− 1
C


︸ ︷︷ ︸

Bw0

+

 − rC
L

0


︸ ︷︷ ︸

Bwu1

u1(t)

w(t)

y(t) =

[ rC 1
]

︸ ︷︷ ︸
C0

+
[
−rC 0

]
︸ ︷︷ ︸

Cu1

u1(t)

x(t) + −rC︸︷︷︸
Dw0

w(t)

(87)

We can note that A0 is Hurwitz. The main matrices associated with the model (60) are
given by

A1 = 0× Au1 = 0 A2 = 1× Au1 =

[ rC
L

1
L

− 1
C 0

]

B1 = B2 = B0 =

[ 1
L

0

]
, C1 = 0×Cu1 = 0, C2 = 1×Cu1 =

[
−rC 0

]
, C0 =

[
rC 1

]
Bw1 = Bw0 + 0× Bwu1 =

[ rC
L
− 1

C

]
, Bw2 = Bw0 + 1× Bwu1 =

[
0
− 1

C

]
(88)

B0(x, w) =
[

A1x + Bw1 w + B1Vin A2x + Bw2 w + B2Vin
]

(89)

D0(x, w) =
[

C1x + Dw1 w C2x + Dw2 w
]

and , Dw1 = Dw2 = Dw0 = −rC (90)

The set Xe is the set of the function vectors defined by
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xe(t) = −
{[
− rL+rC

L − 1
L

1
C 0

]
+ λe2(t)

[ rC
L

1
L

− 1
C 0

]}−1{[ 1
L

0

]
Vin +

[
λe1

rC
L

− 1
C

]
w(t)

}

=

[
w(t)

1− λe2(t)
Vin

1− λe2(t)
−

rCλe2(t)w(t)
1− λe2(t)

− rLw(t)

(1− λe2(t))
2

]T (91)

with λe : R→ ΛR. At equilibrium, the output voltage is written as

ye(t) = C0xe(t) + D0(xe(t), w(t))λe(t) =
[

λe2(t)rC 1
]
xe(t)− rCw(t)

=
Vin

1− λe2(t)
− rLw(t)

(1− λe2(t))
2 − rCw(t)

(92)

Case 1: i0 variable and constant output voltage.

To impose a constant output ye(t) equal to 350 V, from (92), a simple calculation
leads to

1− λe2(t) =
1
2

Vin
ye + rCw(t)

[
1 +

√
1− 4rL(ye + rCw(t))

V2
in

]
(93)

and the state of the converter has to track

xe(t) =
[

w(t)
1− λe2(t)

ye

]T

Note that neglecting the parasitic circuit elements (i.e., rL = rC = 0) simplifies
drastically expression (93), which can be written as

1− λe2(t) =
Vin
ye

Figure 6 depicts the considered perturbation w(t) = i0(t) = 3.5 + sin(200πt) A, the
output voltage y, and the inductor current iL. The proposed control is efficient and the
objectives are attained.

Case 2: Constant output voltage while the converter fed a constant power load Pre f .

In this paragraph, the objective is to maintain the output voltage ye at 350 V, the power
load being constant and equal to Pre f . In that case, the load current is i0 = w = Pre f /ye
and then

1− λe2 =
1
2

Vin
ye + Pre f /ye

[
1 +

√
1−

4rL(ye + Pre f /ye)

V2
in

]
which leads to

xe(t) =
[

Pre f /ye

1− λe2

ye

]T

(94)

Figure 7 depicts the output voltage and inductor current for a power load which
is piecewise constant 1, 0.5, and 1.2 kW. The presence of parasitic resistances rL and rC
justifies that Vinw = ViniL 6= yew = yei0 = Pre f . Indeed, from (92), we have

yew =
Vinw

1− λe2

− w2rL

(1− λe2)
2 − rCw2 (95)

However, because the inductor current in steady-state is equal to iLe = w/(1− λe2), we
deduce that

Pre f = ViniLe − rLi2Le
− rCi20
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The proposed control is efficient and allows to maintain a constant output voltage and
power load Pre f .

Figure 6. Response to a periodic disturbance in the output current i0.

Figure 7. Response to disturbances in the output power Pre f .

Case 3: Constant power at the output and variable input voltage.

In this paragraph, a variant of the previous scenario is considered. The problem
consists in having a constant power at the output and possible variations of the input
voltage. Of course, this is possible if an adequate power balance is maintained by the control.
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We suppose that the input voltage is measurable and is interpreted as a perturbation. We
also suppose that a given output power reference denoted Pre f is given. From the value of
Pre f and the measurement of the output voltage, it is possible to deduce the value of the
load current i0 which can be considered as a given perturbation. In that case, the vector
of perturbations is defined as w(t) =

[
i0 vin(t)

]T
=
[

w1(t) w2(t)
]T and the model

given by



dx(t)
dt

=


 − rL+rC

L − 1
L

1
C 0


︸ ︷︷ ︸

A0

+

 rC
L

1
L

− 1
C 0


︸ ︷︷ ︸

Au1

u1(t)


x(t) +


 rC

L
1
L

− 1
C 0


︸ ︷︷ ︸

Bw0

+

 − rC
L 0

0 0


︸ ︷︷ ︸

Bwu1

u1(t)


w(t)

y(t) =

[ rC 1
]

︸ ︷︷ ︸
C0

+
[
−rC 0

]
︸ ︷︷ ︸

Cu1

u1(t)

x(t) +
[
−rC 0

]
︸ ︷︷ ︸

Dw0

w(t)

(96)

The main matrices are the same as before except that now

B0 = B1 = B2 = 0 Bw1 =

 rC
L

1
L

− 1
C 0

 Bw2 =

 0 1
L

− 1
C 0

 and Dw1 = Dw2 = Dw0 =
[
−rC 0

]
(97)

Recall that the power balance is described by

Pre f = Pin − rLi2L − rCi20 = vin︸︷︷︸
w2

iL − rLi2L − rC i20︸︷︷︸
w2

1

⇐⇒ i2L −
w2

rL
iL +

Pre f + rCw2
1

rL
= 0 (98)

and the lower value of iL is given by

iL =
w2

2rL
−

√
w2

2 − 4rL(Pre f + rCw2
1)

2rL
(99)

and then
xe(t) =

[
iL(t) ye

]T (100)

The output voltage is taken equal to 350 V and Pre f equal to 1.4 kW. Figure 8 shows the
output voltage and the input inductor current for the following changes of input voltages:
from 150 to 250 V at 0.001 s, from 250 to 130 V at 0.002 s, and from 130 to 190 V at 0.003 s. We
observe that the output voltage is around 350 V and that the input inductor current changes
to maintain the power output at 1.4 kW. We can observe that the power input compensates
the losses associated with the inductor and capacitor resistances, which depend on the
input inductor and output currents.
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Figure 8. Response to disturbances in the input voltage when a the converter feds a CPL.

5. Conclusions

This paper develops a unified approach for the design of control laws for the power
electronics converters. The control problems induced by the numerous practical cases of
interest can be identified as a stabilization or as a tracking problem. To be able to derive
a systematic approach for tackling them, the general bilinear power converter model is
written in a specific way. Under some assumptions, satisfied for a large family of converters
and necessary for the existence of a solution to the stated problems, stabilization or tracking
control laws are proposed. They belong to the class of sliding mode controls, whose sliding
surfaces, dependent on the problem under study, are systematically derived and ensure
stability properties. All the methods are illustrated by numerous simulated examples
for a large diversity of problems, some of them being non-trivial. The obtained results,
highlighting their potential and their genericity level, are very promising. The next step
in the near future is to apply these methods to a series of converter topologies involving
a complete set of parasitic elements representing power losses and showing through
experimental results that the deduced control laws can be implemented without any
detriment caused by digital and analogue electronic devices limitations. Complementarily,
these results could be compared with the ones obtained using other well established
methods.

From a theoretical point of view, several points need to be particularly investigated.
Concerning the control of power converters, we see that there is a close connection between
the original model and the relaxed one. This important connection ensures some kind of
regularity and the main conclusion is that the original control laws, whose implementation
could be difficult, can be approximated by control laws that could be seen as “relaxed ones”,
easier to implement and allowing to manage some important practical characteristics, such
as switching frequency. This can be accomplished, for example, by space or time regular-
ization techniques used in the context of the recently published hybrid control approach.
Because of its practical implications, this point will particularly focus our attention.

Another interesting work does not exclusively concern the control of power converters.
It is possible to deduce from the bilinear model considered in this paper an equivalent
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switched model, and then, in some sense, the controls proposed in this paper can be applied
to the control of a certain class of switched affine linear systems. In that context, Lemma
1 shows that, for the class of systems whose modes or a convex combination of them are
quadratically stable, such an assumption is systematically satisfied leading to the existence
of a globally asymptotic stabilization switched control. An interesting work is to analyze
deeply this assumption and try to characterize classes of switched systems satisfying it,
even locally, with the objective of deducing stabilizing controls.

To end, in the paper, it is supposed that the state is measurable, and thus it can be
used in the control law. If only partial information is available, a method is to enforce
the structure of the matrix P as done, for example, in [35]. However, in some cases, it
is not possible to impose the needed structure to P. If it happens, a method is to design
an observer. This problem will be investigated following the main ideas proposed in
this paper.
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