

Appl. Sci. 2021, 11, 619. https://doi.org/10.3390/app11020619 www.mdpi.com/journal/applsci

Article

Hybrid Encoding Scheme for AMBTC Compressed Images
Using Ternary Representation Technique
Tung-Shou Chen 1, Jie Wu 2, Kai-Sheng Chen 2, Junying Yuan 2 and Wien Hong 1,*

1 Department of Computer Science and Information Engineering, National Taichung University of Science
and Technology, Taichung 404, Taiwan; tschen.prof@gmail.com

2 School of Electrical and Computer Engineering, Nanfang College of Sun Yat-Sen University,
Guangzhou 510970, China; wj.clara@foxmail.com (J.W.); chenksh@nfu.edu.cn (K.S.C.);
yuanjy@nfu.edu.cn (J.Y.)

* Correspondence: wienhong@nutc.edu.tw; Tel.: +886-971-638-727

Abstract: Absolute moment block truncated coding (AMBTC) is a lossy image compression tech-
nique aiming at low computational cost, and has been widely studied. Previous studies have inves-
tigated the performance improvement of AMBTC; however, they often over describe the details of
image blocks during encoding, causing an increase in bitrate. In this paper, we propose an efficient
method to improve the compression performance by classifying image blocks into flat, smooth, and
complex blocks according to their complexity. Flat blocks are encoded by their block means, while
smooth blocks are encoded by a pair of adjusted quantized values and an index pointing to one of
the k representative bitmaps. Complex blocks are encoded by three quantized values and a ternary
map obtained by a clustering algorithm. Ternary indicators are used to specify the encoding cases.
In our method, the details of most blocks can be retained without significantly increasing the bitrate.
Experimental results show that, compared with prior works, the proposed method achieves higher
image quality at a better compression ratio for all of the test images.

Keywords: image compression; AMBTC; ternary representation; k-means

1. Introduction
With the rapid development of imaging technology, digital images are perhaps the

most widely used media of the Internet. Because digital images themselves contain sig-
nificant amounts of spatial redundancy, an efficient lossy image compression technique
is required for lower storage requirement and faster transmission. The Joint Photographic
Experts Group (JPEG) [1,2], vector quantization (VQ) [3,4], and block truncation coding
(BTC) [5,6] are well-known lossy compression methods and have been extensively inves-
tigated in the literature. Among these techniques, BTC requires significantly less compu-
tation cost than others while offering acceptable image quality. BTC has been widely in-
vestigated in the disciplines of remote sensing and portable devices, in which computa-
tional costs are limited. BTC was firstly proposed by Delp and Mitchell [7]. This method
partitions image into blocks, and each block is represented by two quantized values and
a bitmap. Inspired by [7], Lema and Mitchel [8] propose a variant method called absolute
moment block truncation coding (AMBTC), which offers a simpler computation than that
of BTC.

The applications of AMBTC are studied in video compression [9], image authentica-
tion [10–12], and image steganography [13,14]. Moreover, some recoverable authentica-
tion methods adopt AMBTC codes as the recovery information to recover the tampered
regions. Because the recovery codes have to be embedded into the host image, a more
efficient coding of AMBTC is always desirable because the burden of the embedment can
be reduced and the quality of the recovered regions can be enhanced. To improve the

Citation: Chen, T.-S.; Wu, J.; Chen,

K.S.; Yuan, J.; Hong, W. Hybrid

Encoding Scheme for AMBTC

Compressed Images Using Ternary

Representation Technique. Appl. Sci.

2021, 11, 619. https://doi.org/10.3390/

app11020619

Received: 22 November 2020

Accepted: 7 January 2021

Published: 10 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).

Appl. Sci. 2021, 11, 619 2 of 20

compression efficiency of the AMBTC method, several approaches, including bitmap
omission [15], block classification [16,17], and quantized value adjustment [18], are
adopted to lower the bitrate while maintaining the image quality. For example, Hu [15]
recognizes that if the difference between two quantized values is smaller than a prede-
fined threshold, the bitmap plays an insignificant role in reconstructed image quality.
Therefore, Hu employs the bitmap omission approach by neglecting the recording of a
bitmap if a block is considered to be flat, and only uses block means to represent the flat
block. Chen et al. [17] adopt quadtree partitioning and propose a variable-rate AMBTC
compression method for color images. The basic idea of [17] is to partition the image into
blocks with various sizes according to their complexities. The AMBTC and bitmap omis-
sion technique are then employed to encode the image blocks. In some applications, such
as data hiding or image authentication, bitmaps have to be altered to carry some required
information, causing a degradation in image quality. Hong [18] optimizes the quantized
values so that the impact of bitmap alteration can be reduced. Mathews and Nair [19]
propose an adaptive AMBTC method based on edge quantization by considering human
visual characteristics. This method separates image blocks into edge and non-edge blocks,
and quantized values are calculated based on the edge information. Because the edge
characteristics are considered, their method provides better image quality than other
AMBTC variants.

Xiang et al. [16] in 2019 proposed a dynamic multi-grouping scheme for AMBTC fo-
cusing on improving the reconstructed image quality and reducing the bitrate. Their
method partitions an image into non-overlapping blocks. According to the block complex-
ity, varied grouping techniques are designed. An indicator is employed to distinguish the
grouping types. In addition, instead of recording the quantized values, the differences
between them are recorded so as to reduce the bitrate. Xiang et al.’s method provides
better compression performance than those of prior works.

In Xiang et al.’s method, the number of pixel groups of an image block directly affects
the reconstructed image quality and bitrate. Their method divides pixels of complex
blocks into three or four groups during encoding, which may improve the image quality
insignificantly but requires more bits for encoding. In this paper, we propose a ternary
representation technique, which uses two thresholds to classify image blocks into three
types, namely flat, smooth, and complex. We use the bitmap omission technique [15] to
code flat blocks. The adjusted quantized values and an index pointing to one of the repre-
sentative bitmaps are used to encode the smooth blocks. The complex blocks are encoded
using three quantized values and a ternary bitmap. Compared with the AMBTC and
Xiang et al.’s work, the proposed method achieves a higher reconstructed image quality
with a smaller bitrate.

The reminder of this paper is organized as follows: Section 2 introduces AMBTC and
Xiang et al.’s methods. Section 3 introduces the algorithms of this paper in detail. Section
4 presents the experimental results of the proposed method, and concluding remarks are
provided in the final section.

2. Related Works
In this section, we briefly introduce AMBTC and Xiang et al.’s methods, which are

compared with the proposed method for evaluating the encoding performance.

2.1. The AMBTC Method
The AMBTC method [8] compresses image blocks into two quantized values and a

bitmap. The detailed approaches are as follows. Let I be the original image of size w h×
and partition I into non-overlapping blocks 1

0{ }Ni iI
−

= of size n n× , where
(/) (/)N w n h n= × is the total number of blocks. Let ,i jI be the -thj pixel of -thi

block. Therefore, 1
, 0{ }n ni i j jI I × −

== . For block iI , the averaged value im can be calculated
by:

Appl. Sci. 2021, 11, 619 3 of 20

1

,
0

1 .
n n

i i j
j

m I
n n

× −

=

=
×  (1)

The -thj bit of bitmap iB , indicated by ,i jB , is used to indicate the relationship
between ,i jI and im . ,i jB can be obtained by:

,
,

,

0, ;
1, .

i j i
i j

i j i

I m
B

I m
<=  ≥

 (2)

The lower quantized value ia and higher quantized value ib are obtained by av-
eraging the pixels in iI with values smaller than and larger than or equal to im , respec-
tively. This can be implemented by sequentially visiting pixels in iI . The lower quantized
value ia is obtained by calculating the averaged value of visited pixels with values
smaller than im . Similarly, the higher quantized value ib is the averaged values of the
other pixels. Therefore, the compressed code iΦ of iI is { , , }i i ia b B . Each block is pro-
cessed using the same manner, and the AMBTC compressed codes 1 1

0 0{ } { , , }N N
i i i i i ia b B− −

= =Φ =
of image I are then obtained.

To decode 1 1
0 0{ } { , , }N N

i i i i i ia b B− −
= =Φ = , blocks 1

0{ }Ni iI
−

=′ of size n n× are prepared, where
1

, 0{ }n ni i j jI I × −
=′ ′= . The -thj pixel of iI ′ can be decoded by:

,
,

,

0;,
1.,

i ji
i j

i ji

Ba
I

Bb
=′ =  =

 (3)

After all of the image blocks are reconstructed, the image I ′ can then be obtained.

2.2. Xiang et al.’s Method
AMBTC uses the same approach to compress all image blocks. However, the same

approach may not suitable for flat and complex blocks. As a result, Xiang et al. proposed
an improved scheme to efficiently encode blocks according to their complexity, and
achieve a better image quality than that of AMBTC with a satisfactory bitrate.

Let 1 1
0 0{ } { , , }N N

i i i i i ia b B− −
= =Φ = be the AMBTC compressed code of the original image

1
0{ }Ni iI I −

== . To determine the complexity of block iI , a threshold 0τ is set. If 0i ib a τ− ≤ ,
the variations of pixel values in block iI are relatively small. Therefore, all the pixels in
this block are categorized as one group. In this case, the block mean im is calculated, and
this block is encoded by 2()im , which is the 8-bit binary representation of im .

If 0i ib a τ− > , the variations of pixels in block iI are large and these pixels need to
be regrouped to achieve a better reconstructed image quality. Let 0

iG and 1
iG be the

group of pixels with , 0i jB = and , 1i jB = , respectively. Apply the AMBTC method to
0
iG and 1

iG to obtain codes 0 0 0 0{ , , }i i i ia b BΦ = and 1 1 1 1{ , , }i i i ia b BΦ = . According to a given
threshold mind , this method uses the following rules to determine whether 0

iG and 1
iG

should be regrouped:
Rule 1: If 0 0

0i ib a τ− > and the total number of pixels in 0
iG is greater than mind .

Rule 2: If 1 1
0i ib a τ− > and the total number of pixels in 1

iG is greater than mind .
If neither rule is met, block iI does not need to be further divided. Otherwise, block

iI will be sub-divided into three or four groups using the following rules:

(1) If only rules 1 or 2 are met, group 0
iG or 1

iG needs to be subdivided. The number
of pixels needing to be subdivided is denoted by iP , and -bitiP bitmap 0

iB or 1
iB

has to be used to record the bitmap of 0
iG or 1

iG . In this case, block iI is eventually

Appl. Sci. 2021, 11, 619 4 of 20

divided into three groups.
(2) If both rules 1 and 2 are met, both 0

iG and 1
iG need to be subdivided, and block iI

is eventually divided into four groups. Bitmap 0
iB and 1

iB have to be recorded to
maintain the grouping information.
Xiang et al.’s method uses a 2-bit indicator NDI to record grouping information of

iI . When block iI is divided into one to four groups, the indicator NDI is set to be 200
, 201 , 210 , and 211 , respectively. Moreover, if iI needs to be divided into three groups,
an extra indicator is required to show which group is subdivided. Specifically, if 0

iG is
sub-divided, then 0iJ = . On the contrary, if 1

iG is sub-divided, then 1iJ = .
To record the quantized values, Xiang et al.’s method records the smallest quantized

value of a block using 8 bits, and utilizes a difference encoding scheme (DES) to encode
the difference id between two quantized values. In DES, if id γ< , where γ is a prede-
fined threshold, id is recorded using 2log ()γ bits. Otherwise, id is recorded using

2log ()σ   bits, where σ is the maximum difference between quantized values in all
blocks. An extra indicator iY is used to distinguish these two methods. That is, if id γ<
, 0iY = is set. Otherwise, 1iY = . The number of bits iR used to record the difference can
be expressed as:

2

2

log () 1, ;
log () +1, .

i
i

i

d
R

d
γ γ
σ γ

+ <
=  ≥  

 (4)

We use the symbol 2()x y− to represent the R-bit encoded result of the difference
between x and y using DES. For example, if 40x = , 28y = , and 64γ = , then

12id γ= < . Therefore, 7R = and the encoding result is 2 2 2(40 28) 0 ||001100− = , where ||
is the concatenation operator.

The compressed code and the number of bits required to record blocks iI of differ-
ent grouping cases are summarized in Table 1. Each block is compressed using the same
procedures and the final compressed code stream fCS of image I is obtained.

Table 1. Number of bits required to record a compressed block.

Number of Groups Compressed Code of iI Number of Bits

1 2 2{00 ,() }im 2 8+

2 2 2 2{01 ,() , () , }i i i ia b a B− 2 8 iR n n+ + + ×

3
0 0 0 0 0

2 2 2 2{10 ,() , () , () , , , }i i i i i i i ia b a b b B J B− − or
2+8 2 1i iR n n P+ + × + + 1 1 1 1

2 2 2 2{10 ,() , () , () , , , }i i i i i i i ia a a b a B J B− −

4 0 0 0 1 0 1 1 0 1
2 2 2 2 2{11 ,() , () , () , () , , , }i i i i i i i i i ia b a a b b a B B B− − − 2+8 3 2iR n n+ + × ×

To decode fCS , the 2-bit indicator NDI is read. According to the read bits, four pos-
sible compressed codes shown in Table 1 with different lengths can be extracted. The im-
age blocks can be reconstructed from the compressed codes, and the decompressed image
can be obtained. The detailed decoding procedures can be referred to [16].

3. Proposed Method
The traditional AMBTC compression method uses the same number of bits to com-

press each block. However, coding in this way requires more bits than necessary for flat
blocks and neglects too much image detail for complex blocks. Xiang et al.’s method im-
proves AMBTC, resulting in better compression effects for both flat and complex blocks.
However, in the processing of complex blocks, Xiang et al.’s method reconstructs the gray

Appl. Sci. 2021, 11, 619 5 of 20

values of the image block by four quantized values. Although the quality of the recon-
structed block is improved, it requires quantized values to be recorded and bitmaps with
more bits. In addition, Xiang et al. adopt the traditional AMBTC method to compress the
smooth blocks, which may increase the cost of recording bitmaps and quantized values.

In this paper, we propose a more effective solution by classifying image blocks into
flat, smooth, and complex blocks based on thresholds 0τ and 1τ (0 1τ τ≤). Let

{ , , }i i i ia b BΦ = be the AMBTC codes of iI . If 0i ib a τ− ≤ , iI is classified as a flat block.
Because pixel variations in a flat block are small, all pixels in a flat block can be simply
reconstructed by their mean to a satisfactory visual quality. If 0 1i ib aτ τ< − < , iI is clas-
sified as a smooth block. For the smooth block, we use a clustering algorithm to obtain
representative bitmaps, and the original bitmaps are replaced by the indices pointing to
the obtained bitmap. The two quantized values are also adjusted to reduce the error
caused by the bitmap replacement. If 1i ib a τ− ≥ , iI is classified as a complex block. We
use three quantized values and a ternary map to represent the complex block to maintain
better texture details. The encoding algorithms of these three types of blocks will be pre-
sented in the following sections.

3.1. Encoding of Flat Blocks
The pixel values of a flat block iI (i.e., 0i ib a τ− ≤) are relatively close, and thus the

bitmap plays an insignificant role in reconstructing the image block. Therefore, we omit
the recording of the quantization value in addition to the bitmap, and use an 8-bit mean
value 2()im to represent the flat block, where:

 + round
2

i i
i

b a
m  =  

 
 (5)

and round()x is the function rounding x to the nearest integer.

3.2. Encoding of Smooth Blocks
If 0 1i ib aτ τ< − < , the fluctuation of pixel values of block iI is more than that of a

flat block. Therefore, we refer to iI as a smooth block. To reduce the bitrate, a codebook
consisting of the k most representative bitmaps (codewords) is found, and the bitmap of
the smooth block will be replaced by an index pointing to one of the codewords in the
codebook. We use the k-means algorithm [20] to obtain the k most representative bit-
maps. Let 1

0{ , , } sN
s s s sa b B −

= be the set of AMBTC codes satisfying 0 1i ib aτ τ< − < for
0 1i N≤ ≤ − , where sN is the number of smooth blocks. Firstly, an initial codebook

0 1
0{ }kCα α

−
= is constructed by randomly selecting k bitmaps from 1

0{ } sN
s sB −

= , where k is
much less than sN . Secondly, the bitmaps 1

0{ } sN
s sB −

= are classified into k clusters accord-
ing to the similarities between 1

0{ } sN
s sB −

= and 0 1
0{ }kCα α

−
= . That is, if sB has more bits identi-

cal to 0Cα than other codewords, then sB is classified into group α , where 0 1kα≤ ≤ −
. Thirdly, 1

0{ } sN
s sB −

= of the same group are averaged and rounded to obtain the updated
codebook 1 1

0{ }kCα α
−
= . Repeat the classification process t times and the final representative

bitmaps 1
0{ }t kCα α

−
= are obtained. Normally, setting 6t = can already obtain a satisfactory

result. We denote the final representative bitmaps as 1
0{ }kCα α

−
= . Once the classification pro-

cess is completed, the classification results 1
0{ } sN

s sα −∗
= of bitmaps 1

0{ } sN
s sB −

= are also ob-
tained. Note that the codeword with index sα ∗ has the nearest distance to sB , that is:

1/21
2

, ,
0

arg min ()
n n

s s j j
j

B Cα
α

α
× −

∗

=

 
= − 

 
 (6)

Appl. Sci. 2021, 11, 619 6 of 20

where ,s jB and , jCα represent the -thj element of sB and Cα , respectively. Instead of

recording 1
0{ } sN

s sB −
= , the proposed method uses the binary representation of 1

0{ } sN
s sα −∗

= as
the required bitmap information. Therefore, the bits required to record the bitmap are
reduced from n n× bits to 2log ()k bits. To successfully decode the bitmap, we must
have cluster centers 1

0{ }kCα α
−
= and cluster indices 1

0{ } sN
s sα −∗

= . Therefore, 1
0{ }kCα α

−
= must be

included as part of the compressed codes.
When decoding a smooth block, because we use cluster center

s
C

α∗ to replace the

original bitmap sB , the quality of the reconstructed image block will be reduced. To min-
imize the reduced quality, a quantized value adjustment (QA) technique [18] is employed.
QA is a technique originally used in a data hiding technique to reduce the distortions of
the reconstructed AMBTC block when the original bitmap is replaced by secret data. Be-
cause bits in the bitmap are altered, distortions of the reconstructed block are inevitable.
QA subtly adjusts the quantized values by counting the bit difference between the original
bitmap and secret data. In the proposed method, the original bitmap is replaced by a clus-
ter center, which resembles the situations in which the bitmap is replaced by secret data.
Therefore, the QA technique can be applied in the proposed method. To find the mini-
mum distortion, the QA technique adjusts sa and sb to ˆsa and ŝb by calculating:

00 10

00 10

ˆ s s
s
a b

a
ρ ρ
ρ ρ

+
=

+
 (7)

and:

01 11

01 11

ˆ s s
s
a b

b
ρ ρ
ρ ρ

+
=

+
 (8)

respectively, where pqρ is the number of bits with ,s jB p= and ,s j
C qα∗ = , (,) {0,1}p q ∈

. For example, 01ρ indicates the number of bits with , 0s jB = and ,
1

s j
Cα∗ = . After adjust-

ment of quantized values, the distortion due to the bitmap replacement will be smaller
than that without adjustment.

3.3. Encoding of Complex Blocks

Blocks with 1i ib a τ− ≥ are classified as complex blocks. Let 1
0{ } cN

c cI −
= be the set of cN

complex blocks in I . For a given complex block 1
, 0{ }n nc c j jI I × −

== , the proposed method
uses the k-means clustering algorithm to obtain three most representative quantized val-
ues 0 1 2{ , , }c c cq q q and a ternary map 1

, 0{ }n nc c j cT T × −
== , where ,c jT is a ternary digit ranging

from 0 to 2 used to indicate which quantized value should be used to reconstruct the -thj
pixel of cI . Because the value of ,c jT is equally distributed over 0 to 2, we can simply
encode the ternary digits 30 , 31 , and 32 by 20 , 210 , and 211 , respectively. We assume
the encoded result of cT is cT′ of L-bit. Once the decoder has 1

0{ } cN
c cT −

=′ and
10 1 2

0{ , , } cN
c c c cq q q −

= , blocks 1
0{ } cN

c cI −
= can be reconstructed.

When encoding a 4 4× ternary map, the average number of bits required in the pro-
posed method is:

1 16 2 2 16+ 26.67
3 3

× × × =
bits.

Theoretically, recording 16 ternary digits requires 216 log 3 26× =   bits, which is al-
most the same as in the proposed method. Therefore, the encoding of the ternary map
used in the proposed method is effective.

Appl. Sci. 2021, 11, 619 7 of 20

3.4. Encoding Procedures
This section describes the procedures of the proposed method. To distinguish the

encoding methods of three types of image blocks, an indicator is prepended to the code
stream of each encoded block. The indicators 20 , 210 , and 211 are used to indicate a flat,
smooth, and complex block is encoded, respectively. The detailed encoding procedures
are shown as follows:
Input: Original image I , block size n n× , thresholds 0τ and 1τ , parameter γ , and

cluster size k .
Output: Code stream fCS .

Step 1: Partition the original image I into blocks 1
0{ }Ni iI
−

= of size n n× . Encode
1

0{ }Ni iI
−

= using the AMBTC encoder and obtain codes 1
0{ , , }Ni i i i ia b B −

=Φ = , as described
in Section 2.1.

Step 2: Scan codes 1
0{ , , }Ni i i ia b B −

= . Let 1
0{ } sN

s sB −
= be the bitmap of smooth blocks.

Clustering 1
0{ } sN

s sB −
= into k groups using the k-means clustering algorithm, we

obtain k cluster centers 1
0{ }kCα α

−
= and sN cluster indices 1

0{ } sN
s sα −∗

= . Concatenate
the binary representation of 1

0{ }kCα α
−
= and obtain the concatenated code stream ACS .

The sN pairs of adjusted quantized values 1
0

ˆˆ{ , } sN
s s sa b −

= of smooth blocks are also
obtained, as described in Section 3.2. Similarly, quantized values 10 1 2

0{ , , } cN
c c c cq q q −

= and
ternary maps 1

0{ } cN
c cT −

= of complex blocks are also obtained, as described in Section
3.3.

Step 3: Scan codes 1
0{ , , }Ni i i ia b B −

= again and perform the encoding according to the
cases listed below:
Case 1: If 0i ib a τ− ≤ , a flat block is visited and the code stream of block iI is

2 20 || ()i iCS m= .
Case 2: If 0 1i ib aτ τ< − < , a smooth block is visited. Extract ˆsa , ŝb , and sα ∗

from 1
0

ˆˆ{ , , } sN
s s s sa b α −∗

= obtained in Step 2, and block iI is encoded by

2 2 2 2
ˆˆ ˆ10 || () || () || ()i s s s sCS a b a α ∗= − . Note that 2

ˆ ˆ()s sb a− is encoded using the
DES, as described in Section 2.2.

Case 3: If 1i ib a τ− ≥ , block iI is a complex one. Extract 0
cq , 1

cq , 2
cq , and cT

from 10 1 2
0{ , , , } cN

c c c c cq q q T −
= obtained in Step 2, and block iI is encoded by

0 1 0 2 1
2 2 2 211 || () || () || () ||i c c c c c cCS q q q q q T ′= − − . Note that 1 0

2()c cq q− and 2 1
2()c cq q−

are encoded using the DES (see Section 2.2).

Step 4: Repeat Step 3 until the code stream 1
0{ }Ni iCS −

= of blocks 1
0{ }Ni iI
−

= are obtained.
Concatenate 1

0{ }Ni iCS −
= , we have the concatenated code stream BCS .

Step 5: Concatenate ACS and BCS ; we obtain the final code stream fCS of image
I , i.e., ||f A BCS CS CS= .
The encoding of a given image block and the number of required bits for each block

types are shown in Figure 1.

Appl. Sci. 2021, 11, 619 8 of 20

Figure 1. Illustration of image block encoding.

We take a simple example to illustrate the encoding of smooth and complex blocks.
Let 0I be a 4 4× block to be encoded, as shown in Figure 2a. Suppose 0 4τ = , 1 16τ = ,

64γ = , 128σ = , and 128k = are used in this example. The AMBTC compressed code
of 0I is 0 0 0 2{ , , } {28, 40, 1110 1110 1100 1100 }a b B = , and 0B is depicted in Figure 2b.
Because 0 0 0 1b aτ τ< − < , 0I is a smooth block. Assume 0 43α ∗ = and

43 21010 0110 01010100C = (see Figure 2c). By comparing 0B and 43C , we have 00 5ρ = ,

01 1ρ = , 10 4ρ = , and 11 6ρ = . Using Equations (7) and (8), we have 0ˆ 33a = and 0̂ 38b =

. Because 0 0
ˆ ˆ 5b a γ− = < , we have 0Y = . Because 0 2 2ˆ() 00100001a = ,

0 0 2 2
ˆ ˆ() 0 || 000101b a− = , and 0 2 2() 0101011α∗ = , the code stream of 0I should be

0 210 || 00100001|| 0 || 000101|| 0101011CS = .
Figure 2d shows another block 1I to be encoded. For this block, quantized values

1 25a = and 1 103b = of the AMBTC code are calculated. Because 1 1 1b a τ− ≥ , 1I is re-
garded as a complex block. Suppose after applying the k-means clustering algorithm to

1I , we obtain three quantized values 0 1 2
1 1 1{ , , } {19, 85,133}q q q = and the ternary cluster

indices of pixels 1={1111 2121 0210 0000}T , as shown in Figure 2e. The difference be-
tween the first two quantized values is 1 0

1 1 = 66 >q q γ− . Therefore, indicator 1,0 1Y =
should be placed in front of the 2log () 7-bitσ = binary representation of 66 (i.e.,

21||1000010). Similarly, because 2 1
1 1 = 48q q γ− < , indicator 1,1 0Y = should be placed in

front of the 2log () 6-bitγ = binary representation of 48 (i.e., 20||110000). Finally, the ternary
cluster indices 1T are encoded by 210101010 11101110 011100 0000 , which is illustrated in
Figure 2f. Therefore, according to Step 3 of Case 3 in Section 3.4, the code stream of block

1I should be 1 2=11|| 00010011||1||1000010 || 0||110000 ||1010101011101110 011100 0000CS .

(a) Smooth Block 0I (b) Bitmap of 0I (c) Cluster center 43C

Appl. Sci. 2021, 11, 619 9 of 20

(d) Complex Block 1I (e) Cluster indices 1T (f) Encoded result of 1T′

Figure 2. An example of image encoding.

3.5. Decoding Procedures
In decoding, data bits are sequentially read and decoded, and image blocks are re-

constructed by decoding the read data bits. The detailed steps of decoding are listed as
follows:
Input: Code stream fCS , block size n n× , parameter γ , σ , and cluster size k .
Output: Decompressed image 1

0{ }Ni iI I −
=′ ′= .

Step 1: Extract ACS from fCS and reconstruct k cluster centers 1
0{ }kCα α

−
= .

Step 2: Extract one bit b from fCS . According to the extracted bit, one of the
following decoding cases is then performed:
Case 1: If 20b = , the block to be reconstructed is a flat block. All the pixel values

of block iI ′ are the decimal value of the next 8 bits extracted from fCS .
Case 2: If 21b = and the next extracted bit is 20 , the block to be reconstructed

is a smooth block. Extract the next 8 bits and convert them to a decimal value to
obtain the quantized value ˆsa . Read the next bit from fCS . If the read bit is 20

, ŝb is reconstructed by the decimal value of the next 2log ()γ bits plus ˆsa .
Otherwise, ŝb is reconstructed by the decimal value of next 2log ()σ   bits
plus ˆsa . The clustering index sα ∗ is the decimal value of next k bits, and the
bitmap

s
C

α∗ can be obtained from 1
0{ }kCα α

−
= . Using the AMBTC decoder to de-

code ˆˆ{ , , }
s

s sa b Cα∗ , the image block can be reconstructed.

Case 3: If 21b = and the next extracted bits is 21 , the block to be reconstructed
is a complex block. Extract the next 8 bits and convert them to a decimal value
to obtain the quantized value 0

cq . Read the next bit from fCS . If the read bit is

20 , 1
cq is reconstructed by the 0

cq plus the decimal value of the next 2log ()γ
bits; otherwise, 1

cq is reconstructed by the decimal value of the next 2log ()σ  
bits plus 0

cq . Using a similar manner, 2
cq is reconstructed. To reconstruct the

ternary map 1
, 0{ }n nc j jT × −

= , we start from 0j = to 1j n n= × − and repeat the fol-
lowing process: Read a bit 0b from fCS . If 0 20b = , we have , 0c jT = . Other-
wise, read the next bit 1b from fCS . If 0 1 210b b = , , 1c jT = . If 0 1 211b b = , , =2i jT
. Once we have 0 1 2{ , , }c c cq q q and 1

, 0{ }n nc j jT × −
= , the j-th pixel of the image block is

reconstructed by 0
cq , 1

cq , or 2
cq if , 0c jT = , 1, or 2, respectively.

Step 3: Repeat Step 2 until all image blocks are reconstructed, and the final
decompressed image I ′ is obtained.
We continue the example given in Section 3.4 to illustrate the decoding process. The

detailed process and the decoded result are depicted in Figure 3. To decode the code
stream 0 210 || 00100001|| 0 000101|| 0101011CS = , because the first bit is 21 and the second

Appl. Sci. 2021, 11, 619 10 of 20

bit is 20 , the to-be-reconstructed block is a smooth block. Extract the next 8 bits from 0CS
and convert them into decimal representation; we obtain 0ˆ 33a = . The next extracted bit
is . Therefore, the difference 0 5d = is the decimal value of the next 2log ()γ bits, and
we have 0 0

ˆ ˆ 5 38b a= + = . Finally, extract 2log ()k bits and convert them to a decimal
value; we have =43sα ∗ and the bitmap 43C is obtained. The image block can then be
constructed by decoding 0 0 43

ˆˆ{ , , }a b C using the AMBTC decompression technique.
To decode 1 2=11|| 00010011||1 1000010 || 0 110000 ||1010101011101110 011100 0000CS ,

because the first two extracted bits are 211 , the block to be decompressed is a complex
block. Extract 8 bits and 0

1 19q = is the decimal value of these 8 bits. The next bit is 21 ;
therefore, 1

1 =66d is the decimal value of the next 2log () 7σ =   bits and
1
1 19 66 85q = + = can be obtained. Similarly, the next extracted bit is 20 ; therefore,
2

1 48d = is obtained by converting the next 2log () 6γ = bits to their decimal value, and
2
1 85 48 133q = + = can be obtained. Finally, we have to reconstruct 15

1, 0{ }j jT = from the re-
maining bits. Because the next extracted bit is 21 , we extract one more bit, which is 20 .
Therefore, 1,0 1T = is obtained. The remaining 15 ternary digits 15

1, 1{ }j jT = can be decoded
in the similar manner. Once we have 0 1 2

1 1 1{ , , }q q q and 15
1, 0{ }j jT = , block 1I ′ can be recon-

structed. Figure 3b illustrates the decoding process of 1CS .

(a) Decoding procedures of 0CS

(b) Decoding procedures of 1CS

Figure 3. Illustration of the decoding procedures of image blocks.

4. Experimental Results
In this section, we conduct several experiments to show the effectiveness and ap-

plicability of the proposed scheme. We take eight grayscale images of size 512 512× ,
namely, Lena, Jet, Baboon, Tiffany, Boat, Stream, Peppers and House, as the test images,
as shown in Figure 4. These images can be obtained from the USC-SIPI image database

20

Appl. Sci. 2021, 11, 619 11 of 20

[21]. We use the peak signal-to-noise ratio (PSNR) and bitrate to measure the performance.
The PSNR is calculated by:

PSNR
2

10
1 2

0

25510log ,1 ()n n N
i i ix x

n n N
× × −
=

=
′−

× × 
 (9)

where ix and ix′ represent the pixel values of the original and decompressed images,
respectively. The bitrate metric is measured by the number of bits required to record each
pixel (i.e., bit per pixel, bpp).

(a) Lena (b) Jet (c) Baboon (d) Tiffany

(e) Boat (f) Stream (g) Peppers (h) House

Figure 4. Eight test images.

In all of the experiments, we set 0 4τ = because the flat blocks under this setting
show no apparent block boundary artifacts.

4.1. The Performance of the Proposed Method
Because the number of cluster centers k and threshold greatly affect the coding

efficiency in the application of the quantized value adjustment (QA) technique [18], we
evaluate how the QA technique and these parameters influence the bitrate and image
quality in this section.

4.1.1. Coding Efficiency Comparisons
In the coding of smooth blocks, the original bitmaps of smooth blocks are used to

obtain the cluster centers, and the quantized values are adjusted using the QA technique
to lower the distortions. Tables 2 and 3 show how the QA technique improves the image
quality when the block size is set to 4 4× and 8 8× , respectively. In this experiment,

1 16τ = and 32γ = are set. As seen from the tables, the QA technique effectively en-
hances the quality of reconstructed images for every k . For example, in Table 2 and

128k = , the averaged quality of the reconstructed images with and without the QA tech-
nique is 34.63 and 34.52 dB, respectively. The averaged quality has improved by
34.63 34.52 0.11− = dB. Similarly, in Table 3 when 128k = , the PSNR improvement is

1τ

Appl. Sci. 2021, 11, 619 12 of 20

31.86 31.76 0.10− = dB. Therefore, the QA technique indeed reduces the distortion
caused by replacing the original bitmap with a cluster center.

Table 2. Peak signal-to-noise ratio (PSNR) and bitrate of compressed images with 4 4× block
size.

Images 128k = 256k = 512k =
Bitrate w/o QA w/QA Bitrate w/o QA w/QA Bitrate w/o QA w/QA

Lena 1.60 35.83 35.96 1.63 35.95 36.05 1.68 36.07 36.15
Jet 1.52 35.85 35.91 1.55 35.92 35.97 1.58 35.99 36.03

Baboon 2.73 30.80 30.85 2.76 30.85 30.89 2.79 30.89 30.93
Tiffany 1.47 37.18 37.38 1.50 37.39 37.55 1.55 37.57 37.69

Boat 2.00 33.97 34.13 2.05 34.15 34.27 2.10 34.27 34.36
Stream 2.68 32.43 32.49 2.70 32.49 32.53 2.73 32.55 32.57
Peppers 1.68 35.34 35.57 1.73 35.52 35.71 1.78 35.71 35.85
House 1.95 34.73 34.78 1.97 34.79 34.82 2.01 34.85 34.88

Average 1.95 34.52 34.63 1.99 34.63 34.72 2.03 34.74 34.81

Table 3. PSNR and bitrate of compressed images with 8 8× block size.

Images 128k = 256k = 512k =
Bitrate w/o QA w/QA Bitrate w/o QA w/QA Bitrate w/o QA w/QA

Lena 0.97 32.96 33.07 1.01 33.03 33.12 1.08 33.13 33.21
Jet 1.00 32.77 32.82 1.04 32.83 32.86 1.11 32.90 32.92

Baboon 1.79 28.67 28.72 1.83 28.72 28.75 1.89 28.80 28.82
Tiffany 0.89 34.63 34.81 0.93 34.79 34.93 1.00 34.99 35.09

Boat 1.30 31.17 31.32 1.34 31.24 31.37 1.41 31.36 31.46
Stream 1.89 29.79 29.82 1.92 29.84 29.86 1.99 29.93 29.93
Peppers 1.01 32.59 32.74 1.05 32.66 32.80 1.12 32.79 32.90
House 1.36 31.52 31.57 1.39 31.57 31.61 1.46 31.65 31.67

Average 1.28 31.76 31.86 1.31 31.83 31.91 1.38 31.94 32.00

Tables 2 and 3 also reveal that the increase in cluster size k also enhances the image
quality. For example, in Table 3 when 128k = , the averaged PSNR of eight test images is
31.86 dB. When 256k = and 512, the PSNR increases 31.91 31.86 0.05− = dB and
32.00 31.86 0.14− = dB, respectively. The reason is that a larger cluster size provides a
greater chance to reduce the difference between the cluster centers and original bitmaps.

To evaluate how threshold 1τ affects the performance of the QA, we plot the gain of
PSNR when using the QA for various 1τ with 128k = and 512. The results are shown
in Figure 5. Note that, in this experiment, a block size of 4 4× is set.

Figure 5a,b shows that the gain in PSNR increases as 1τ increases, and this is mainly
because the number of smooth blocks also increases as 1τ increases. Because more blocks
are classified as smooth for larger 1τ , more blocks will be processed using the QA tech-
nique. As a result, the gain in PSNR is higher when 1τ is larger. It also can be observed
that for each test image, the gain in PSNR is larger when 128k = than that when 512k =
. The reason is that a smaller k implies larger differences between the original bitmaps
and cluster centers. Because the QA technique is capable of reducing the distortion caused
by the differences, a larger PSNR improvement can be achieved for smaller k .

It is interesting to note that the gain in PSNR of the Stream and Baboon images in-
creases more than that of other test images when varying 1 10τ = to 1 50τ = for both

128k = and 512k = . Because these two images are more complex than the others, their
bitmaps of smooth blocks are expected to be more different from the selected cluster cen-
ters used to replace the bitmaps. As previously mentioned, the QA technique is effective

Appl. Sci. 2021, 11, 619 13 of 20

in reducing the distortion caused by the differences, and the bitmaps of Stream and Ba-
boon images are more different from the cluster centers than the other images. Therefore,
the improvement in PSNR after applying the QA technique is more significant than for
the others.

Figure 5. The gain of PSNR when the quantized value adjustment (QA) technique is applied.

4.1.2. Performance Comparison of Various 1τ

The parameter 1τ controls the number of smooth and complex blocks. The number
of complex blocks decreases as 1τ increases. To see the distribution of flat, smooth, and
complex blocks of a test image, we take the Lena image as an example to illustrate their
distribution by varying 1τ . Figure 6a–d shows the distributions of blocks when 1 8τ = ,
16, 32, and 64 are set. The block sizes in these figures are 8 8× and 0 4τ = . In this figure,
the blue squares, red dots, and black cross marks represent flat, smooth, and complex
blocks, respectively.

Because the same 0τ is applied, it can be seen that the number of blue squares (flat
blocks) is the same in Figure 6a–d. However, as 1τ increases, the red dots increase and
black cross marks decrease. The reason is that an increase in 1τ leads more blocks to be
categorized as smooth. It can also be inferred that a better image quality can be achieved
at a smaller 1τ but the bitrate will be higher because more blocks are deemed to be com-
plex. Note that in the proposed method, more bits are required to represent a complex
block than a smooth block.

Appl. Sci. 2021, 11, 619 14 of 20

(a) 1 8τ = (b) 1 16τ =

(c) 1 32τ = (d) 1 64τ =

Figure 6. Distribution of flat, smooth and complex blocks.

Tables 4 and 5 show the PSNR and bitrate for all of the test images under various 1τ
with block size 4 4× and 8 8× , respectively. In this experiment, 0 4τ = , 64γ = , and

256k = are set. We also list the PSNR and bitrate of the standard AMBTC method as a
comparison. Note that the bitrates of the AMBTC with block size 4 4× and 8 8× are 2.0
and 1.25 bpp, respectively.

As seen in Tables 4 and 5, the PSNR of block size 8 8× is lower than that of block
size 4 4× . For example, when 1 16τ = , the PSNR of the Lena image of block sizes 4 4×
and 8 8× are 34.73 and 31.91 dB, respectively. However, the former requires
1.68 1.02 0.66− = more bits per pixel than the latter. In addition, the experiments also re-
veal the fact that a large 1τ effectively reduces the bitrate at the expense of image quality.
On the contrary, a small 1τ provides better image quality, but requires more bitrate. This
result is expected because a small 1τ increases the number of complex blocks and, there-
fore, the bitrate, however, the image quality also increases.

Appl. Sci. 2021, 11, 619 15 of 20

Table 4. PSNR and bitrate of the proposed method for various 1τ (block size 4 4×).

Images AMBTC
bpp = 2.0

PSNR (dB) Bitrate (bpp)

1 16τ = 1 32τ = 1 64τ = 1 16τ = 1 32τ = 1 64τ =
Lena 33.24 36.05 34.62 32.85 1.68 1.46 1.33

Jet 31.97 35.98 34.79 32.50 1.56 1.39 1.24
Baboon 26.98 30.89 29.55 25.74 2.75 2.34 1.75
Tiffany 35.77 37.55 35.72 34.26 1.54 1.34 1.25

Boat 31.16 34.27 32.87 30.81 2.09 1.77 1.57
Stream 28.59 32.53 30.20 27.27 2.73 2.11 1.66
Peppers 33.42 35.71 34.49 32.80 1.77 1.59 1.49
House 30.89 34.82 32.00 30.42 2.00 1.65 1.38

Average 31.50 34.73 33.03 30.83 2.02 1.71 1.46

Table 5. PSNR and bitrate of the proposed method for various 1τ (block size 8 8×).

Images
AMBTC

bpp = 1.25
PSNR (dB) Bitrate (bpp)

1 16τ = 1 32τ = 1 64τ = 1 16τ = 1 32τ = 1 64τ =
Lena 29.93 33.12 31.80 29.24 1.02 0.76 0.51

Jet 28.84 32.86 31.72 29.40 1.04 0.82 0.62
Baboon 25.18 28.75 27.66 23.06 1.81 1.43 0.71
Tiffany 32.55 34.93 32.76 30.74 0.94 0.62 0.47

Boat 28.07 31.37 29.78 27.44 1.35 0.90 0.61
Stream 26.10 29.85 27.99 24.18 1.92 1.34 0.63
Peppers 29.66 32.80 31.49 29.43 1.06 0.78 0.58
House 27.68 31.60 30.20 26.92 1.39 1.02 0.62

Average 28.50 31.91 30.43 27.55 1.32 0.96 0.59

Figure 7 shows the bitrate–PSNR curves of each of the eight test images by varying
the threshold 1τ from 8 to 64. The figure shows that for all of the test images, the PSNR
increases as the bitrate increases. Moreover, the figure also reveals that smooth images,
such as Tiffany or Jet, have a better compression efficiency than those of complex images,
such as Stream or Baboon. The reason is that a smooth block not only requires less bits to
record its compressed code but also provides better reconstructed quality. Because the
smooth images naturally possess more smooth blocks than complex blocks, their bitrate–
PSNR curves are higher than those of complex ones.

It also can be seen from Figure 7 that the PSNR and bitrate vary as the threshold 1τ
changes. A larger 1τ gives a lower bitrate with lower PSNR. In contrast, a smaller 1τ
offers a higher image quality, but the bitrate is also higher. Therefore, the selection of
threshold 1τ depends on real applications. For example, if an application requires higher
image quantity, a smaller 1τ is required.

It is worth noting that, for most of the test images, the proposed method provides
better performance than AMBTC, particularly for smooth images. For example, Lena, Jet,
Tiffany, Boat, and Peppers are considered to be smooth. For these smooth images, regard-
less of the value of 1τ , the PSNR is always higher and the bitrate is always lower than
those of the AMBTC method. In contrast, for the complex images such as Baboon or
Stream, few blocks are classified as flat, which require only 8 bits to record them. There-
fore, the reduction in bitrate is limited. Nevertheless, the proposed method either provides
a better image quality or lower bitrate than those of AMBTC.

Appl. Sci. 2021, 11, 619 16 of 20

Figure 7. Bitrate–PSNR curves of each of the eight test images.

4.2. Comparisons with Xiang et al.’s Work
Xiang et al.’s method [16] also improves the AMBTC method by dynamically split-

ting images into multiple groups and achieves a good performance. In this section, we
compare the proposed method with that of Xiang et al. in terms of PSNR and bitrate. To
make a fair comparison, threshold 0 4τ = and 64γ = are set in both methods. The pro-
posed method uses 1τ to control the number of smooth and complex blocks, whereas
Xiang et al.’s method uses mind to control the number of pixel groups. We select 1 8τ = ,
16, and 24 in the proposed method and compare the results with those of Xiang et al. by
setting min 6d = , 7, and 8 for block size 4 4× . The results are shown in Table 6. Table 7
shows the same experimental results, except block size is 8 8× and min 28d = , 32, and 36.
The settings of mind in Xiang et al.’s method ensure that best performance can be
achieved.

Table 6. Comparisons of PSNR and bitrate with block size 4 4× .

Images Metrics
Proposed

1 8τ =
[16]

min 6d =
Proposed

1 16τ =
[16]

min 7d =
Proposed

1 24τ =
[16]

min 8d =

Lena
PSNR 36.98 36.31 36.05 35.12 35.31 33.91
Bitrate 2.05 2.35 1.68 2.20 1.54 1.95

Jet
PSNR 36.53 34.96 35.97 33.74 35.36 32.69
Bitrate 1.80 1.98 1.57 1.87 1.45 1.71

Baboon
PSNR 31.28 31.40 30.89 29.59 30.32 28.11
Bitrate 3.12 3.57 2.75 3.24 2.52 2.75

Tiffany
PSNR 38.98 38.42 37.55 37.29 36.46 36.41
Bitrate 1.92 2.12 1.54 1.99 1.40 1.81

Boat
PSNR 35.37 34.81 34.27 33.43 33.44 32.11
Bitrate 2.65 3.02 2.09 2.79 1.87 2.43

Stream
PSNR 32.98 32.69 32.53 31.14 31.46 29.69
Bitrate 3.07 3.45 2.73 3.18 2.39 2.75

Peppers
PSNR 37.11 36.38 35.71 35.23 35.03 34.16
Bitrate 2.28 2.64 1.77 2.45 1.65 2.20

House
PSNR 35.32 35.06 34.82 33.52 33.99 31.86
Bitrate 2.28 2.52 2.00 2.35 1.80 2.05

Appl. Sci. 2021, 11, 619 17 of 20

Table 6 shows that in Xiang et al.’s method, as mind increases, the image quality and
bitrate decrease. The reason is that a large mind prevents more blocks from being split,
leading to a decrease in bitrate and PSNR. Note that for most of the test images, the pro-
posed method performs better than that of Xiang et al. We take the Lena image as an
example: when 1 16τ = and min 7d = are set, the PSNR of the proposed and Xiang et al.’s
methods are 36.05 dB with 1.68 bpp and 35.12 dB with 2.20 bpp, respectively. The PSNR
of the proposed method is 36.05 35.12 0.93− = dB higher and the bitrate is
2.20 1.68 0.52− = bpp lower than that of Xiang et al.’s method. Comparisons with other
images and another set of parameters also reveal similar results, with the exception of the
Baboon image. When 1 8τ = and min 6d = are set, the PSNR of Xiang et al.’s method is
31.40 31.28 0.12− = dB higher than the proposed method. The reason is that under these
settings, more blocks are divided into four groups and thus a better image quality is
achieved. However, their method requires 3.57 3.12 0.45− = bpp more than the proposed
method.

In the performance comparisons with block size 8 8× , the proposed method shows
better results for all test images. For example, as shown in Table 7 when 1 14τ = and

min 28d = , the PSNR of the Baboon image of the proposed method is 28.84 dB at 1.88 bpp.
The PSNR is 28.84 28.14 0.70− = dB higher and the bitrate is 2.23 1.88 0.35− = bpp
lower than those of Xiang et al.’s method.

Table 7. Comparisons of PSNR and bitrate with 8 8× block size.

Images Metrics
Proposed

1 14τ =
[16]

min 28d =
Proposed

1 22τ =
[16]

min 32d =
Proposed

1 30τ =
[16]

min 36d =

Lena
PSNR 33.32 31.88 32.66 30.85 32.00 30.27
Bitrate 1.09 1.64 0.90 1.45 0.79 1.27

Jet
PSNR 32.99 30.37 32.44 29.66 31.87 29.23
Bitrate 1.09 1.36 0.94 1.24 0.84 1.13

Baboon
PSNR 28.84 28.14 28.43 26.44 27.84 25.50
Bitrate 1.88 2.23 1.65 1.88 1.47 1.50

Tiffany
PSNR 35.36 34.44 33.97 33.48 32.95 32.89
Bitrate 1.04 1.51 0.77 1.33 0.64 1.16

Boat
PSNR 31.62 30.12 30.68 29.11 29.95 28.54
Bitrate 1.46 1.99 1.11 1.75 0.93 1.50

Stream
PSNR 29.94 28.62 29.39 27.30 28.31 26.54
Bitrate 1.99 2.20 1.71 1.90 1.41 1.58

Peppers
PSNR 33.01 31.35 32.27 30.52 31.68 30.03
Bitrate 1.14 1.86 0.91 1.62 0.81 1.40

House
PSNR 31.71 30.20 31.22 28.79 30.45 28.09
Bitrate 1.45 1.70 1.24 1.47 1.06 1.26

Figure 8a–f shows the visual quality comparisons of the AMBTC, Xiang et al.’s, and
the proposed methods. As seen from Figure 8a when the block size is 4 4× and the
AMBTC method is applied, apparent distortions can be seen in the image edges, and no-
ticeable boundary artifacts are observed (see Figure 8a). Note that the PSNR of the
AMBTC is 33.27 dB with 2.0 bpp. Xiang et al. improve the AMBTC method by adding
more details to complex blocks. As a result, the PSNR (36.31 dB) is significantly higher
and blocks at the edges look more natural than those of AMBTC (Figure 8c, min 6d =).
However, their method requires 2.35 2 0.35− = bpp more to achieve this effect. In con-
trast, the visual quality of the proposed method (Figure 8e, 1 8τ =) is comparable with
that of Xiang et al.’s method, but the bitrate is 2.35 2.05 0.30− = bpp lower with a slightly
higher PSNR.

Appl. Sci. 2021, 11, 619 18 of 20

When the block size is 8 8× , the distortion of AMBTC is more apparent (Figure 8b)
than that of 4 4× , but the bitrate reduces from 2.0 to 1.25 bpp. The visual quality of Xiang
et al.’s method (Figure 8d, min 28d =) is significantly better than that of AMBTC, and has
no noticeable block boundary artifacts. However, their method requires 1.64 1.25 0.39− =
bpp more to improve the image quality. In addition, some edges in Lena’s face, eyes, and
shoulder exhibit apparent distortions because the pixel splitting operation may not be
triggered due to the setting of mind . In contrast, the edges of the proposed method exhibit
no apparent distortion (see Figure 8f, 1 14τ =). Moreover, the bitrate required in the pro-
posed method is even lower than that of AMBTC by 1.25 1.09 0.16− = bpp.

(a) AMBTC, 4 4× , 2.00 bpp, 33.27 dB (b) AMBTC, 8 8× , 1.25 bpp, 29.93 dB

(c) Xiang et al., 4 4× , 2.35 bpp, 36.31 dB (d) Xiang et al., 8 8× , 1.64 bpp, 31.88 dB

(e) Proposed, 4 4× , 2.05 bpp, 36.98 dB (f) Proposed, 8 8× , 1.09 bpp, 33.32 dB

Figure 8. Visual quality comparisons of the proposed method and that of Xiang et al.

Appl. Sci. 2021, 11, 619 19 of 20

5. Conclusions
In this paper, we propose a hybrid encoding scheme for AMBTC compressed images

using a ternary representation technique. Considering that the number of quantized val-
ues greatly affects the quality of the reconstructed image, the proposed method classifies
image blocks into flat, smooth, and complex. These three types of blocks are encoded by
using one, two, or three quantized values. Flat blocks require no bitmap, whereas smooth
and complex blocks require binary and ternary maps, respectively, to record the quan-
tized values to be used to reconstruct the corresponding pixels. A sophisticated design
indicator is prepended before the code stream of a block to signify the block type. The
proposed method achieves a better image quality than that of prior works with a smaller
bitrate. The effectiveness of the proposed method is observed from the experimental re-
sults. Note that although the k-means algorithm used in the proposed method may require
slightly higher computational cost than that of the discrete cosine transform (DCT) based
methods, it is only applied to smooth blocks in the encoding stage to obtain the repre-
sentative bitmaps rather than the whole image. Furthermore, the k-means algorithm does
not need to be applied again during decoding. Therefore, the overall computational cost
of the proposed method is smaller than that of DCT-based compression methods.

Author Contributions: W.H., J.W., and K.-S.C. contributed to the conceptualization, methodology,
and writing of this paper. J.Y. and T.-S.C conceived the simulation setup, formal analysis and con-
ducted the investigation. All authors have read and agreed to the published version of the manu-
script.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, J.; Tian, Y.-G.; Han, T.; Yang, C.-F.; Liu, W.-B. LSB steganographic payload location for JPEG-decompressed images. Digit.

Signal Process. 2015, 38, 66–76, doi:10.1016/j.dsp.2014.12.004.
2. Liu, J.; Tian, Y.; Han, T.; Wang, J.; Luo, X. Stego key searching for LSB steganography on JPEG decompressed image. Sci. China

Inf. Sci. 2016, 59, 1–15, doi:10.1007/s11432-015-5367-x.
3. Qin, C.; Chang, C.-C.; Chiu, Y.-P. A Novel Joint Data-Hiding and Compression Scheme Based on SMVQ and Image Inpainting.

IEEE Trans. Image Process. 2014, 23, 969–978, doi:10.1109/tip.2013.2260760.
4. Qin, C.; Hu, Y.-C. Reversible data hiding in VQ index table with lossless coding and adaptive switching mechanism. Signal

Process. 2016, 129, 48–55, doi:10.1016/j.sigpro.2016.05.032.
5. Tsou, C.-C.; Hu, Y.-C.; Chang, C.-C. Efficient optimal pixel grouping schemes for AMBTC. Imaging Sci. J. 2008, 56, 217–231,

doi:10.1179/174313108x281335.
6. Hu, Y.C.; Su, B.H.; Tsai, P.Y. Color image coding scheme using absolute moment block and prediction technique. Imaging Sci.

J. 2008, 56, 254–270, .
7. Delp, E.J.; Mitchell, O.R. Image coding using block truncation coding. IEEE Trans. Commun. 1979, 27, 1335–1342.
8. Lema, M.; Mitchell, O. Absolute Moment Block Truncation Coding and Its Application to Color Images. IEEE Trans. Commun.

1984, 32, 1148–1157, doi:10.1109/TCOM.1984.1095973.
9. Kumaravadivelan, A.; Nagaraja, P.; Sudhanesh, R. Video compression technique through block truncation coding. Int. J. Res.

Anal. Rev. 2019, 6, 236–242.
10. Hemida, O.; He, H. A self-recovery watermarking scheme based on block truncation coding and quantum chaos map. Multimed.

Tools Appl. 2020, 79, 18695–18725, doi:10.1007/s11042-020-08727-7.
11. Qin, C.; Ji, P.; Zhang, X.; Dong, J.; Wang, J. Fragile image watermarking with pixel-wise recovery based on overlapping embed-

ding strategy. Signal Process. 2017, 138, 280–293, doi:10.1016/j.sigpro.2017.03.033.
12. Qin, C.; Ji, P.; Chang, C.-C.; Dong, J.; Sun, X. Non-uniform Watermark Sharing Based on Optimal Iterative BTC for Image Tam-

pering Recovery. IEEE MultiMed. 2018, 25, 36–48, doi:10.1109/mmul.2018.112142509.
13. Ma, Y.Y.; Luo, X.Y.; Li, X.L.; Bao, Z.; Zhang, Y. Selection of rich model steganalysis features based on decision rough set α-

positive region reduction. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 336–350.

Appl. Sci. 2021, 11, 619 20 of 20

14. Zhang, Y.; Qin, C.; Zhang, W.M.; Liu, F.L.; Luo, X.Y. On the fault-tolerant performance for a class of robust image ste-ganogra-
phy. Signal Process. 2018, 146, 99–111.

15. Hu, Y.-C. Low-complexity and low-bit-rate image compression scheme based on absolute moment block truncation coding.
Opt. Eng. 2003, 42, 1964–1975, doi:10.1117/1.1576776.

16. Xiang, Z.; Hu, Y.-C.; Yao, H.; Qin, C. Adaptive and dynamic multi-grouping scheme for absolute moment block truncation
coding. Multimed. Tools Appl. 2018, 78, 7895–7909, doi:10.1007/s11042-018-6030-5.

17. Chen, W.-L.; Hu, Y.-C.; Liu, K.-Y.; Lo, C.-C.; Wen, C.-H. Variable-Rate Quadtree-segmented Block Truncation Coding for Color
Image Compression. Int. J. Signal Process. Image Process. Pattern Recognit. 2014, 7, 65–76, doi:10.14257/ijsip.2014.7.1.07.

18. Hong, W. Efficient Data Hiding Based on Block Truncation Coding Using Pixel Pair Matching Technique. Symmetry 2018, 10,
36, doi:10.3390/sym10020036.

19. Mathews, J.; Nair, M.S. Adaptive block truncation coding technique using edge-based quantization approach. Comput. Electr.
Eng. 2015, 43, 169–179, doi:10.1016/j.compeleceng.2015.01.001.

20. Hartigan, J.A.; Wong, M.A. A K-means clustering algorithm. Appl. Stat. 1979, 28, 100–108.
21. The USC-SIPI Image Database. Available online: http://sipi.usc.edu/database/ (accessed on 01 Nov. 2020).

