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Abstract: Spatial-frequency domain imaging (SFDI) is a wide-field, noncontact, and label-free imag-
ing modality that is currently being explored as a new means for estimating optical absorption and
scattering properties of two-layered turbid materials. The accuracy of SFDI for optical property
estimation, however, depends on light transfer model and inverse algorithm. This study was there-
fore aimed at providing theoretical analyses of the diffusion model and inverse algorithm through
numerical simulation, so as to evaluate the potential for estimating optical absorption and reduced
scattering coefficients of two-layered horticultural products. The effect of varying optical properties
on reflectance prediction was first simulated, which indicated that there is good separation in diffuse
reflectance over a large range of spatial frequencies for different reduced scattering values in the
top layer, whereas there is less separation in diffuse reflectance for different values of absorption
in the top layer, and even less separation for optical properties in the bottom layer. To implement
the nonlinear least-square method for extracting the optical properties of two-layered samples from
Monte Carlo-generated reflectance, five curve fitting strategies with different constrained parameters
were conducted and compared. The results confirmed that estimation accuracy improved as fewer
variables were to be estimated each time. A stepwise method was thus suggested for estimating
optical properties of two-layered samples. Four factors influencing optical property estimation of the
top layer, which is the basis for accurately implementing the stepwise method, were investigated by
generating absolute error contour maps. Finally, the relationship between light penetration depth
and spatial frequency was studied. The results showed that penetration depth decreased with the
increased spatial frequency and also optical properties, suggesting that appropriate selection of
spatial frequencies for a stepwise method to estimate optical properties from two-layered samples
provides potential for estimation accuracy improvement. This work lays a foundation for improving
optical property estimation of two-layered horticultural products using SFDI.

Keywords: spatial-frequency domain imaging; absorption; scattering; two-layered; simulation

1. Introduction

Optical absorption (µa) and reduced scattering coefficients (µs
′) are closely related

to tissue physicochemical properties (e.g., tissue porosity, particle size distribution, etc.),
which, in turn, could be used as a means for enhancing the nondestructive quality and
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safety evaluation (e.g., firmness, soluble solids content, titratable acidity, etc.) of horti-
cultural products. In the last two decades, measuring optical properties (i.e., µa and µs

′)
of horticultural products (e.g., apple, citrus and tomato) have been widely studied by
different researchers in the field of food and agricultural engineering [1–3]. It was reported
that the multiplication of absorption and reduced scattering coefficients of tomato tissues
measured by spatially-resolved techniques were highly correlated with flesh firmness, with
a correlation coefficient of 0.835 [1]. In the study of Vanoli et al. (2020) [3], absorption and
reduced scattering coefficients of ‘Braeburn’ apples were determined, which were used
to evaluate the ripening processes during the shelf life period, as absorption phenomena
were related to changes in pigments present in the fruit flesh and peel, while scattering
events mirrored changes in the flesh texture.

Most research teams treated the samples as homogeneous media and neglected the
difference of optical properties among different layers for simplifying parameter estimation
procedure. However, this simplification could bring errors in studying the optical proper-
ties, as well as the loss of critical physicochemical information for individual layers. Efforts
have been made on developing two- and multi-layered models for measuring µa and µs

′ of
each layer in the traverse direction (i.e., along the surface of a turbid sample) [4–7], but the
estimation errors reported in most studies are still too large and unacceptable, especially for
the second or bottom layer. For example, Cen and Lu (2009) estimated the optical properties
of two-layered turbid materials simultaneously by using spatially-resolved techniques [5].
The results showed that absorption and reduced scattering coefficients of the top layer
of the model samples were determined with errors within 23.0 and 18.4%, respectively,
while the inverse algorithm did not give acceptable estimations for the bottom layer. Weber
et al. (2009) applied the technique of spatial-frequency domain imaging (SFDI) to estimate
optical properties of layered tissues, and reported average accuracies of ±2 and ±17% for
absorption and reduced scattering coefficients of the top layer, respectively, by using the
four-parameter fit [8]. However, the estimation errors for absorption coefficients of the
bottom layer were as large as ±25%, and no acceptable estimations for the bottom-layer’s
reduced scattering coefficients, even with the two-parameter fit. The major reason causing
the large estimation error is the much more complex inverse algorithm for a two-layered
model since it has five optical parameters (i.e., µa and µs

′ of each layer, plus the unknown
thickness of the top layer). It is, therefore, desirable to understand the intrinsic properties
of the two-layered model prior to implementing an inverse algorithm for optical property
estimation. Cen and Lu (2009) conducted sensitivity analysis to study the effects of optical
parameters (µa1, µs1

′, µa2, µs2
′ and Rd, where subscripts 1 and 2 refer to the top and bottom

layer, and Rd is diffuse reflectance) in a two-layered model on optical property estimation
by using spatially-resolved technique [5], while Wang et al. (2019) studied the effects of five
optical parameters (µa1, µs1

′, µa2, µs2
′ and top-layer thickness d) on reflectance prediction

with the technique of spatially-resolved [7]. However, few studies were focused on the
theoretical analysis of intrinsic properties of two-layered diffusion model in SFDI for optical
property estimations.

As an emerging optical measuring technique, SFDI is capable of noncontact and wide-
field mapping of µa and µs

′ on a pixel-by-pixel basis, which is absent in other techniques
using point light source (e.g., spatially-resolved, time-resolved, and integrating sphere).
SFDI can be used for estimating optical properties of homogeneous tissues, as well as
layered samples, by using appropriate light transfer models (e.g., diffusion approximation
and Monte Carlo). Recently, Tabassum et al. (2018) developed a two-layer look-up-table
inversion algorithm for extracting µa and µs

′of the bottom layer, in which Monte Carlo
simulations were conducted natively in the spatial-frequency domain [9]. The results
showed that optical property extractions of the bottom (tumor) layer were determined
to be within 20 and 11% of the true values for µa and µs

′, respectively. Several other
studies have also been reported for estimating µa and µs

′ of layered tissues using the SFDI
technique [8–12]. Some researchers estimated the four optical properties (µa1, µs1

′, µa2 and
µs2
′) simultaneously with the known top-layer thickness (all-at-once method) [8], while
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others estimated µa and µs
′ of one (often the top) layer first, followed by estimating µa

and µs
′ of the other layer (stepwise method) [12]. Our previous study demonstrated that

the efficacy and accuracy of the stepwise method for estimating optical properties of two-
layered samples were superior to that for the all-at-once method, under the constraining
conditions for the top-layer thickness between 0.2 and 2.0 mm [13]. In the paper of our
recent research, the stepwise method with frequency optimization was employed for
measuring the optical properties of apple peel and flesh tissues, and the results showed
that there were still relatively large error values (22.8%) for estimating absorption coefficient
of the flesh tissue due to the theoretical difficulty in estimating absorption coefficient of the
bottom layer [12].

In the stepwise method, accurate measurement of the optical properties of the top layer
is critical, because optical property estimations of the bottom layer is based on those of the
top layer (i.e., the estimated µa1 and µs1

′ are treated as known variables for estimating µa2
and µs2

′ with the two-layered diffusion model). Therefore, effects of potential influencing
factors, such as relative values of the optical properties of two layers (mfp1

′/mfp2
′, µa1/µa2

and µs1
′/µs2

′) and relative values of µs1
′ and µa1 (µs1

′/µa1) on optical property extraction
of the top layer, should be quantitatively described and considered. It should be noted that
mfp′ [ = 1/(µa + µs

′)] is short for mean free path, which denotes the mean distance of a single
step as an energy packet travels within the tissues. Moreover, accurate optical property
estimation of two-layered horticultural products with SFDI relies on selecting appropriate
curve fitting method, which may have diverse types in terms of free variables. For the two-
layered diffusion model that has five unknown variables, the free variable(s) can range from
one to five, in principle, depending on the number of constrained parameters. It is expected
that evaluation of estimation accuracy of different curve fitting methods would verify that
the stepwise method proposed in our previous study has better accuracy than all other
curve fitting strategies for estimating optical properties of two-layered samples. In addition,
it is preferable to have low light penetration depth when estimating optical properties of the
top layer, while high penetration depth is welcome for the bottom layer, due to the fact that
detected light should carry more effective information with the target layer. It is reported
that light penetration depth in SFDI is closely related to spatial frequency [14]. Hence, it
is desirable to quantitatively investigate the relationship between light penetration depth
and spatial frequency, in order to improve the optical property estimation of two-layered
horticultural products.

This paper presents a theoretical analysis of intrinsic properties of two-layered diffu-
sion model and inverse algorithm through numerical simulation in order to improve optical
property estimation using the SFDI technique. Therefore, the objectives of this research
were to: (1) explore the effect of optical parameters (µa1, µs1

′, µa2 and µs2
′) on reflectance

prediction; (2) evaluate parameter estimation accuracy of different curve fitting methods for
optical property estimations of two-layered samples; (3) investigate potential influencing
factors on optical property estimations of the top layer for accurately implementing the
stepwise method; (4) study the relationship between light penetration depth and spatial
frequency for laying a foundation for frequency optimization.

2. Materials and Methods
2.1. Principle and Diffusion Model

Previous literature has described the principles of SFDI for optical property estimation
of turbid media based on diffusion model [13,15], so only a brief description will be
provided here. Although not accurate for all optical properties, the diffusion model,
which is a simplified form of the radiative transfer equation, remains an efficient tool to
model light propagation in turbid media by providing analytical solutions that are easily
implemented and intuitive. For a homogeneous one-layered medium of semi-infinite
geometry normally illuminated at its surface by a steady-state, planar sinusoidal light
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pattern, diffuse reflectance at the surface can be yielded by applying the partial-current
boundary condition [16]:

Rd( fx) =
3Aa′(

µ′e f f /µtr + 1
)(

µ′e f f /µtr + 3A
) (1)

where A =
1−Re f f

2(1+Re f f )
is proportionality constant, Re f f ≈ 0.0636n + 0.668+ 0.71/n− 1.44/n2

is the effective reflection coefficient, in which n is the refractive index of the medium,
a′ = µ′s/µtr is the reduced albedo, µtr = µa + µ′s is the transport coefficient, µa and
µs
′ are absorption coefficient and reduced scattering coefficient, respectively, µ′e f f =(

3µaµtr + (2π fx)
2
)1/2

is the scalar attenuation coefficient, and fx is the spatial frequency.
For a two-layered turbid medium (Figure 1), light within the medium decays expo-

nentially, such that the light source term is different in each layer with the bottom layer
being assumed to be infinitely thick. By applying appropriate boundary conditions to the
diffusion model, diffuse reflectance at the surface can be expressed using Equation (2) [17]:

Rd( fx) = A ·
µ′s1

µ′e f f 1
· A1 + A2

A3
x (2)

where A1, A2 and A3 are constants determined by the boundary conditions, and subscript 1
of µs1

′ and µeff1
′ refers to the top layer.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 17 
 

normally illuminated at its surface by a steady-state, planar sinusoidal light pattern, dif-
fuse reflectance at the surface can be yielded by applying the partial-current boundary 
condition [16]: 

( ) ( )( )
'

' '

3
/ 1 / 3d x

eff tr eff tr

AaR f
Aμ μ μ μ

=
+ +

 (1)

where ( )
1

2 1
eff

eff

R
A

R
−

=
+

 is proportionality constant, 20.0636 0.668 0.71/ 1.44 /effR n n n≈ + + −  

is the effective reflection coefficient, in which n is the refractive index of the medium, 
' ' /s tra μ μ=  is the reduced albedo, '=tr a sμ μ μ+  is the transport coefficient, μa and μs′ are 

absorption coefficient and reduced scattering coefficient, respectively, 

( )( )1/22' 3 2eff a tr xfμ μ μ π= +  is the scalar attenuation coefficient, and fx is the spatial fre-

quency. 
For a two-layered turbid medium (Figure 1), light within the medium decays expo-

nentially, such that the light source term is different in each layer with the bottom layer 
being assumed to be infinitely thick. By applying appropriate boundary conditions to the 
diffusion model, diffuse reflectance at the surface can be expressed using Equation (2) 
[17]: 

( )
'
1 1 2

'
31

s
d x

eff

A AR f A
A

μ
μ

+
= ⋅ ⋅  (2)

where A1, A2 and A3 are constants determined by the boundary conditions, and subscript 
1 of μs1′ and μeff1′ refers to the top layer. 

 
Figure 1. Schematic of a two-layered turbid medium under structured illumination. μa1, μa2, μs1′ 
and μs2′ are absorption and reduced scattering coefficients for the top layer and bottom layer, re-
spectively, d is the thickness of the top layer, and Rd is the diffuse reflectance at the surface. 

2.2. Monte Carlo Simulations 
Monte Carlo (MC) offers a flexible and accurate approach for modeling light propa-

gation within tissues [18]. In order to investigate the effects of different optical properties 
on reflectance prediction from the two-layered diffusion model, to evaluate the estimation 
accuracy of different curve fitting methods, and to analyze the factors influencing optical 
property extraction of the top layer, a publicly available MC simulation program for 
multi-layered turbid media was used [19]. In the simulations, a package of five million 
photons was tracked. The maximum radial distance of the medium was set to 50 mm, 
which is large enough to be treated as semi-infinite. The spatial resolution for both radial 
distance and depth was set to 0.1 mm. The average refractive indices of the two-layered 

μa1 & μs1′

Layer 1

μa2 & μs2′

Layer 2

Two-layered turbid medium

Top-layer 
thickness d

Structured illumination
Rd

Figure 1. Schematic of a two-layered turbid medium under structured illumination. µa1, µa2, µs1
′ and

µs2
′ are absorption and reduced scattering coefficients for the top layer and bottom layer, respectively,

d is the thickness of the top layer, and Rd is the diffuse reflectance at the surface.

2.2. Monte Carlo Simulations

Monte Carlo (MC) offers a flexible and accurate approach for modeling light propa-
gation within tissues [18]. In order to investigate the effects of different optical properties
on reflectance prediction from the two-layered diffusion model, to evaluate the estimation
accuracy of different curve fitting methods, and to analyze the factors influencing opti-
cal property extraction of the top layer, a publicly available MC simulation program for
multi-layered turbid media was used [19]. In the simulations, a package of five million
photons was tracked. The maximum radial distance of the medium was set to 50 mm,
which is large enough to be treated as semi-infinite. The spatial resolution for both radial
distance and depth was set to 0.1 mm. The average refractive indices of the two-layered
media were both chosen to be 1.35, which was typical for most horticultural products
(e.g., apple, blueberry, citrus, tomato etc.) [20,21], while the media above and beneath the
tissue were treated as air, with the refractive index of 1.0. The anisotropy factor g was
set to 0.9, and Henyey–Greenstein phase function was used to describe light scattering.
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More details about the phase function can be found in reference by Henyey and Green-
stein (1941) [22]. The Monte Carlo multi-layered (MCML) program was first applied to
generate the spatially-resolved diffuse reflectance profiles of two-layered samples along
the radial distance under the normal incidence of an infinite small light source. Then the
1-D Hankel transform of order zero was used to convert the spatially-resolved reflectance
to spatial-frequency domain reflectance [16], which was further used for evaluating the
curve fitting methods and investigating the potential influencing factors through optical
property estimations.

In this study, a total of 20 combinations of µa and µs
′ for two-layered samples (five

samples with varying µa or µs
′ of each layer with the top-layer thickness of 2 mm, Table S1 in

Supplementary Materials) were prepared for investigating the effects of optical properties
on reflectance prediction and comparing the estimation accuracy of diverse curve fitting
methods. One optical property value was varied, while the other four were held constant.
The optical property values for these samples were chosen based on published data [23–25],
covering a large range of horticultural products with 0.001 mm−1 ≤ µa ≤ 0.1 mm−1 and
0.5 mm−1 ≤ µs

′≤ 4 mm−1. More simulation samples were created (see Tables S2–S5 in
Supplementary Materials for more details) for studying the effects of relative values of the
optical properties of two layers (mfp1

′/mfp2
′, µa1/µa2 and µs1

′/µs2
′) and relative values of

µs1
′and µa1 (µs1

′/µa1), for optical property extraction from the top layer. The parameters
of µa1/µa2 and µs1

′/µs2
′ were selected for studying the contributions of absorption and

reduced scattering coefficients of two layers on estimating optical properties of the top layer,
respectively, while mfp1

′/mfp2
′ was used for studying the combination effect of absorption

and reduced scattering coefficients. The diffusion model is based on the assumption
that scattering is dominant over absorption (µs

′ >> µa), so the parameter of µs1
′/µa1 was

also selected for investigating its effect on optical property estimation. Hereinafter, these
relative values are called influencing factors for convenience. Our previous study has
investigated the effect of top-layer thickness on optical property estimation of two-layered
medium and also determined the constraining conditions [13], indicating that the top-
layer’s maximum thickness could not exceed 2 mm, in order to have acceptable estimations
of optical properties of the bottom layer. Hence the top-layer thickness was chosen to be
2 mm for all the simulation samples in this study.

2.3. Inverse Algorithm for Estimating Optical Properties of Two-Layered Samples

Prior to determining the optical properties of two-layered simulation samples from
the spatial-frequency domain reflectance, the effect of varied µa and µs

′ of each layer on
reflectance prediction was investigated, which would be helpful for understanding the
two-layered diffusion model. To select the most proper, robust and accurate parameter
estimation method for determining the optical properties of two-layered samples, different
curve fitting methods that differ in the number of free variables were compared and
evaluated (Table 1). First, all five parameters (µa1, µs1

′, µa2, µs2
′ and d) were estimated

simultaneously using the two-layered model in Equation (2) (five-variable fit). Second,
the top-layer thickness was assumed to be known and the other four parameters were
estimated at once (four-variable fit). Third, µa and µs

′ of either the top layer or the bottom
layer were estimated, depending on which layer had changed variables, while µa and µs

′ of
the other layer and thickness the top layer were treated as known (two-variable fit). Fourth,
only µa or µs

′ was estimated, while all others were treated as known (one-variable fit). Fifth
and finally, the one-layered model in Equation (1) was utilized to estimate µa and µs

′ of the
top layer, which was used in our proposed stepwise method [13]. The estimated optical
properties were compared with the true values for evaluating the estimation accuracy.
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Table 1. Different curve fitting methods for estimating optical properties of two-layered simulation
samples.

Curve Fitting Method Estimated Parameter Known Parameter Fitted Model

Five-variable fit µa1, µs1
′, µa2, µs2

′, d – Equation (2)
Four-variable fit µa1, µs1

′, µa2, µs2
′ d Equation (2)

Two-variable fit µa1, µs1
′ or µa2, µs2

′, the other three Equation (2)
One-variable fit µa1 or µs1

′ or µa2 or µs2
′ the other four Equation (2)

One-layered model µa1, µs1
′ – Equation (1)

A nonlinear least-squares fitting method was used to minimize the sum-of-squares of
the difference between the true reflectance and predicted reflectance values with estimated
parameters using Equation (1) or Equation (2). In this study, a subspace trust-region method
based on the interior-reflective Newton approach was used to achieve the algorithm
optimization [26], which is defined by minimizing a quadratic function subject to an
ellipsoidal constraint. The approach can generate iterates in the strictly feasible region by
using a new affine scaling transformation, and the speed of convergence is accelerated by
following a reflective line search technique. The optical property estimation procedure
from the spatial-frequency domain reflectance of two-layered simulation samples was
implemented using the Toolbox function ‘lsqcurvefit’ in Matlab 8.4 (The MathWorks, Inc.,
Natick, MA, USA). Previous studies revealed that there were inherent discrepancies of the
reflectance between the diffusion model and MC simulation, which would greatly affect the
accuracy of optical property estimation [16,27]. It was proven that sample-based calibration
method could decrease the reflectance discrepancies and improve the estimation accuracy.
The method was implemented by first selecting a set of calibration samples depending
on the initial estimated values of µs1

′. Ratios of diffusion model generated reflectance to
MC-generated reflectance for all the calibration samples were obtained, and they were then
used for calculating the calibrated reflectance by multiplying the original reflectance for
each sample. Since this study is focused on theoretical analysis of a two-layered diffusion
model, the sample-based calibration method was thus applied for reflectance correction,
which was then used for optical property estimation. More details about the calibration
method are referred to Hu et al. (2019) [13].

To qualitatively and quantitatively investigate the factors influencing optical property
estimation of the top layer, absolute error contour maps for estimating µa and µs

′ were
plotted, with the horizontal and vertical axes of the maps denoting start and end spatial
frequencies, in which the error was calculated by comparing the true values of µa and µs

′

with the parameter estimation results. Eleven start frequencies from 0 to 0.1/mfp1
′ with

an increment of 0.01/mfp1
′ and 18 end frequencies from 0.15/mfp1

′ to 0.5/mfp1
′ with an

increment of 0.02/mfp1
′ were evaluated for parameter estimations of the top layer. The

interval spacing between each start and end frequency pair was set as 0.01 mm−1. Note
that relative errors in contour maps were transformed to absolute values, and the absolute
errors of µa and µs

′ larger than 60% and 20% were treated as 60% and 20% for better visual
effect.

3. Results
3.1. Effect of Varying Optical Properties on Diffuse Reflectance

Frequency-dependent diffuse reflectance predicted by the two-layered diffusion model
for different optical properties of each layer is plotted in Figure 2; for each plot in the figure
one parameter is varied while the other four are held constant. Generally, the reflectance
decreased with the increased absorption coefficients, while it increased with the reduced
scattering coefficients. The most distinct separation in diffuse reflectance for different values
of µa1, µa2 and µs2

′ was observed at relatively low frequencies. For varying µs1
′ values, the

five reflectance curves show distinct differences across the frequency range with the best
separation occurring around 0.2 mm−1 (Figure 2(a2)). Overall, Figure 2 demonstrates that
there is good separation in diffuse reflectance over a large range of spatial frequencies for
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different µs1
′ values, whereas less separation in diffuse reflectance for different µa1 values,

and even less separation for different values of µa2 and µs2
′, suggesting the difficulty of

accurately estimating the bottom layer. That is because light must propagate through the
top layer before interacting with the bottom layer tissue, in which case only a small number
of energy packets reemitted from the bottom layer can be detected. In Figure 2(b1,b2), the
value of mfp1

′ is equal to 0.5 mm, while the top-layer thickness is 2 mm, which implies
that light would have travelled more than four steps before entering into the bottom layer.
Hence, the separation in diffuse reflectance for different values of µa2 and µs2

′ would
increase with the decreased top-layer thickness due to the fact that the detected light have
more interaction with the bottom layer. The results from the four plots in Figure 2 further
suggest that better estimation of the four optical parameters (µa1, µs1

′, µa2 and µs2
′) could

be achieved when low spatial frequencies are used.
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Figure 2. Diffuse reflectance predicted by the two-layered diffusion model (Equation (2)) ver-
sus spatial frequency for varying optical properties in (a1) µa1 (µs1

′ = 2 mm−1, µa2 = 0.02 mm−1,
µs2
′ = 1 mm−1 and d = 2 mm), (a2) µs1

′ (µa1 = 0.03 mm−1, µa2 = 0.02 mm−1, µs2
′ = 1 mm−1 and

d = 2 mm), (b1) µa2 (µa1 = 0.03 mm−1, µs1
′ = 2 mm−1, µs2

′ = 1 mm−1 and d = 2 mm), and (b2) µs2
′

(µa1 = 0.03 mm−1, µs1
′ = 2 mm−1, µa2 = 0.02 mm−1 and d = 2 mm).

3.2. Optical Property Extraction from MC-Generated Reflectance

As mentioned in Section 2.3, the reflectance generated by MC simulation, after the
correction, was much closer to that by the diffusion model, which was, therefore, used
for optical property extraction in this study. Figure 3 shows estimated absorption and
reduced scattering coefficients of each layer using different curve fitting methods. Note that
the one-layered model was only used for estimating µa1 and µs1

′ in Figure 3(a1,a2). The
average absolute values of relative errors for the five curve fitting methods are summarized
in Table 2. Overall, the accuracy for estimating µa1, µs1

′, µa2 and µs2
′ from the corrected

reflectance are within 18%, which are superior to that without reflectance correction (results
not presented here).
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Figure 3. Estimated absorption and reduced scattering coefficients of each layer from the corrected
reflectance generated by Monte Carlo simulation using different curve fitting methods. (a1) µa1

varies 0.01–0.1 mm−1 with µs1
′ = 2 mm−1, µa2 = 0.02 mm−1, µs2

′ = 1 mm−1 and d = 2 mm, (a2) µs1
′

varies 0.5–4 mm−1 with µa1 = 0.03 mm−1, µa2 = 0.02 mm−1, µs2
′ = 1 mm−1 and d = 2 mm, (b1) µa2

varies 0.01–0.1 mm−1 with µa1 = 0.03 mm−1, µs1
′ = 2 mm−1, µs2

′ = 1 mm−1 and d = 2 mm, and (b2)
µs2
′ varies 0.5–4 mm−1 with µa1 = 0.03 mm−1, µs1

′ = 2 mm−1, µa2 = 0.02 mm−1 and d = 2 mm.

Table 2. Average relative errors (in absolute values) of different curve fitting methods for estimating
absorption (µa) and reduced scattering (µs

′) coefficients of each layer.

Optical
Property

Five-Variable
Fit

Four-Variable
Fit

Two-Variable
Fit

One-Variable
Fit

One-Layered
Model

µa1 (%) 9.84 17.25 4.78 8.14 12.23
µs1
′ (%) 9.81 3.72 2.77 2.90 2.66

µa2 (%) 10.44 9.86 4.73 8.30 –
µs2
′ (%) 11.62 10.48 12.11 8.15 –

The accuracy for estimating µs1
′ (Figure 3(a2)) was much better than that for µa1

(Figure 3(a1)) for all five curve fitting methods, which is consistent with the reflectance
analyses in Section 3.1. It could be observed from Table 2 that five-variable fit performed
the weakest for estimating µs1

′, followed by the four-variable fit, confirming that estimation
accuracy improves as fewer variables are to be estimated each time [5,7]. However, for
estimating µa1, four-variable fit performed the weakest, followed by the one-layered model.
These results are out of expectation that one-layered model with two unknown variables
could obtain higher estimation accuracy than five- and four-variable fit methods. This
may be partly explained by the fact that the light samples the bottom layer as well thus
seeing in part its increased absorption, especially for lower µa1, while for high µa1, the
detected light does no longer go through the bottom layer, making the one-layered model
a well description. Moreover, the reflectance used for curve fitting was generated by MC
simulation and corrected based on the values of µs1

′ rather than µa1, which may also add
challenges for estimating µa1 using the one-layered model; the value of µa1 is much smaller
and more sensitive to the reflectance change than the µs1

′. Detailed analyses show that
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the largest average error for estimating µa1 using one-layered model is caused by the first
point where µa1 is equal to 0.01 mm−1 (shown in Figure 3(a1)).

For the bottom layer estimation in Figure 3(b1,b2)), estimation accuracy is much worse
than for the top layer. Two- and one-variable fit improved the accuracy for estimating µa1,
µs1
′ and µa2, but the error values for estimating µs2

′ using the two-variable fit were a little
higher than the other three methods (Table 2). It is expected that the estimation accuracy of
µa2 and µs2

′ would be improved as the top-layer thickness decreases, because the detected
light would carry more information related to the bottom layer.

In view of the fact that no a priori information about the optical properties of the
bottom layer is available in practical applications, and after comparison of the average
absolute errors for all five curve fitting methods, a stepwise method is suggested for
estimating the optical properties of two-layered samples. First, µa1 and µs1

′ are estimated
using one-layered model. After obtaining µa1 and µs1

′ estimations, the two-variable fit
is used for estimating µa2 and µs2

′, assuming that the top-layer thickness is known. It
should be noted that one-layered model does not require a priori knowledge of the top-layer
thickness for estimating µa1 and µs1

′, compared to the other curve fitting methods (i.e., four-
, two- and one-variable fit). The stepwise method reduces the number of constrained
variables from five or four to two at every step, which could improve the overall estimation
accuracy [12,13]. Therefore, the stepwise method was used for optical property estimations
of two-layered samples going forward after Section 3.2 in this study.

3.3. Factors Influencing Optical Property Extraction of Top Layer

Accurate optical property extraction from the top layer is critical for the stepwise
method because estimation results of the bottom layer are based on those from the top
layer. Influencing factors of mfp1

′/mfp2
′, µa1/µa2 and µs1

′/µs2
′ determine the contributions

of each layer on diffuse reflectance. Larger contribution implies higher accuracy for
estimating the corresponding optical properties theoretically. Parameter of µs1

′/µa1 is
closely related to the assumption of diffusion model, which is the basis of Equation (1) and
Equation (2) for optical property estimation. It is thus desirable to quantitatively evaluate
the effects of the four factors. The results showed that factors of µa1/µa2 and µs1

′/µs2
′ had

negligible effects on optical property extraction from the top layer (see Figures S1 and S2
in Supplementary Materials for more details). Hence only the factors of mfp1

′/mfp2
′ and

µs1
′/µa1 are discussed here, and the results are displayed in Figures 4 and 5, respectively.

It is observed from Figure 4 that the absolute values of relative errors for estimating
µa1 and µs1

′ decreased first, and then increased with the increasing values of mfp1
′/mfp2

′.
Further analysis showed that there were relatively small errors for µa1 and µs1

′ when the
values of mfp1

′/mfp2
′ were 1.2 and 1.6 (No. 26 and No. 27 in Table S2 of Supplementary

Materials). This may be due to that the effective attenuation coefficients µeff of the bottom
layer (1.36 and 1.57) and the top layer (1.60 and 1.60) are close to each other for both
the two samples, resulting in similar light attenuation for the two layers. The absolute
error contour maps also indicated that the optimal frequency region for estimating µs1

′

was rather stable with relatively large start and end frequencies. This is because diffuse
reflectance under large spatial frequency mainly depends on tissue scattering properties.
For µa1, it is observed that the optimal start and end frequencies increased when the
values of mfp1

′/mfp2
′ raised from 0.4 to 1.2 (Figure 4(a1,b1,c1)) due to the fact that larger

mfp1
′/mfp2

′ lead to increased optical properties for the bottom layer, resulting in more
effects on optical property estimations of the top layer. It was reported that structured
illumination with larger frequencies resulted in shallower light interrogation [14,16,28],
thus reducing and even eliminating the effects of the bottom layer on the estimation of
µa1 and µs1

′. These findings could provide references for optimizing frequency region for
optical property estimations from the spatial-frequency domain reflectance.
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′/mfp2
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Figure 5 showed that the optimal frequency region for estimating both µa1 and µs1
′

were relatively stable with varying values of µs1
′/µa1. Absolute values of relative errors

for estimating µs1
′ increased with the decreased values of µs1

′/µa1, which is in agreement
with the expectation since the curve fitting is subject to the assumption of diffusion approx-
imation (i.e., scattering dominant tissue). However, the error pattern for estimating µa1
did not obey this strictly. The absolute values of relative errors of µa1 reduced with the
values of µs1

′/µa1 decreasing from 133 to 20. Further analysis demonstrated that smaller
µs1
′/µa1 lead to larger values of µa1, which made µa1 be less sensitive to the variation and

the parameter estimation for µa1 much easier (e.g., errors could reduce from 10 to 1% for
µa1 values of 0.01 mm−1 and 0.1 mm−1, respectively, when the measured value deviated
0.001 mm−1 from the true value); even so, errors for estimating µa1 increased when the
values of µs1

′/µa1 were smaller than 10 (Figure 5(d1)), because too small µs1
′/µa1 was

beyond the boundary in which the optical properties could be estimated accurately from
the diffusion model.

Overall, the discussion above suggests that the values of µs1
′/µa1 should be no smaller

than 10 to obtain accurate estimation of µa1 and µs1
′ by using the stepwise method, which

is applicable for most horticultural products due to the scattering-dominated property.
Considering the findings that the optimal frequency region for estimating µa1 (that for
µs1
′ is relatively stable) varies with the values of mfp1

′/mfp2
′, it is strongly suggested to

optimize the spatial frequency in terms of mfp1
′ and/or mfp2

′ for improving the estimation
accuracy in future studies.

3.4. Relationship Between Light Penetration Depth and Spatial Frequency

Knowledge of light penetration depth is valuable because it could help us in opti-
mizing the design of sensing configuration and parameter (i.e., illumination/detection
geometry, sample presentation mode, detection angle, etc.) to collect effective information
from the interior tissue of a target sample. Different methods have been proposed for
measuring light penetration depth [29–33]. In diffuse optics, light penetration depth in hor-
ticultural products is typically defined as the travelling distance corresponding to a decay
in power by a factor of 1/e (~37%). In the context of the steady-state diffuse approximation,
light penetration depth of conventional uniform illumination depends on tissue optical
properties (i.e., µa and µs

′), which can be calculated using the following equation [34]:

δ =
1

µe f f
=

1√
3µa
(
µa + µ′s

) (3)

where µeff is the effective attenuation coefficient. Under structured illumination of sinu-
soidal patterns in SFDI technique, the above equation can be modified as follows [16,35]:

δ =
1

µ′e f f
=

1√
µ2

e f f + (2π fx)
2 +

(
2π fy

)2
(4)

where fx and fy are spatial frequencies along horizontal and vertical directions, respectively.
Equation (4) implies that light penetration depth under structured illumination de-

pends, besides the tissue optical properties, on the spatial frequency of the sinusoidal
patterns. High spatial frequency results in shallow penetration depth, which provides a
theoretical guide for achieving the effective information in different depths by selecting
appropriate spatial frequencies. Four sets of optical properties, which cover the common
and typical range of horticultural products, were employed for studying the relationship
between light penetration depth and spatial frequency, and the results are displayed in
Figure 6. It could be observed that larger values of µa and µs

′ generated shallower light pen-
etration depth (pink dot line) since more light was absorbed or scattered while propagating
within the tissues. This trend is especially true when the spatial frequency is smaller than
0.05 mm−1. According to this, the light penetration depth is estimated to be 0.5–5.5 mm
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for apple fruit with typical values of µa being 0.01–0.05 mm−1 and µs
′ being 1.0–2.0 mm−1,

respectively, in the wavelength region of 500–1000 nm. Note that the illumination pattern in
this case is modulated only along the horizontal axis (i.e., fy = 0) with the spatial frequency
fx varying from 0.01 to 0.3 mm−1.
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Figure 6. Relationship between light penetration depth and spatial frequency for a homogeneous
sample under structured illumination of sinusoidal patterns with four sets of optical properties.

In order to improve estimation accuracy for optical properties of two-layered horti-
cultural products by using the stepwise method, it is suggested to have relatively large
spatial frequency for estimating µa1 and µs1

′ through one-layered model, and relatively
small frequency for estimating µa2 and µs2

′ through two-variable fit based on two-layered
model. Effect of tissue optical properties on frequency selection should also be taken into
account, which is consistent with the suggestions discussed in Section 3.3 (i.e., optimize
the spatial frequency in terms of mfp1

′ and/or mfp2
′).

4. Discussion

Depth-varying characterization is the hallmark of SFDI technique under structured il-
lumination with sinusoidal patterns, which is absent in conventional uniform illumination.
However, the light penetration depth derived from Equation (4) does not always hold for ac-
tually detectable region for a general imaging system. In such cases, the light backscattered
close to the illumination source contributes more to the detected signals, which correspond
to a far more superficial depth of tissue interrogation than that derived from diffuse light
attenuation. Moreover, due to the comprehensive consideration of imaging resolution,
imaging contrast and signal-to-noise ratio, the factor of 1/e for light decaying in tissues is
not always appropriate in practical applications, such as the subsurface bruise detection
of fruit sample [36]. Since one goal of this study is to explore the potential of accuracy
improvement for estimating optical properties of two-layered horticultural products by
selecting appropriate frequency region, the relationship between light penetration depth
and spatial frequency was just roughly investigated here. A more realistic experimental
setting, such as three-dimensional modeling of the target sample with more layers [37],
should be taken into account in the future for quantifying the light penetration depth, as
well as the sampling volume (i.e., spatial distribution of detector depth sensitivity).

The cross effect of each layer is one of the challenging factors influencing optical
property estimation of two-layered horticultural products. It is desirable to obtain the
effective information of the target (top or bottom) layer when estimating the corresponding
µa and µs

′ without the interference of the other layer. The feature of depth-varying of SFDI
provides a potential solution for solving this problem. The emitted optical signals under
large spatial frequency carry more information related to the top layer, while those with
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relatively small spatial frequency penetrate deep into the bottom layer. It is thus possible to
quantitatively select a spatial frequency, under which the captured signal is only related to
the top layer. Then, an operation of subtraction between this signal and another one with
smaller frequency can be used to eliminate the effect of the top layer. In principle, the signal
after this operation should be more related to the bottom layer, and thus improving the
estimation accuracy for µa and µs

′ of the bottom layer. Take the apple fruit as a two-layered
example with peel and flesh tissues. Subtraction operation for the demodulated reflectance
between the small frequency and large frequency is expected to clear the peel information
of apple sample, and the remaining reflectance will be more valuable for estimating µa
and µs

′ of the flesh tissue. It should be noted that this method may be limited for the
two-layered horticultural products with relatively thin top-layer thickness (e.g., apple,
peach and tomato) due to restricted light penetration depth (~1–2 mm) under the spatial
frequency of 0.15 mm−1 [38]. The full potential of this method is worth exploring in the
future research.

Thanks to the characteristics of the one-layered model, the stepwise method does
not require a priori knowledge of the top-layer thickness for estimating µa1 and µs1

′, but
the top-layer thickness is still required to be known when estimating µa2 and µs2

′ using
the two-variable fit through the two-layered model. However, the top-layer thickness
is usually unknown or difficult to be measured accurately, which brings challenges for
optical property estimations of the bottom layer. Furthermore, the sample-based cali-
bration method, which was employed for reflectance correction, may also bring some
challenges when considering another optical property, i.e., the scattering phase function.
Light backscattering at short source-detector separations is considerably influenced by the
scattering phase function. In the spatial-frequency domain, as the horticultural product is
illuminated by the structured lighting with high spatial frequency, part of the backscattered
light would be referred to as sub-diffusive light, which largely depends on the scattering
phase function. Different phase function parameters have been proposed for quantifying
the influence of phase function on sub-diffusively backscattered light [39]. The influence of
scattering phase function changed in the MC simulations on optical property estimations
should be investigated.

In recent years, deep learning algorithms (e.g., generative adversarial networks, ran-
dom forest, etc.) have evolved rapidly, which provide a means for accelerating and also
improving optical property estimations of turbid materials [40–42]. What makes such
methods attractive is their capacity to perform particularly well in learning nonlinear map-
pings. Unlike the conventional nonlinear curve fitting based on diffusion model, a deep
learning method could predict optical properties directly from the SFDI images, without
a priori knowledge of the top-layer properties (e.g., thickness, absorption and reduced
scattering coefficients), which, however, require a sufficiently large image dataset to train
the networks. Hence, future research efforts should also be directed at efficient utilization of
deep learning for rapid and accurate optical property estimations of horticultural products.

5. Conclusions

This paper presents a theoretical analysis of intrinsic properties of the two-layered
diffusion model and inverse algorithm through numerical simulation, including effect of
optical parameter on reflectance prediction and optical property extraction, estimation
accuracy of different curve fitting methods, and relationship between penetration depth and
spatial frequency, in order to improve optical property estimation accuracy of two-layered
horticultural products using SFDI technique. Reflectance prediction results indicated that
there is good separation in diffuse reflectance over a large range of spatial frequencies for
different µs1

′ values, whereas less separation in diffuse reflectance for different µa1 values,
and even less separation for different values of µa2 and µs2

′, which is in agreement with
accuracy for estimating optical properties. Evaluation of parameter estimation accuracy for
all the five curve fitting strategies suggested to apply the stepwise method for estimating
optical properties of two-layered samples, which estimated µa1 and µs1

′ using the one-
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layered model first, followed with the estimation of µa2 and µs2
′ using the two-variable

fit. Investigation on the factors influencing the extraction of µa1 and µs1
′, and relationship

between penetration depth and spatial frequency offered great guidance for optimizing the
frequency region for optical property estimation. Future work can be done on exploring
the full potential of depth-varying features in SFDI for reducing or eliminating the effect of
the top layer on estimating optical properties of the bottom layer.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/2/617/s1, Figure S1: Absolute error contour maps for estimating µa1 (left panel) and µs1

′ (right
panel) of four representative two-layered simulation samples with varying values of µa1/µa2 by using
the stepwise method with different start and end frequencies, Figure S2: Absolute error contour maps
for estimating µa1 (left panel) and µs1

′ (right panel) of four representative two-layered simulation
samples with varying values of µs1

′/µs2
′ by using the stepwise method with different start and end

frequencies, Table S1: Twenty two-layered simulation samples with different combinations of µa1,
µs1
′, µa2, µs2

′and top-layer thickness d for investigating the effects of optical properties on reflectance
prediction and comparing the estimation performance of diverse curve fitting methods, Table S2:
Two-layered simulation samples with varying values of mfp1

′
/mfp2

′, Table S3: Two-layered simulation
samples with varying values of µa1/µa2, Table S4: Two-layered simulation samples with varying
values of µs1

′
/µs2

′, Table S5: Two-layered simulation samples with varying values of µs1
′
/µa1.
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