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Abstract: Lung cancer has one of the highest cancer mortality rates in the world and threatens
people’s health. Timely and accurate diagnosis can greatly reduce the number of deaths. Therefore,
an accurate diagnosis system is extremely important. The existing methods have achieved significant
performances on lung cancer diagnosis, but they are insufficient in fine-grained representations. In
this paper, we propose a novel attentive method to differentiate malignant and benign pulmonary
nodules. Firstly, the residual attention network (RAN) and squeeze-and-excitation network (SEN)
were utilized to extract spatial and contextual features. Secondly, a novel multi-scale attention net-
work (MSAN) was proposed to capture multi-scale attention features automatically, and the MSAN
integrated the advantages of the spatial attention mechanism and contextual attention mechanism,
which are very important for capturing the salient features of nodules. Finally, the gradient boosting
machine (GBM) algorithm was used to differentiate malignant and benign nodules. We conducted
a series of experiments on the Lung Image Database Consortium image collection (LIDC-IDRI)
database, achieving an accuracy of 91.9%, a sensitivity of 91.3%, a false positive rate of 8.0%, and an
F1-score of 91.0%. The experimental results demonstrate that our proposed method outperforms the
state-of-the-art methods with respect to accuracy, false positive rate, and F1-Score.

Keywords: lung cancer diagnosis; deep learning; 3D dual path network; attention network

1. Introduction

Lung cancer is one of the most lethal cancers in the world, posing a threat to people’s
health [1]. Lung cancer mortality can be significantly reduced through early diagnosis and
screening [2]. In the 1960s, computer-aided diagnosis (CAD) was proposed and used to
diagnose lung cancer, which relieved the pressure on doctors and helped them to diagnose
cases more accurately [3].

Traditionally, researchers manually extracted hand-crafted features and designed clas-
sifiers, but designing hand-crafted features was time-consuming and required professional
medical knowledge. The effectiveness of feature extraction depends on doctors’ expertise
in lung cancer diagnosis and their understanding of traditional machine learning meth-
ods. Moreover, hand-crafted features were subjective and their generalization was poor.
Therefore, it is very important to develop an algorithm for automatic feature extraction.

In recent years, end-to-end network has become very popular, and it can automatically
extract deep features and learn the internal salient features through iterations. Architectural
convolution neural network (CNN) has gained huge success in lung nodule classification.
In the early stages, 2D CNN was mainly used for pulmonary nodule classification. Two-
dimensional CNN could effectively extract features within an image but could not extract
the features between the images which are important for lung nodule classification. In
recent years, 3D CNN has led to better performances than 2D CNN [4]. Three-dimensional
CNN can extract spatial features of nodules, which are very important in classifying
nodules. Although the existing deep learning methods have made great progress in the
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diagnosis of lung nodules, there are still deficiencies in feature extraction. Due to the small
lung cancer dataset, it is difficult to extract rich and useful features. Researchers usually
deepen the network depth and width to extract rich features, but networks are prone to
overfitting. Moreover, not all of the extracted features are useful and some invalid features
will reduce the performance of the model. Therefore, based on the small lung cancer
dataset, it is very important to design a novel method which can extract rich and useful
fine-grained features automatically, and this method should be able to avoid overfitting as
much as possible, so that the robustness of the method can be guaranteed.

Attention networks are often effective for capturing fine-grained features. An attention
mechanism plays an important role in image classification, and it can make networks
capture useful attention features automatically. However, if the attention mechanism is not
designed or applied properly, the attention mechanism will filter out important features and
focus on some unimportant features instead, which will lead to performance degradation
of the model. Although some attention methods have been successfully applied in the field
of lung cancer diagnosis, there are still deficiencies in some aspects, such as the multi-scale
problem between large nodules and small nodules, and the multi-resolution problem of
different nodules.

To address these challenges, firstly, we used a 3D dual path network (DPN) as our
backbone network, which aggregated the advantages of residual connection and dense
connection. Based on the dense connection of a DPN, rich features were extracted and the
residual connection avoided overfitting. The backbone network ensured the overall perfor-
mance of our model. Secondly, we applied the squeeze-and-excitation module (SEN) [5]
and residual-attention network (RAN) [6] to extract contextual features and spatial features,
and the attention modules were useful to make the network focus on important features
and to filter out redundant features. RAN is effective in solving multi-resolution problems
because of its bottom-up and top-down structure. Especially, RAN was the first applied
method in terms of pulmonary nodule classification. Moreover, we designed a multi-scale
attention module to automatically obtain multi-scale nodule features, including sparse
features and dense features, and the multi-scale attention network (MSAN) module can con-
catenate the spatial features and contextual features effectively. The attention mechanism
can automatically concentrate on essential regions and can extract key features for pul-
monary nodule classification. Finally, the gradient boosting machine (GBM) algorithm [7]
was utilized to differentiate benign and malignant nodules.

To verify our model, we conducted experiments on the Lung Image Database Con-
sortium image collection (LIDC-IDRI) dataset. The experimental results prove that our
attention mechanisms are effective for improving nodule classification. At last, our pro-
posed framework significantly outperformed previous state-of-the-art methods. Our main
contributions are as follows: (1) We applied residual attention and squeeze-and-excitation
module to automatically concentrate on regions which are essential for nodule classifica-
tion and the residual structure ensures the integrity of the features, which can prevent
overfitting to some extent and can improve the classification performance. (2) We propose
a Multi-scale attention mechanism to automatically obtain multi-scale salient features of
nodules which can better extract the features of different scales of nodules and can fuse
sparse features and dense features effectively.

The rest of the paper is organized as follows. Section 2 discusses previous related
works in medical image analysis and pulmonary nodules classification. Section 3 describes
the data preprocessing and the proposed framework in detail. The experiments results and
discussions are described in Section 4. Finally, we conclude our work in Section 5.

2. Related Works

Traditionally, researchers extracted hand-crafted features based on their professional
recognition in medical imaging and pulmonary nodules and then designed a classifier to
classify the extracted hand-crafted features. The hand-crafted features usually included
texture, shape, density, and sphericity features, and the classifiers usually included Support
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Vector Machine (SVM), Random Forest, and K-nearest classifier [8–10]. Carvalho et al. [11]
utilized image preprocessing and pattern recognition methods to differentiate malignant
and benign nodules. To classify nodules, they used phylogenetic diversity by means of
particular indexes, which were intensive quadratic entropy, extensive quadratic entropy,
average taxonomic distinctness, and so on. Moreover, they utilized a genetic algorithm to
select the best model. Costa et al. [12] used the mean phylogenetic distance and taxonomic
diversity index to extract pulmonary texture features. After obtaining the texture features,
they combined a genetic algorithm and SVM to select the best training model. Finally, their
proposed model was tested on the LIDC/IDRI dataset.

For traditional pattern recognition methods, manual feature extraction is required,
and feature extraction is not easy. A professional radiologist uses a lot of effort to extract
the relevant features, and the effectiveness of feature extraction depends on the doctor’s ex-
pertise in lung cancer diagnosis and on their understanding of traditional machine learning
methods. Moreover, the feature extraction process is highly subjective and time-consuming.
Therefore, it is very important to develop an algorithm for automatic feature extraction.

With the development of deep learning, many researchers utilize deep learning meth-
ods to differentiate pulmonary nodules. The common classification network is convolu-
tional neural network (CNN). To classify pulmonary nodules better, researchers usually
improve the feature extractor and feature classifier of a CNN network. Wei et al. [13]
proposed a Multi-crop convolution neural network (MC-CNN) to automatically extract
nodule salient features. They cropped feature maps with different size and concatenated
them. The multi-scale feature maps contained more semantic information, and this strat-
egy obtained a good performance on nodule classification. To utilize spatial 3D context
information, Liu et al. [14] proposed an end-to-end architecture named dense convolu-
tional binary-tree network to classify nodules. They introduced center-crop operation into
DenseNet and utilized separation and fusion operations on transition layers which were
useful to enrich multi-scale features. For the above existing deep learning methods on lung
cancer diagnosis, the network structure is usually relatively complex and large. Due to the
limitation of medical dataset, networks are prone to overfitting and they are insufficient in
capturing fine-grained features. Although there are some methods that have addressed
these challenges, they were not comprehensive and could be further improved. For exam-
ple, Zhu et al. [15] utilized 3D dual path networks (DPNs) to extract pulmonary nodule
volume features which are effective for avoiding overfitting. However, the 3D features of
pulmonary nodules are enormous and fine-grained features are not captured effectively.
To capture fine-grained features, Zhang et al. [16] combined the squeeze-and-excitation
attention network with aggregated residual transformations ResNeXt and applied their
proposed method to the classification of malignant and benign lung nodules. The squeeze-
and-excitation attention network is effective in refining features among channels, but the
spatial features are not processed effectively in their work. Based on the DPNs archi-
tecture, Jiang et al. [17] added the spatial and contextual attention module into DPNs
and ensembled a multi-network to classify pulmonary nodules. Their proposed attention
mechanism was effective in feature refinement, but the spatial attention module could be
further improved. Multi-scale, multi-resolution, and residual connection problems are
not considered in their spatial attention network, which are very important for classifying
lung nodules.

To extract more features of nodules, researchers tended to differentiate nodules with
the fusion of deep learning features, raw nodule features, and hand-crafted nodule features.
Xie et al. [18] fused gray level cooccurrence matrix (GLCM) features, Fourier shape features,
and deep learning features and utilized AdaBoosted backpropagation neural network to
differentiate nodules. Moreover, they fused the classification results of different classifiers.
They tested their architecture on the LIDC-IDRI dataset, and the results proved that their
fusion strategies were effective. Kaya et al. [19] fused deep features and hand-crafted fea-
tures which contained morphological, color, or textual features of the nodules. Moreover,
they utilized cascaded classifiers to differentiate the hybrid features. Jason et al. [20] fused
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radiological quantitative image features and 3D deep features for patient-level nodule
classification. Zhang et al. [21] fused local binary pattern-based texture features, histograms
of oriented gradient-based shape features, and deep features which were extracted by 3D
DPN. Finally, they utilized GBM to differentiate benign and malignant nodules. For the
above hybrid features methods on lung cancer diagnosis, it was proven that combining
manual features with deep learning features can further improve the accuracy of pul-
monary nodules recognition [18–21], but the extraction of manual features still has the
same problems as the traditional methods. To utilized the multi-attributes features and
multi-scale features, Zhao et al. [22] proposed a multi-stream network for nodule classifi-
cation, and they constructed a new loss function to overcome the imbalance of different
attributes. However, the setting of the weight parameters between different tasks is crucial
and unreasonable weight parameter settings will cause the network to fail to converge dur-
ing multi-task training. However, the setting of the weight parameters between different
tasks is manually set in their work, which causes the model to be unstable, and it is very
difficult to debug the parameters.

Therefore, to tackle these challenges, 3D DPN is utilized as our trunk network, which
is effective in avoiding overfitting. Moreover, a multi-scale spatial attention network is
proposed to capture multi-scale spatial attention features. The residual attention network is
used to capture multi-resolution spatial attention features, and the squeeze-and-excitation
attention network is used to capture the fine-grained features among channels automatically.
Finally, we combine the deep features with the raw image pixels to differentiate malignant
and benign nodules.

3. Materials and Methods
3.1. Material and Preprocessing

In this paper, the employed dataset was Lung Image Database Consortium image
collection (LIDC-IDRI) [23]. LIDC-IDRI is one of the largest open databases in the cancer
imaging archive (TCIA) for lung cancer diagnosis, and LIDC-IDRI contains 1018 patients’
chest CT scans. Each CT scan has a corresponding XML annotation file, which contains
four professional thoracic radiologists’ diagnosis annotations on the CT scans. The size of
each scan is 512 × 512, and each XML file details the locations, boundaries, malignant level
of each nodule, and so on.

The LIDC-IDRI dataset was equally and randomly split into ten folds with the LUNA16′s
split principle [24], 10-fold patient-level cross validation. The raw data were clipped into
[−1200,600], and the values were normalized to [0,1] linearly. To reduce interference, the
segmentation ground truth of LUNA16 was utilized to remove the nodules’ background
and the uncertain lung nodules for which the average malignant levels were equal to 3 were
ignored. After data processing, we obtained 1001 3D lung nodules, in which there were
447 positive nodules and 554 negative nodules. The lung nodules of each subset were from
different patients, and the detailed number of each subset is shown as Table 1.

Table 1. Detailed information of each subset.

Subset Number of
Patients

Number of
Nodules

Number of Benign
Nodules

Number of Malignant
Nodules

Subset0 89 91 40 51
Subset1 89 106 61 45
Subset2 89 111 62 49
Subset3 89 103 57 46
Subset4 89 100 47 53
Subset5 89 91 55 36
Subset6 89 115 73 42
Subset7 89 90 62 28
Subset8 88 104 55 49
Subset9 88 90 42 48

Sum 888 1001 554 447
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Nodules were cropped from the raw CT images at sizes of 32 × 32 × 32 randomly,
and the nodules were enlarged to sizes of 36 × 36 × 36 by adding padding to the margin
of the lung nodules. For data augmentation, we flipped the cropped data in the horizontal,
vertical, z-axis directions and we set a 4 × 4 × 4 patch as 0 randomly. Our proposed
architecture was tested on folds 0–9 separately, and the average experimental results are
reported. Due to time and computation limitations, we conducted the ablation experiments
on the 5th fold.

In addition, the data augmentation strategy beyond empirical risk minimization
(MIXUP) [25] shows excellent performance on many natural image datasets, such as the
ImageNet-2012, CIFAR-10, CIFAR-100, Google commands, and UCI datasets. Therefore,
the strategy MIXUP was utilized to augment lung nodule data. The MIXUP strategy was
only used in the training phase, and it constructed virtual training data. The MIXUP
operation is described in Equation (1), in which xi and xj are raw input vectors, and yi
and yj are one-hot label encodings. (xi, yi) and (xj, yj) are two examples drawn at random
from our training data, and λ ∈ [0, 1]. The illustration of data preprocessing is shown as
Figure 1. {

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

(1)

We used an Adam optimizer with a learning rate if 0.0001, and the momentum
parameters were set as (0.5,0.999). We conducted our experiments on a workstation with a
Linux system. The GPU hardware was TITANX, and the GPU memory was about 12 G.
Due to the limitation in GPU memory, we set the training batch size to 4 and set the testing
batch size to 2. The iteration epochs totalled 1200 for each fold.
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3.2. Methods

In this paper, 3D DPN was utilized as our trunk network, which aggregated the
residual connection and dense connection, and 3D DPN was effective in extracting a large
number of features of 3D pulmonary nodules. To filter out redundant features and to
capture useful fine-grained features, we utilized three types of attention networks to extract
spatial attention features and channel attention features. RAN was used to extract the
spatial attention features of different resolutions, MSAN was used to extract the spatial
attention features of different scales, and SEN was used to extract channel attention features.
After the fine-grained features were extracted, we utilized the GBM algorithm to classify
nodules with deep features and raw nodule pixels. The overall architecture is shown as
Figure 2, and each part of our architecture will be described in detail later.
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3.2.1. Trunk Network

Due to the prominent recognition ability of DPN in the natural image recognition [26],
3D DPN was employed as the backbone network to extract nodule features. Dual path
network integrates the residual connection and dense connection, and the dual path
connection can be formulated as Equation (2), in which F represents the convolutional
function, R represents the rectified linear units (RELU), y represents the feature map for
dual path connection, and x represents the input raw image of dual path connection block.

y = R([x[: d], F(x)[: d], F(x)[d :] + x[d :]]) (2)

The dual path connection is shown as Figure 3.
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The parameters of DPN are shown in Table 2.

Table 2. Parameters of the dual path network (DPN) (baseline network).

Input Layer Channel Blocks Dense Depth

323 × 1 3D Conv 64 - -
323 × 64 3D DPN blocks 192 3 16

323 × 192 3D DPN blocks 416 4 32
163 × 416 3D DPN blocks 776 10 24
83 × 776 3D DPN blocks 1408 3 128

43 × 1408 3D Average pool 1 - -
1 × 1408 FC 1 - -

As shown in Figure 3, the dual path network split the feature maps into two parts. One
part of the feature maps was used for residual connection, and the other part of the feature
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maps was used for residual learning. DPN can extract new features and combine semantic
features with structural features efficiently, which is very important in classifying nodules.

As for the classifier, GBM was effective in constructing an advanced classifier. We
used the GBM algorithm to differentiate malignant nodules and benign nodules with raw
nodule pixels and deep features, and an illustration of the GBM is shown in Figure 4.
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3.2.2. Attention Mechanism

To capture fine-grained features, we applied a residual connection, and bottom-up
and top-down structure to the attentive dual path network. The attention mechanism
was named RAN. Based on the up-sample and down-sample operations, feature maps
with different resolutions were generated, and the mixed features maps were generated by
fusing features of different resolutions. A residual connection was helpful to capture deep
feature information and to transmit structural features generated by the shallow layers
of the DPN to the deep layers of the DPN. It was efficient to fuse structural features and
semantic features. Besides, the RAN module can avoid overfitting to some extent. Based on
the advantages of the RAN module, we can add the RAN module in the shallow, middle,
and deep layers of a DPN to capture different structural features and semantic features and
the multiple RAN modules do not result in a reduction in network performance. To our
best knowledge, it is the first time RAN was applied to lung nodule classification. The RAN
mechanism is shown in Figure 5, in which the up-sample method is trilinear interpolation,
the down-sample is max-pooling, and the RB is a basic residual block. Besides, we apply
the SEN module in the last layer of a DPN to capture the relationship among channels.
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Especially, we proposed a novel attention module named MSAN, which aggregates
the multi-scale spatial attention mechanism and contextual attention mechanism. Based
on our careful observation and experiments, we utilized two convolution paths to extract
different features. One convolution path was designed with kernel size 1 × 1 × 1, and the
other one was designed with a dilated convolution with kernel size 3 × 3 × 3 and dilation
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size 2 × 2 × 2. This process can be formulated as Equation (3), in which Z consists of Z[: d]
and Z[d :], d is a hyperparameter, and we set d = 1/2.{

Z[d :] = W f x
Z[: d] = Wgx

(3)

A convolution with kernel size 1 × 1 is efficient in extracting dense features with
a small receptive field, and it is helpful to find subtle differences among nodules. A
dilation convolution with kernel size 3 × 3 is efficient in extracting sparse features with
a large receptive field, and it is helpful to capture the overall features of nodules. We
chose to concatenate the two group feature maps rather than add them together. After
the concatenation operation, the SE module was utilized to screen important features and
to filter out unimportant features. The global average pooling operation was utilized
to transform Z ∈ RH×W×D×C to P ∈ R1×1×1×C, and cth element of Z is calculated by
Equation (4), in which H ×W × D is the spatial dimensions of input feature maps Z.

Pc =
1

H ×W × D

H

∑
i=1

W

∑
j=1

D

∑
d=1

Zc(i, j, d) (4)

To capture the channel-wise dependencies, a fully connected layer was employed, and
it can be expressed as Equation (5), in which δ represents the ReLU function, W1 ∈ RC/r×C,
and W2 ∈ RC×C/r. r is the reduction ratio, which is used to reduce the parameters of
the model.

M = Ff c(P) = δ(W2δ(W1P)) (5)

The final results of the MSA block can be calculated by Equation (6), in which
O = [O1, O2, . . . , Oc] and Fscale(Zc, Mc) refers to a channel-wise multiplication between
the scalar Mc and the feature map Zc ∈ RH×W×D.

Oc = Fscale(Zc, Mc) = Zc Mc (6)

Our proposed MSA block is shown as Figure 6, in which DLT represents dilation
convolution and AVG represents average pooling.
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4. Results and Discussions

We conducted a series of experiments to evaluate the effectiveness of our proposed ar-
chitecture. In this section, we will present the evaluation metrics, the dataset preprocessing,
detailed experimental parameter settings, ablation experiments, and contrast experimental
results with other methods.

4.1. Evaluation Metrics

To evaluate the performance of our proposed architecture on malignant and benign
nodules classification, we use four indices, including accuracy (ACC), sensitivity (TPR),
false positive rate (FPR), and F1-score to verify our proposed framework, and the four
indices are described as follows.
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• Accuracy (ACC)—the percentage of nodules that are correctly predicted.
• Sensitivity (TPR)—the percentage of correctly predicted true-positive nodules to

nodules which have positive labels.
• False positive rate (FPR)—the percentage of incorrectly predicted positive nodules to

nodules which have negative labels.
• F1-Score—the model’s ability to balance TPR and FPR and the comprehensive ability

of the model.
Accuracy =

TP + TN
TP + TN + FP + FN

(7)

TPR =
TP

TP + FN
(8)

FPR =
FP

FP + TN
(9)

F1− score =
2TP

2TP + FP + FN
(10)

A true positive (TP) represents the number of malignant nodules that are predicted
correctly as malignant nodules; a true negative (TN) represents the number of benign
nodules that are predicted correctly as benign nodules; a false positive (FP) represents the
number of benign nodules that are predicted incorrectly as malignant nodules; and a false
negative (FN) represents the number of malignant nodules that are predicted incorrectly
as benign nodules.

In a nutshell, greater values of accuracy, sensitivity, and F1-score but lower FPR values
indicate better performance. The F1-score represents the overall performance of the model,
and the highest F1-score represents the best classification performance of the model.

4.2. Ablation Experiment

The ablation experiment is similar to the controlled variable method. In other words,
we can control a single variable to determine whether this variable has an impact on the
entire system. To verify the effectiveness of the proposed strategies, i.e., MIXUP data
augmentation, RAN module, SE module, and MSAN module, we conducted a series of
experiments, and the experiment details are described as follows. We use the 5th fold
for validation and the remaining nine folds for training. In other words, the training set
contained fold0, fold1, fold2, fold3, fold4, fold6, fold7, fold8, and fold9, and the validation
set only contained fold5. The proposed strategies are described as follows.

4.2.1. MIXUP Data Augmentation

To verify the effectiveness of MIXUP data augmentation, we conducted a comparison
experiment with or without MIXUP, and the results are shown in Table 2. Based on the
comparison results, it is proven that MIXUP data augmentation is helpful in improving
the classification performance of the model, including accuracy and sensitivity. MIXUP
data augmentation constructs a virtual dataset and increases the diversity of data, which
are important for improving the robustness of a model. Besides, the data augmentation
operation also strengthened the model’s ability to diagnose diseased nodules.

4.2.2. Residual Attention and Squeeze-and-Excitation Attention

To verify the effectiveness of the RAN and SE modules, we conducted a comparison
experiment with or without the RSE and SE modules, and the results are shown in Table 2.
Based on the comparison experiments results, it is proven that the residual attention mod-
ule and squeeze-and-excitation module are both helpful in improving the classification
performance of the model. The residual attention module is effective in capturing spatial at-
tentive features of different resolutions, and the squeeze-and-excitation module is effective
in capturing contextual attentive features, which are essential for nodule classification.
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4.2.3. Multi-Scale Attention

To verify the effectiveness of our proposed MSAN module, we conducted a compari-
son experiment with or without the MSAN module, and the results are shown in Table 2.
Based on the comparison experiments results, it is proven that our proposed multi-scale
attention module is helpful in improving the classification performance of the model.
Our proposed multi-scale attention network is effective in capturing the salient attentive
features of different scales and concatenate the sparse features and dense features.

4.2.4. The Overall Architecture

We combine MIXUP and the various attention networks separately and test them on
the dataset. Based on Table 3, we can find that, when the MIXUP operation is combined with
different attention networks, the classification performance of the model will be improved.
Especially, the accuracy of classification increases a lot when the MIXUP operation is
combined with RAN. This represents that the spatial attention features of multi-resolution
is more effective in diagnosing negative nodules than positive nodules. When MIXUP
is combined with RAN and MSAN, the sensitivity increases a lot. This represents that
the multi-scale attention network is effective in capturing the spatial fine-grained features
of positive nodules. When the MIXUP operation is combined with MSAN, the accuracy
increases a bit but sensitivity decreases a lot, which is similar to the combination of MIXUP
and SE. When the three attention modules are combined with MIXUP at the same time,
the model’s performance is best. Based on the different combinations, we can find that the
features extracted by different attention modules are complementary. When MIXUP, RAN,
MSAN, and SE are all added into a baseline model DPN, the classification performance
is best. Therefore, we aggregated the above three attention modules into our model and
proposed an overall architecture (DPN + MIXUP + RSA + MSAN + SE), which is shown as
Figure 2. The RSA module was utilized to extract different spatial attention features with
different resolutions. Based on the different spatial attention features extracted, the MSAN
module was utilized to extract multi-scale features and to fuse them effectively. Because
of the advantages of the residual connection in the RSA module, we could apply the RSA
and MSAN modules in different layers of the network, which is important when capturing
different structural features and semantic features, and this operation does not cause
overfitting. At the end of the network, the SE module was utilized to capture attention
features between channels and to screen important channels. The proposed architecture
was tested on the dataset, and the results are shown in Table 3. Based on the results, our
proposed architecture is proven to be effective for nodule classification.

Table 3. Ablation experiments on the 5th fold.

Model ACC TPR

DPN 90.22% 81.1%
DPN + MIXUP 91.30% 91.89%

DPN + RAN 90.22% 94.59%
DPN + MSAN 91.30% 91.89%

DPN + SEN 90.22% 89.19%
DPN + MIXUP + RAN 93.48% 89.19%

DPN + MIXUP + MSAN 92.39% 83.78%
DPN + MIXUP + SEN 91.30% 86.49%

DPN + MIXUP + RAN + MSAN 92.39% 97.29%
DPN + MIXUP + RAN + MSAN + SEN 94.57% 89.19%

To evaluate the effect of the threshold, we recorded the changes in F1-score under
different thresholds, which are shown in Figure 7. When the threshold is less than 0.5, the
value of the F1-score increases with the increase in threshold, but when the threshold is
greater than 0.5, the F1-score decreases with the increase in threshold. Therefore, we set the
threshold as 0.5 in our experiments.
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4.3. Comparison with State-of-the-Art Methods

We tested our proposed architecture on the ten folds and obtained the average results
across the ten folds. We compared our experimental results with the existing advanced
methods, including the 2D network, 3D network, and hybrid feature network. The com-
parison results are shown in Table 4.

Table 4. Comparison with existing methods across the ten folds.

Year ACC TPR FPR F1-Score

Kumar et al. [27] 2015 75.01 83.35 39.0 70.44
Multi-scale CNN [28] 2015 86.84 - - -

Slice-level 2D CNN [29] 2016 86.70 78.60 8.8 84.43
Nodule-level 2D CNN [29] 2016 87.30 88.50 14.0 87.23

Vanilla 3D CNN [29] 2016 87.40 89.40 14.8 87.25
Multi-crop CNN [13] 2017 87.14 - - -

Deep 3D DPN [15] 2018 88.74 - - -
Nodule Size + Pixel + GBM [15] 2018 86.12 - - -

DeepLung [15] 2018 90.44 81.42 - -
Xie et al. [18] 2018 89.53 - - -
Liu et al. [14] 2018 89.50 - - -
Xie et al. [30] 2019 91.60 86.52 - -

Polat et al. [31] 2019 91.81 88.53 - -
da Nóbrega [32] 2020 88.41 85.38 - 78.83

Attentive and ensemble CNN [16] 2020 90.24 92.04 11.06 90.45
Zhang et al. [17] 2020 91.67 - - -
Lima et al. [33] 2020 88.00 82.00 - -
Liu et al. [34] 2020 90.60 83.70 - -

Our proposed model 2020 91.90 91.30 8.00 91.00

Based on the comparison results, our model achieves the highest accuracy and F1-
score and the lowest FPR. Moreover, the TPR of our model is also very high, second only to
attentive and ensemble CNN (AEC) [16]. Compared to AEC, the metric TPR of our model is
slightly lower, but the ACC, FPR, and F1-score are better than those of AEC. A large number
of deep features are extracted through 3D DPN, which is effective in reusing features, and
the original features of the raw images are captured as much as possible because of the
residual connection and dense connection. Based on the rich features, the residual attention
module and squeeze-and-excitation attention module are utilized to capture the spatial
attention features and contextual attention features. Besides, we proposed a multi-scale
attention module to capture attention features of different scales, and the different attention
features are fused effectively. After the attention operation, the unimportant features were
filtered out, and the salient and fine-grained features were captured, which are important
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to differentiate between malignant and benign nodules. At last, based on the comparison
results in Table 3, our model is proven to achieve a state-of-the-art level.

4.4. Visualization of Classification Results

To verify the performance of our proposed architecture better, we visualize the diag-
nosis results of some benign and malignant nodules. In Figure 8, the benign nodules are
presented in the first row and the malignant nodules are presented in the second row. We
make a comparison between the predicted probability of our proposed architecture, and the
average diagnosis level of four radiologists and the comparison results are shown for each
nodule. If the predicted probability is less than 0.5, the nodule is predicted to be a benign
nodule; otherwise, it is predicted as a malignant nodule. Similarly, if the average diagnosis
level of four radiologists is less than 3, the nodule is labeled as benign nodule and, if the
average diagnosis level is more than 3, the nodule is labeled as malignant nodule. The
visualization results show that our predicted probability of each nodule is consistent with
the average diagnosis level of doctors, which proves that our proposed model is robust
and that the classification results are very reliable.
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Figure 8. Visualization of benign and malignant diagnosis results: the number for each nodule shows
the predicted malignant probability and the average malignancy level of four doctors.

Moreover, we add some visualization of misclassification examples which are shown
in Figure 9. Based on Figure 9, our method is still insufficient for the recognition of some
uncertain nodules. For example, for the first nodule on the left in Figure 9, its malignant
level is diagnosed by two doctors as 4, which represents a malignant nodule, and its
malignant level is diagnosed by one doctor as 3, which represents an uncertain nodule.
Moreover, its malignant level is diagnosed by one doctor as 2, which represents a benign
nodule. Finally, the average malignant level is 3.25, which represents the nodule as being
slightly malignant and similar to an uncertain nodule for which the malignant level is 3. For
such nodules, professional doctors also have differences in the diagnosis of such nodules
and cannot clearly diagnose them. Such nodules often need to be further confirmed in the
patient’s follow-up examination. Therefore, the diagnosis of such nodules is very difficult.
In the future, we hope to obtain lung cancer datasets with patient follow-up examinations,
such as the National Lung Cancer Screening Trial (NLST) dataset, and we will make a
further study.
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Figure 9. Visualization of misclassification examples: the number for each nodule shows the predicted
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the diagnosis malignancy level of this lung nodule by different doctors.

4.5. Computational Complexity

To evaluate the models’ computational complexities, we take a 3D image cube of size
32 × 32 × 32 as the input to each model and calculate the test time of each model. All
results are calculated on the same workstation mentioned before, and the results are shown
in Table 5. Moreover, we train each model for one epoch and record the training time of
each model in Table 6. The results show that our proposed model slightly increases the
time-consumption, but the test time of each nodule is less than 0.1 s as well. In addition,
the slight increase in complexity significantly improves the classification performance.

Table 5. The test time of different models.

Model Name Test Time (s)

DPN 0.0474
DPN + RSE 0.0692
DPN + MSA 0.0594

DPN + SE 0.0413
DPN + RSE + MSA + SE 0.0916

Table 6. The training time of different models.

Model Name Test Time (s)

DPN 107
DPN + RSE 158
DPN + MSA 140

DPN + SE 109
DPN + RSE + MSA + SE 189

5. Conclusions

In this paper, we developed a novel method for differentiating malignant and benign
lung nodules. Firstly, we used the MIXUP method to construct a virtual training data,
and MIXUP improved the diversity of the data. Secondly, we utilized the 3D dual-path
network to extract nodule features and used the GBM algorithm to differentiate pulmonary
nodules with deep features and raw nodule pixels. Thirdly, we applied the RAN and
SE modules to capture spatial and contextual features and we proposed a novel multi-
scale attention module to capture multi-scale attentive features. Based on the ablation
experimental results in Table 2, it is proven that our proposed multi-scale attention module
and the application of RAN and SEN are very effective for classifying nodules. Finally, we
compared our experimental results with the state-of-the-art methods in Table 3, and the
comparison results prove that our proposed model exceeds the previous state-of-the-art
model. However, the results of Table 6 show that both the RAN and MSAN modules
are a bit time-consuming. Although the performance of classification increases a lot, the
complexity of our model is a bit higher compared to the baseline model. In Figure 9, those
nodules with average malignant levels very close to 3 are very difficult to diagnose and we
will further study those nodules. In the future, we will aim to lighten our network and to
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fuse the nodule’s other attributes features with the deep features extracted by our proposed
deep learning architecture. Based on the feature fusion of our extracted deep features and
other attributes features, the classification performance will achieve a new higher level.
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