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Abstract: The Alberta No. 1 project is a planned power and heat (direct use) geothermal project
located within the County of Grande Prairie and Municipal District of Greenview. For the project to
successfully produce power and heat on a commercial scale, temperatures of 120 ◦C are desirable.
The produced fluids must also be from highly permeable formations from depths of less than 4500 m.
Bottomhole temperature measurements and wireline logs from Alberta’s extensive oil and gas
database were used to determine the depths to target formations and temperatures within these
formations in the project area. The target formations include the dolomitized carbonate units of
Devonian age from the Beaverhill Lake Group to the top of the Precambrian Basement. Permeable
Devonian-aged sandstone units such as the Granite Wash Formation are also targets. Results suggest
that elevation to the top of the Beaverhill Lake Group range from 3104 m to 4094 m and temperatures
at the top of the formation range from 87 ◦C to 123 ◦C in the study area. Elevation to the top of the
Precambrian Basement ranges from 3205 m to 4223 m and temperatures at the formation top range
from 74 ◦C to 124 ◦C. Within the area where Alberta No. 1 plans to drill, temperatures close to and
exceeding 120 ◦C are expected within the target formations.

Keywords: conventional geothermal; direct heat use; Western Canadian Sedimentary Basin; bottom-
hole temperatures; Alberta

1. Introduction

The No. 1 Geothermal Limited partnership (Alberta No. 1) geothermal power and
direct heat use project has been awarded funding from Natural Resources Canada’s (NR-
Can) Emerging Renewable Power Program (ERPP). The program funding matches private
sector dollars and stipulates that the geothermal project must produce 5 MWe net of power.
To select the project location, Alberta No. 1 conducted a regional study to identify areas
in the Alberta portion of the Western Canadian Sedimentary Basin (WCSB) where (1)
temperatures are sufficiently high for power production, (2) there are formations at the
target depths with known high fluid flows, and (3) there is adequate existing infrastructure
that supports low-cost power grid connection as well as direct use applications [1]. Nine
chosen areas were assessed for these three constraining factors; results concluded that the
area that lies within the Municipal District of Greenview (MDGV) and County of Grande
Prairie was most suitable for developing the Alberta No. 1 project (Figure 1).

The study area spans from the northwest corner of Township 73, Range 7, West of the
6th Meridian to the southeast corner of Township 65, Range 3, West of the 6th Meridian
(Figure 2). The drilling area, where Alberta No. 1 plans to drill five production and injection
wells, spans two ranges and three townships in the vicinity of the Norbord Oriented Strand
Board (OSB) facility and a planned light industrial park near the Hamlet of Grovedale
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(Figure 2). The park and OSB facility are anticipated industrial heat offtakers from the
direct use (heating and cooling) portion of the project.
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Figure 1. The study area lies within the Municipal District of Greenview (MDGV) and the County of
Grande Prairie, and encompasses the City of Grande Prairie.

The study area is located within the western portion of the extensive WCSB. In
a sedimentary basin such as the WCSB, formations generally decrease in porosity and
increase in density (and therefore increase in thermally conductivity) with increasing
depth. Permeability and fluid flow are also important parameters when selecting target
formations. In the project area, the Precambrian Basement is overlain by thick, permeable
carbonate units of Devonian age. Of particular importance are limestones units that have
been hydrothermally altered to dolomite creating enhanced permeability [2]. The Alberta
No. 1 project will preferentially target these dolomite units and interbedded sandstone
units where they are near built infrastructure. Specifically, the target formations span from
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the top of the Beaverhill Lake Group to the base of the Granite Wash Formation, which
overlies the Precambrian Basement (Figure 3).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 11 
 

 
Figure 2. The wells previously drilled shown within the study area and the drilling area where 
Alberta No. 1 plans to drill production and injection wells. The areas encompass a planned light 
industrial park and the Norbord OSB facility. 

The study area is located within the western portion of the extensive WCSB. In a 
sedimentary basin such as the WCSB, formations generally decrease in porosity and in-
crease in density (and therefore increase in thermally conductivity) with increasing depth. 
Permeability and fluid flow are also important parameters when selecting target for-
mations. In the project area, the Precambrian Basement is overlain by thick, permeable 
carbonate units of Devonian age. Of particular importance are limestones units that have 
been hydrothermally altered to dolomite creating enhanced permeability [2]. The Alberta 
No. 1 project will preferentially target these dolomite units and interbedded sandstone 
units where they are near built infrastructure. Specifically, the target formations span from 
the top of the Beaverhill Lake Group to the base of the Granite Wash Formation, which 
overlies the Precambrian Basement (Figure 3). 

Figure 2. The wells previously drilled shown within the study area and the drilling area where
Alberta No. 1 plans to drill production and injection wells. The areas encompass a planned light
industrial park and the Norbord OSB facility.

To date, over 4000 wells have been drilled in the study area (Figure 2), providing an
extensive database to understand the stratigraphy and formation properties of oil and gas
targets. However, the data collected differ from the data that would typically be collected
for geothermal exploration. The chief difficulty faced by geothermal developers when
interpreting bottomhole temperature (BHT) measurements is that the temperatures taken
for hydrocarbon development are a perfunctory data point at the end of completion of the
well. The data are used for surface engineering designs, especially if the temperatures are
high. Wells with BHT data have generally been measured with single, unequilibrated BHT
measurements. In comparison, considerable care is taken to obtain accurate and equili-
brated temperatures throughout the wellbore for geothermal exploration. This includes
the process of allowing the bottom of the well to heat up to thermal equilibrium conditions
following drilling. During and after this heat up period, continuous logs are run from top
to the bottom. To account for such discrepancies, several correction methods have been
created and used to predict equilibrated temperatures at depth from BHTs. Interpretation
of geothermal resources from BHT data has been the subject of a considerable amount of
research, for example, Harrison et al. (1983), Horner (1951), and Stutz et al. (2012) [4–6].
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Figure 3. General stratigraphy of Devonian units in the Northwest Plains of Alberta. The Alberta No. 1 project area is not
underlain by all the units depicted, but is targeting the formations from the Beaverhill Lake Group to the Granite Wash
Formation, outlined in red [3].

Previous studies have analyzed oil and gas temperature data specifically within
the WCSB to estimate geothermal resources [7–26]. Drill Stem Tests (DST), BHTs, and
Annual Pool Pressure (APP) results all include significant errors that require the data
to be filtered. BHT measurements generally provide lower temperatures than DST and
APP measurements. These studies involve temperature corrections to adjust the recorded
temperatures to try to represent the actual temperature at depth.

Several of these correction methods could not be used for this data set; the Horner
correction requires input of elapsed time between cessation of circulation in the well bore
and the temperature measurement. It is best when several temperature measurements
have been made at regular time intervals. The data for this study do not include these
measurements, so the Horner correction could not be applied. The thermal gradients of the
study areas assessed by Huang et al. (2020) [27] (including the Alberta No. 1 study area)
appear to be linear with depth, suggesting that the Harrison correction method, which
uses a second-order polynomial fit, is not suitable for the data in this study. Huang et al.
(2020) [27] suggest that suggest that the filtered, uncorrected BHT data in the WCSB may
be more reliable than previously thought. Furthermore, many temperature correction
methods increase the temperature from the measured BHT; if this estimation is overly
optimistic, the temperature predictions can be detrimental to the project. An overestimation
of temperature could falsely suggest that electricity production from the produced fluid is
viable, but if the fluid is a few degrees lower, this may not be the case. For the purposes of
the Alberta No. 1 geothermal project, a conservative, lower estimate of target formation
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temperatures is required for understanding the reservoir, the well design, the expected
flow rate, and the power plant design. Therefore, this study uses the raw, filtered BHT data
to conservatively predict the lower limit of temperatures at depth. Fluid temperatures of
at least 120 ◦C at depths of 4500 m or less are required to profitably operate the plant. As
well, fluid temperature will dictate the required flow rate to produce 5 MWe net.

Our results suggest that elevation to the top of the Beaverhill Lake Group ranges from
3104 m to 4094 m and temperature at the top of the formation ranges from 87 ◦C to 123 ◦C
in the study area. Elevation to the top of the Precambrian Basement ranges from 3205 m to
4223 m and temperature at the formation top ranges from 74 ◦C to 124 ◦C. Within the area
where Alberta No. 1 plans to drill, our results calculate depths to the top of the Beaverhill
Lake Group and Precambrian Basement to range from 3634 m to 3839 m and 3740 m to
3906 m, respectively. Temperatures range from 87 ◦C to 123 ◦C and 89 ◦C to 127 ◦C at the
top of the Beaverhill Lake Group and Precambrian Basement, respectively.

2. Materials and Methods

All available well data, including BHT and True Vertical Depth (TVD) were exported
from geoSCOUT from the study area. In total, there were 4261 data points.

2.1. BHT Data Filtering and Calculating Thermal Gradient

First, all points that did not include both BHT and TVD data were removed. The
average thermal gradient (◦C/km) from the surface for each data point was calculated
using Equation (1):

Thermal Gradient = 1000 × (BHT − ST)
TVD

, (1)

where BHT is bottomhole temperature in ◦C, ST is surface temperature in ◦C (calculated
from mean annual temperature), and TVD is true vertical depth in m. Mean annual
temperature of Alberta from 1961 to 1990 was 0.6 ◦C [28]. The data were then plotted both
by BHT vs. depth and thermal gradient vs. depth.

Next, the obvious outliers were removed, including wells with unusually high
(>39 ◦C/km) or low (<20 ◦C/km) thermal gradients, because they were not consistent
with the assumed conductive heat flow in the area and most of the data. The outliers of
anomalously high temperatures at high depths were kept for future research, as it may be
valuable to look at each data point to assess the legitimacy of the recording.

Other obvious outliers included wells where companies reported the same tempera-
ture for multiple wells with different depths. Also, temperature measurements for wells
<1 km TVD have been shown to be biased, so these data points were removed [23]. From
the work of others, individual outliers of high temperatures at greater depths could be
Fahrenheit (F) recorded as Celsius (C), and outlier groups at shallow depth could be due to
various factors such as incorrect reading or resetting of the maximum reading thermome-
ters (which give anomalously high temperatures) and, occasionally, recording TVD and
BHT as the same value [7]. These errors provide insight into the quality of the data and
illustrate that great care must be taken to assess the validity of each measurement

After the filtering process, 1785 data points remained. BHT vs. depth data were
plotted then fitted with a linear trendline to calculate the averaged uncorrected thermal
gradient. The thermal gradient vs. depth data were also plotted and fitted with a linear
trendline to assess the change in thermal gradient with depth.

The average thermal gradient of these wells was calculated to be 23.9 ◦C/km (Figure 4).
The average thermal gradient change with depth was calculated to be −1.5 ◦C/km, sug-
gesting that gradient does not change significantly with depth. This means that using the
gradient to calculate temperature at depths may be straightforward, but caution should be
taken when interpreting the results and extrapolating to depth due to uncertainty of the
accuracy of the BHT data.
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2.2. Selecting Formation Tops

After the data were filtered, depths to target formations were analyzed. First, data
points from horizontal wells, as well as re-entered well events, were removed. Additionally,
six wells did not have wireline logs. In total, 1655 wells were assessed for formation
tops. Depths to all formations between the Beaverhill Lake Group and the top of the
Precambrian Basement were chosen by assessing wireline logs of each well that drilled to
these formations and each TVD recorded. The wireline logs used were resistivity, gamma,
neutron-density, and sonic if the former three logs were unavailable.

TVD data for all formation tops for each well were imported into Surfer. Next, grid
files were created from TVD data for each formation and used to create contours with a
simple Kriging method. Within the drilling area, only 2 wells penetrate to the Beaverhill
Lake Formation and deeper. Therefore, the elevation contour maps were extrapolated to
calculate the expected depth to Beaverhill Lake Group and the Precambrian Basement from
the 16 wells that penetrate to the Wabamun Formation in the drilling area. This was done
using the Point Sample calculator on Surfer.

2.3. Temperature and Elevation Maps

After formation tops were selected and depths to the Beaverhill Lake Group and the
Precambrian Basement were extrapolated, we calculated the expected temperature at these
formation tops using Equation (2):

TFormation =
Thermal Gradient × Formation Top TVD

1000
, (2)

where TFormation is the temperature at the top of the formation at each well in ◦C, and
Formation Top TVD is the depth to the top of the formation in m. For the study area, we
used the TVDs from the well data. For the drilling area, we used the TVDs calculated from
the elevation contour maps.
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TFormation data for each well were imported into Surfer. Next, grid files were created
from the temperature data for both formations and used to create contours with a simple
Kriging method.

3. Results

Within the study area, the depth to the top of the Beaverhill Lake Group ranges from
3104 m to 4094 m (Figure 5a) and temperature at the top ranges from 72 ◦C to 123 ◦C
(Figure 5b). The depth to the top of the Precambrian Basement ranges from 3205 m to
4223 m (Figure 6a) and temperature at the top ranges from 74 ◦C to 124 ◦C (Figure 6b).
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Within the drilling area, the depth to the top of the Beaverhill Lake Group ranges
from 3634 m to 3839 m (Figure 7a) and temperature at the top ranges from 87 ◦C to 123 ◦C
(Figure 7b). The depth to the top of the Precambrian Basement ranges from 3740 m to
3906 m (Figure 8a) and temperature at the top ranges from 89 ◦C to 127 ◦C (Figure 8b).
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On both a regional and local scale, the Beaverhill Lake Group and the Precambrian
Basement both appear to be dipping to the southwest. From the limited data set, there are
no apparent structural features that may indicate faulting through the formation tops.

Based on the temperature maps, there is a rough correlation between the southwest
dipping stratigraphy and increasing temperature within the study area. This correlation,
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however, is not present in the drilling area, which may be due to the scarce data set. There
does appear to be a minor southeast- and south-trending temperature high which may
be caused by a structural feature in this direction. However, this data set is too scarce to
confidently determine the existence of this structure.

Because the temperature data is not corrected, great care must be taken when in-
terpreting the results. The oil and gas data do not include fluid circulation time during
drilling; therefore, it is unknown if BHTs represent equilibrium temperature. The actual
formation temperatures will not be known until the first well is drilled and logged using
proper equipment and methods. The temperatures from this study provide a conservative
estimate for the purposes of exploration.

4. Conclusions

For a geothermal project to be economic in the area at this time, the estimated maxi-
mum depth of target formations must be less than 4500 m, and thermal fluids of at least
120 ◦C provide the best opportunity for commercial viability. The Devonian carbonate and
sandstone formations between the Beaverhill Lake Group and the Precambrian basement
are less than 4500 m depth in the study area. Within the drilling area, there are sections
where temperatures have been calculated to almost reach or exceed 120 ◦C to the east
and southeast of the Norbord OSB plant. Because we expect the BHT data to provide a
lower-end temperature estimate, the actual formation temperatures may be even higher.
Based on these results, the Alberta No. 1 geothermal power and direct use heat project in
this area fits the depth and temperature criteria to be successful. Other geological consid-
erations that will be assessed include flow rate potential of these formations and areas of
fluid convection such as faults and fractures, which can be delineated by seismic data.
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