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Abstract: Calibration between multiple sensors is a fundamental procedure for data fusion. To
address the problems of large errors and tedious operation, we present a novel method to conduct
the calibration between light detection and ranging (LiDAR) and camera. We invent a calibration
target, which is an arbitrary triangular pyramid with three chessboard patterns on its three planes.
The target contains both 3D information and 2D information, which can be utilized to obtain intrinsic
parameters of the camera and extrinsic parameters of the system. In the proposed method, the
world coordinate system is established through the triangular pyramid. We extract the equations of
triangular pyramid planes to find the relative transformation between two sensors. One capture of
camera and LiDAR is sufficient for calibration, and errors are reduced by minimizing the distance
between points and planes. Furthermore, the accuracy can be increased by more captures. We carried
out experiments on simulated data with varying degrees of noise and numbers of frames. Finally,
the calibration results were verified by real data through incremental validation and analyzing the
root mean square error (RMSE), demonstrating that our calibration method is robust and provides
state-of-the-art performance.

Keywords: calibration; camera; LiDAR; point cloud

1. Introduction

Recently, a considerable amount of literature has proliferated around the theme of
multi-sensor systems in 3D object detection and recognition [1], simultaneous localization
and mapping (SLAM) [2], path planning [3], reconstruction scenes [4,5], and other fields. In
these fields, visual and depth information are the most widely used elements to recognize
the environment. A camera can acquire color information of the target with such advan-
tages as small size, low cost, and high resolution. However, it is difficult to acquire the
distance between the target and camera. Three-dimensional light detection and ranging (Li-
DAR) can obtain accurate depth data of the target. In brief, by fusing a camera and LiDAR
sensors, we can utilize their advantages and complement their disadvantages to perceive
the environment comprehensively. To achieve this purpose, we need to get the relative
positions and orientations between the camera and LiDAR by calibrating the system.

LiDAR systems can be classified into two categories, mechanical scanning LiDAR
and solid-state LIDAR. The former typically comprises one or more laser and detector
pairs, which are mounted on a rotating or vibrating scanner [6]. Mechanical scanning
LiDAR is first developed and used in many applications: urban planning, urban mapping,
intelligent autonomous transport, and scanning forests and agricultural fields [7-9]. Itis a
mature technology, however, the use of a mechanical scanner increases the system size and
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complexity, while challenging the reliability of the moving parts under long-term use. A
solid-state LIDAR is usually a radar with no moving parts at all. It mainly includes micro
electro mechanical systems (MEMS) LiDAR, optical phased array (OPA) LiDAR, and flash
LiDAR. MEMS LiDAR do not completely cancel the mechanical moving structure [10]. The
mechanical structure is integrated into a small silicon-based chip by MEMS technology,
inside which there is a rotatable MEMS micro-mirror, through which the transmitting
angle of a single transmitter is changed. OPA LiDAR consists of an array of light-emitting
elements where the phase can be manipulated [11]. On top of that, the entire system is
fabricated on a single chip using a silicon photonics platform. Flash LiDAR illuminates the
entire scene in a single shot and detects the light reflected from the scene with an array of
detectors [12]. As there are no moving parts, solid-state LIDAR systems can be built with
enhanced reliability.

Camera and LiDAR system calibration consists of intrinsic calibration and extrinsic
calibration. The intrinsic parameters of the camera are related to the characteristics of the
camera itself, including focal length and size of pixels. In most literature, it is accepted that
the intrinsic parameters of the camera are calibrated in advance. The intrinsic parameters of
LiDAR sensors are calibrated in the factory. The extrinsic calibration is to find the rotation
and translation relationship between the camera and LiDAR.

In this paper, we present a novel method to calibrate the intrinsic parameters of
the camera and extrinsic parameters of the system. Our work has four characteristics
differentiating itself from prior research:

e  The traditional calibration method has limited accuracy because of low vertical resolu-
tion of 3D mechanical scanning LiDAR. For instance, Velodyne-64 LiDAR can only
measure 64 channels vertically, and generate sparse point clouds of the environment.
Our method deals with dense point cloud, thus the result has high accuracy. We first
apply flash LiDAR to acquire dense point clouds both in the horizontal direction and
vertical direction to improve calibration accuracy.

e  We design a novel calibration target made up of an arbitrary triangular pyramid,
with three chessboards on it. The sizes of the triangular pyramid are unknown, and
it can be unsymmetrical, hence the manufacturing of the pyramid has no effect on
the accuracy. Our method only employs planes of triangular pyramid from camera
images and LiDAR point clouds in calibration.

e  Unlike most methods, our method can obtain intrinsic parameters of the camera and
extrinsic parameters of the system together. It only takes one capture of the camera
and LiDAR to get the intrinsic parameters and extrinsic parameters of the system.
Moreover, we employ an optimization algorithm to reduce errors by minimizing the
distance between the 3D points and target plane.

e  More frames of the camera and LiDAR can improve accuracy by aligning the triangular
pyramid planes of all frames. We also use simulation and incremental experiment to
verify the precision and stability.

To explain and explore the proposed calibration method, we organize the remainder of
this paper as follows. In Section 2, we investigate previous work with regard to calibration
between the camera and LiDAR briefly. In Section 3, the calibration target and the proposed
method are described in detail. The experiments and results analysis on both simulation
and real test are exhibited in Section 4. Finally, conclusions and future work are provided
in Section 5.

2. Related Works

The calibration of the camera and LiDAR system contains intrinsic parameters and
extrinsic parameters. The intrinsic calibration method of the camera varies with calibration
objects. Traditional camera intrinsic calibration techniques such as Zhang’s algorithm [13]
make use of a calibration board with a checkerboard pattern on it. The methods of [14]
and [15] both focus on obtaining the coordinate of the feature points to solve the intrinsic
parameters. The former designs a novel 3D calibration board with local gradient depth
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information and main plane square corner information(BWDC), while the latter uses a
polygonal planar board. Most research on calibration between the camera and LiDAR
ignored the camera calibration. The intrinsic parameters of LiDAR are completed by
manufacturers. The method of [16] describes a way to obtain intrinsic parameters of
3D mechanical scanning LiDAR. The authors of [17] report on a calibration and stability
analysis of the Velodyne VLP-16 LiDAR scanner. In this paper, we apply flash LiDAR
calibrated in advance, and the method to obtain the intrinsic parameters of the camera is
described amply in Section 3.2.1.

Similar to camera intrinsic calibration, the extrinsic calibration method between the
camera and LiDAR is closely related to the calibration object. There are currently two
basic categories in calibration research. One is target calibration, and the other is targetless
calibration. Early target calibration methods focus on camera and 1D or 2D LiDAR sys-
tem. With the development of 3D LiDAR techniques, study concentration moved to the
combination of camera and 3D mechanical scanning LiDAR. The indispensable geometric
constraints can also be divided into two categories: vector constraint and feature point.
The works of [18-22] utilize normal vectors of plane boards to find the expression in both
image and point clouds, and then calculate the conversion between camera and LiDAR. A
further paper [18] first adopts this idea to calibrate a 2D range finder and camera system.
Another paper [19] further makes a toolbox online by extending this method to 3D LiDAR
and camera system. The work of [20] uses three checkerboards and minimizes an energy
function of correspondences between depth and image frames. Other works [21,22] take
several captures of calibration target and align normal vectors of these planes to iteratively
obtain the calibration result. The work of [23] introduces the 3D line correspondence into
the original plane correspondence and reduces the minimal number of poses required for
this problem to one.

The works of [14,15,24-26] apply the feature point correspondences calibration method.
Two-dimensional feature points in images can be conveniently acquired, whereas obtaining
the corresponding 3D feature points in point clouds is challenging as the point clouds of
LiDAR are sparse. The authors of [14] apply 3D-2D point correspondences to calibrate the
product of intrinsic matrix and extrinsic matrix, while [15] combines 3D-2D and 3D-2D
point correspondences together. In recent years, a small number of studies focus on using
the structural similarity between the LiDAR point cloud and image data to perform global
matching and optimize the calibration results [27-29]. The method of [27] incorporates
the laser reflectivity of 3D LiDAR points for calibration. Another paper [28] calibrates
by maximizing the mutual information between the intensity of the LiDAR frame and
the gray information of the image. A further paper [29] adopts the natural alignment of
depth and intensity edges in combination with a Gaussian mixture model to accomplish
the calibration. However, the targetless method need a large number of data and the sparse
point clouds decrease the accuracy of the matching results.

To improve the calibration accuracy and simplify manual operation, we apply flash
LiDAR and propose a novel method to calibrate the intrinsic parameters of the camera and
extrinsic parameters of the system. In addition, the proposed method can also be applied
to calibrate multiple cameras and multiple LIDAR systems if they can capture the target
simultaneously.

3. Method
3.1. Problem Formulation

The calibration of the camera and LiDAR system basically contains four coordinate
systems. In this paper, the definition goes as follows. The camera coordinate system is
represented as O¢c — XcYcZc (the origin Oc is the optical center of camera). The LiDAR
coordinate system is noted as Oy — X1 Y1 Z (the origin Oy is the intersection point of the
laser beams). The pixel coordinate system is defined as O — UV (the origin O is the first
pixel of camera or LiDAR), as shown in Figure 1. The world coordinate system is denoted
as Ow — XwYwZw (described in detail in Section 3.2). Moreover, we use italic lowercase,
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italic uppercase, and boldfaced uppercase letters to represent scalars, vectors, and matrices,
respectively, throughout this paper.

R o

Ze

Y(‘,

Figure 1. Intrinsic parameters calibration model of camera and flash light detection and ranging
(LiDAR). Arbitrary point P of object is projected onto flash LiDAR (left) and camera (right).

3.1.1. Intrinsic Parameters Calibration Problem Formulation

As mentioned above, we apply flash LiDAR to complete calibration of the system
because of its low cost and high resolution in both the vertical and horizontal directions.
Besides, flash LiDAR has a big advantage in terms of price and stability. The LiDAR emits a
beam of diverging laser initiatively, and the light returns to LiDAR through optical lens on
a light-sensitive chip. This process follows time of flight (TOF) theory and calculates how
long it takes for the light to hit an object and reflect back to the LIDAR. Hence, the intrinsic
parameters of the camera and flash LiDAR both can be demonstrated by the pinhole model,
as illustrated in Figure 1. The mere difference is that the pixel value of camera refers to color
information, while the pixel value of LiDAR represents distance. The basic assumption
here is that the lens distortion is dismissed.

Arbitrary point P on the object is captured by camera or LiDAR. The projection of P is
point P’ on the image plane. According to triangle similarity, we can obtain the coordinate
relationship of projection:

u—uyg _ f/dx
vy fldy 1
y oz

where P = [x,y, Z]T denotes the coordinate of point P in the camera coordinate system (or
LiDAR coordinate system), and P’ = [u, 0] is noted as the projection of point P in pixel
coordinate system. [u, UO]T represents the coordinate of the center point O’ on the image.
dx and dy, refer to the camera sensor pixel size. f represents the effective focal length.

We can obtain the relationship of coordinate between the camera coordinate system
(or LiDAR coordinate system) and pixel coordinate system by combining Equation (1):

u fxr 0 u x X
z| v | = 0 fy o y | =M| vy |, 2
1 0O 0 1 z z

where fy = f/dy, fy = f/dy. The intrinsic parameters of the camera and flash LiDAR are
fxs fy, o, and vy, and matrix M is defined as the intrinsic matrix.
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Our method improves on the method of [13], in terms of the acquisition of intrinsic
parameter of the camera described in Section 3.2.1, and the intrinsic parameters of flash
LiDAR are calibrated in advance by the manufacturer.

3.1.2. Extrinsic Parameters Calibration Problem Formulation

The extrinsic calibration problem is demonstrated in Figure 2a. During once calibra-
tion, the camera and LiDAR are fixed firmly. The calibration target is in a suitable position,
where it can be captured by the camera and LiDAR simultaneously. The core of the ex-
trinsic calibration problem is to estimate the relative pose between the camera coordinate
system and LiDAR coordinate system. Assuming that the coordinates of arbitrary point
P in the camera coordinate system and LiDAR coordinate system are PC and P, the
transformation of them can be shown as follows:

P¢ =RPE 4T, 3)

where rotation matrix R € SO(3) and translation vector T are extrinsic parameters of the
camera and LiDAR system. The details of our extrinsic calibration method are shown in
Section 3.2.2.

(b)

Figure 2. Sketch map of calibration target and camera-flash system: (a) extrinsic parameters calibration model; (b) camera is

fixed on a precise rotation stage, and flash LiDAR is fixed on a precise motorized linear stage.

3.2. Methodology

We design a triangular pyramid calibration target to complete the calibration of the
camera and flash LiDAR system. The target is an arbitrary triangular pyramid with a
chessboard pasted on its three planes, as shown in Figure 2a. Without knowing the size
of the triangular pyramid, the only parameter to be determined is the size of the unit of
the chessboard, hence the error of manufacture being ignored. In this section, the world
coordinate system Oy — XwYwZ is set up as follows. Origin Oyy is the middle vertex of
the triangular pyramid. Axis Xyy is aligned with one edge of the triangular pyramid. Axis
Yy is on plane 1, perpendicular to axis X. The direction of axis Zyy is determined by the
right hand rule.

3.2.1. Intrinsic Parameters Calibration of Camera

Zhang's method [13] finds the corner points correspondence of the chessboard to
estimate the intrinsic parameters of the camera. However, it needs too many captures to
get a good result. Our method makes some improvements by calibration with only one
capture. As shown in Figure 2a, the camera can acquire the image of three chessboards
during a single shot. Then, we need to separate the image into three districts roughly by
hand, which is rather easy to do. Assuming that the equation of each chessboard plane is
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z = 0, the corner point of each chessboard can be expressed as [x',1/, 0] T According to the
coordinates’ transformation and intrinsic parameter model in Section 3.1.1, the conversion
between the chessboard coordinate and pixel coordinate can be established as follows:

/ /

u X x X
z| v | =M| y | =M|[R;,Ro,R3]| ¥ | +T| =M[Ry, R, T]| v |, 4)
1 z 0 1

where [x,v,z] and [x',y/,0]" represent the coordinate of corner points in the camera

coordinate system and chessboard coordinate system. We define the following;:
H= M[Rll R2/ T} = [hll h2/ hS}/ (5)

where H is the homography matrix, figured out by four pairs of feature points according to
Equation (4). The rotation vector Ry and R; are orthogonal to each other and as normal
vectors, they satisfy the following:

{ RiTRy = (M)’ (M) =0

_ T _ _ T _ 7 (6)
RiTR; = M hy)" (M hy) = RyTRy = (M thp)” (M~ hp) =1

Hence, one chessboard can provide two equations of intrinsic matrix M. The triangular
pyramid target has three chessboards on its planes and can provide six equations of M,
sufficient to work it out. Then, three pairs of rotation vectors Ry and R; can be figured out
according to Equation (6), which are used in Section 3.2.2.

3.2.2. Extrinsic Parameters Calibration between Camera and Flash LIDAR

Our method applies a geometric constraint of the triangular pyramid target to calibrate
the extrinsic parameters. The method estimates the rotation matrix and translation vector
from Oy — XwYwZw to Oc — XcYcZc (and Op — XY Z;) separately. Finally, we can
obtain the extrinsic parameters from O¢c — XcYcZc to Op — X1 Y1 Z).

It is essential to convert the pixel values of LiDAR to 3D point clouds. As mentioned
in Section 3.1.1, the output of flash LiDAR is the distance between the object and LiDAR
on each pixel. The relation between the coordinate of the arbitrary point P(x,y,z) in
O; — X1 Y. Z1 and distance is as follows:

d=\/x2+y>+22, 7)

where d represents the distance between origin O;, and point P, which can be acquired by
each pixel value of LiDAR. Utilizing the intrinsic parameters of flash LiDAR offered by
manufacturers, we can obtain the relationship between the pixel coordinate system and
LiDAR coordinate system according to Equation (1):

Y= (u—ug)d
fof =)/ £+ (0= 00)/ £,)7 41
Y= (v—1ov9)d 9
fy\/(u—uo)/fx)2d+ (0—v0)/fy) +1 (
7 =
V= u0)/ fo)? + (0 —o0)/fy) 2 +1

To calibrate the extrinsic parameter between O; — XY Z; and Oy — X Yw Zyy, we
adopt a 3D plane fitting method based on the RANSAC algorithm to acquire the equation
of three planes of the triangular pyramid, and the steps can be described as follows:
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e  Apply Kmeans cluster algorithm [30] to acquire point cloud of triangular pyramid
target apart from background points.

e  Select three points from point cloud P of triangular pyramid, and calculate the equation
of the plane formed by these three points.

e Classify the other points to either inlier point or outlier point by comparing the
distance between these points and the plane to a threshold value, and tally the amount
of inlier points.

e Repeat steps (2) and (3) a certain number of times to find the first best plane, or until
the amount of inlier points reaches a threshold value.

e  Remove the inlier points and repeat steps (2), (3), and (4) twice to find the second and
third best planes.

Then, we can obtain the equations of plane i in Oy — X Y1 Z;:
NPl —d; =0, )

where Pl is arbitrary point of plane i (i = 1,2,3), vector N; represents the unit normal
vector of plane i, and d; denotes the distance of origin Oy and plane i. The coordinate of
origin Ow = [xw, Yw, Zw] T can be calculated by Equation (10), and normal vectors of three
axes can be determined by cross product:

[Ny, N, N3)" O — [dy,da,d3]" =0, (10)
Nl X N3
Ny = L= 3
X N2> s
X 11)
Ny — X 1, (
¥ INx < Ny
Nz = Nx X Ny

Then, we can obtain the rotation matrix Ry and translation vector Ty from the
world coordinate system to LIDAR coordinate system:

{ Rwr = [Nx, Ny, N7] (12)

Twr = [xw, yw, zw]"

The next step is to estimate the rotation matrix and translation vector from the world
coordinate system to camera coordinate system. This time, we need to acquire the ex-
pressions of plane i in Oc — X¢cYcZc. Knowing the intrinsic parameters of the camera
in Section 3.2.1, we can obtain the rotation matrix R; and translation vector T; from each
chessboard to the camera coordinate system by Equation (5). Then, the origin and unit
normal vector of chessboard i can be transformed to Oc — XcYcZ¢ by the following:

N/ = R;[0,0,1]7, (13)

Oi = Tir (14)

where N;’ represents unit normal vector of chessboard i, and O; denotes the origin coordi-
nate of chessboard i. The expression of plane i in Oc — XcYcZ¢ can be acquired:

N/ (PC—0;) =0, (15)

where PC is an arbitrary point on plane i. Similar to Equation (10), the coordinate of origin
Oow' = [Xw', Yw', Zw'] T is as follows:

T T
[N, N2, N5'] 70w = [Ny 01, Ny 70, N3'T05 ] = 0, (16)



Appl. Sci. 2021, 11, 582

8 of 18

Normal vectors of three axes Nx’, Ny’, and Nz’ can also be determined by Equation (11).
Hence, the rotation matrix Ry ¢ and translation vector Ty from Oy — Xy YwZw to Oc —
XcYcZc are as follows:

Rye = [Nx', Ny, NZ']
’ / nT r (17)
TWC = [XW /YW /ZW ]

Then, we can obtain rotation matrix R, and translation vector Ty, from Op —
X1Y1Zy to Oc — XcYcZc by coordinate system transformation:

{ Rigw = RWCR;vlL (18)
Traw = RWC(TWC - TWL)

where Ry and Ty, are the initial rigid transformation of system. However, there are
errors caused by LiDAR point cloud and camera image. To reduce errors, we project point
cloud of the triangular pyramid to the camera coordinate system and minimize the distance
between all points and corresponding chessboards.

3 M(i)
argmin) )~ ||NiT(RP£j +T)—d;, (19)
=121

where M(i) represents the amount of inlier points belonging to plane i and Pfj denotes the
jth point of plane i. This non-liner optimization problem can be solved by the Levenberg
Marquardt algorithm [31].

3.2.3. Calibration Problem Restated

The proposed method can estimate the intrinsic parameters and extrinsic parameters
through a single capture of the camera and LiDAR in Sections 3.2.1 and 3.2.2. We can
further increase the accuracy by acquiring more data. Keeping the camera and LiDAR
static, we randomly move the triangular pyramid K times. Each time, the camera and
LiDAR frame are denoted by {Cy } and {L;}, wherek = 1,...,K. According to Equation (5),
the intrinsic parameter calibration problem of the camera can be formulated according to
the equations below:

H; = M[Ri, R'ij, Tix], (20)

where i = 1,2,3. Hence, we have 3K equations of Equation (20), and it can be estimated by
the Levenberg Marquardt algorithm [31]. The extrinsic calibration problem can be trans-
formed to the optimization of the rotation matrix and translation vector separately. After
rigid transformation, the unit normal vectors of {Cy} and {L;} are aligned to each other.

3 K
argmin}_ Y| (RN) NG — 1/, (21)

i=1k=1

where NI and NS represent the unit normal vectors of plane i in { Lk} and {Ck}, available
by the Singular Value Decomposition (SVD) method. After rigid transformation, the points
of triangular pyramid are on the chessboard plane, formulated by the following;:

K 3 MGo
argmin Y INK(RP 4+ T) —digll, (22)
k=1i=1 j=1

—1i=
where M(i, k) is the amount of points of plane i in frame k, N, and d; x are the expression

of plane i in frame k according to Equation (9), and PZ.L]. , denotes the jth point of plane i

in frame k. The translation vector T can also be estimated by the Levenberg Marquardt
algorithm [31].
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Figure 3 is a flow chart of our method to calibrate the camera and flash LiDAR system.
Firstly, we turn on the camera and LiDAR to acquire image and point cloud of the triangular
pyramid target simultaneously. The image of the target is divided into three parts and
each part displays the image of one chessboard. Secondly, we apply the feature points
correspondence method based on [13] to obtain homography matrix H and intrinsic matrix
M of the camera. Thirdly, we calculate rigid transformation from the chessboard to camera
by combining H and M to obtain the extrinsic parameters from the world coordinate system
to camera coordinate system. At the same time, we fit planes of three chessboards in the
point cloud and obtain extrinsic parameters from the world coordinate system to LIDAR
coordinate system. Finally, we calculate the initial extrinsic parameters from the LiDAR
coordinate system to camera coordinate system, and optimize the result by minimizing
the distance from the points to the chessboard. Furthermore, if we take more frames of the
camera and LiDAR, the result can be more accurate by applying the Levenberg Marquardt
algorithm [31].

Intrinsic calibration

Iterate to Optimize . Camera extrinsic
e AN Calculate
obtain final (€ extrinsic € - A parameters
Ry and Tray .
result parameters Rycand Tye

n A
o

More fram

LiDAR extrinsic
> parameters
R;cand T

Point cloud o Fit three
of LIDAR planes

A
A,

Figure 3. Flowchart of intrinsic and extrinsic calibration of the proposed method.

4. Experiments

A series of experiments are implemented to analyze the performance of the proposed
method. First, we test the algorithm by simulation and observe the sensibility of noise.
Then, a real camera and flash LiDAR system is calibrated with incremental verification
experiments. Finally, the method is verified on a depth map.

4.1. Simulation
4.1.1. Experiment Settings

We first evaluate our extrinsic calibration method by simulation data and ground
truth. We set up a virtual camera and flash LiDAR system. The intrinsic parameters of the
virtual camera and flash LiDAR are shown in Table 1. The rotation and translation from
LiDAR to camera are set as [30°, —40°,70°] and [0.4 m, —0.2 m, 0.6 m] separately. The base
and height of the triangular pyramid are set as 1 m and 0.4 m, respectively. The size of each
cell of chessboard is 0.05 m x 0.05 m. Each plane of triangular pyramid has 6000 LiDAR
points and 100 image corner points. In the following experiments, we employ ¢(R) and
e(T) to evaluate the errors of rotation and translation:

{ e(R) = 2arccos(05/1 + tr(RRL,) 23)

e(T) = || Trear — T||
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where R and T are extrinsic parameters figured out through our method, R,.;; and T,,,; are
ground truth of rotation matrix and translation vector. e(R) represents a single angle for R
to rotate to coincide with R,,;.

Table 1. Parameters of virtual camera and flash light detection and ranging (LiDAR).

Parameter Camera Value LiDAR Value

fu/ (pixel) 1200 300

fo/ (pixel) 1200 300

g/ (pixel) 640 320

vo/ (pixel) 512 240

Focus/mm 24 6
Resolution/ (pixel) 1280 x 1024 320 x 240

4.1.2. Performance with Respect to Noise on Point Cloud

The errors of depth data during LiDAR measurement and corner points during
camera measurement are primary error sources in the extrinsic calibration process. In this
experiment, we explore the calibration result with respect to noise on point cloud. Zero
mean Gaussian noise is added to the direction vector of LIDAR point so as to simulate real
measurement. The standard deviation ¢ of noise is changed from 0.01 m to 0.1 m. For each
noise level, 300 independent tests are carried out. The absolute errors of rotation e(R) and
translation e(T) are demonstrated in Figure 4. In the boxplot, the horizontal boundaries of
the box represent the first and third quartiles, separated by the red middle line, which is
the data’s median. And red points represent average absolute errors of each noise level.
From Figure 4, we can observe that noise increases almost linearly with the increasing of
noise level. Hence, reducing noise error of LIDAR point is an essential way to obtain an
accurate calibration result. When ¢ = 25 mm, which is the noise level of a normal flash
LiDAR, the average error of rotation is about 0.5° and the average error of translation is
about 7.4 mm.

43
30F
40 F
251 35 = 7T
320Ff N 30¢ _
& East
E 15F E 20t H
5 ) y ¥ . -
10F ‘ 150 B
% % 10F |
05 1
%I 5E : L
0.0 _.% % | 1 1 I T I ! 0 % % | L L | | L
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
o/mm a/mm
(a) (b)

Figure 4. The relation between absolute errors and point cloud noise level: (a) absolute errors of rotation and (b) absolute

errors of translation.

4.1.3. Performance with Respect to Noise on Image Point

Pixel noise on corner points of image is another error source during measurement.
In this experiment, we investigate the sensitivity of our method with reference to pixel
noise. Zero mean Gaussian noise is added to the pixel of corner points on the chessboard.
The standard deviation ¢ of noise varied from 0.1 pixel to 1 pixel. Similar to Section 4.1.2,
300 independent tests are carried out for each noise level. The absolute errors of rotation
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e(R) and translation e(T) are shown in Figure 5. From the boxplot, we can observe that
the errors of rotation and translation are linear with pixel noise level. The errors caused
by pixel noise are smaller than errors caused by point cloud noise. Even ¢ = 1 pixel, the
average error of rotation is about 0.16°, and the average error of translation is about 2.7 mm.
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Figure 5. The relation between absolute errors and pixel noise level: (a) absolute errors of rotation and (b) absolute errors of
translation.
4.1.4. Performance with Respect to the Optimization Method
As expounded in Section 3.2.2, we utilize Equation (19) to optimize the extrinsic
parameters. This experiment displays the effectiveness of our optimization method. We
also carried out 300 independent trials for each noise level in Sections 4.1.2 and 4.1.3.
Figure 6 shows the relation of absolute errors and point cloud noise level after optimization.
30
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(b)

35 40 45 50

Figure 6. The relation between absolute errors and point cloud noise level after optimization: (a) absolute errors of rotation;

and (b) absolute errors of translation.

Figure 7 shows the relation of absolute errors and pixel noise level after optimization.
It is clear that, after optimization, the errors of rotation and translation are both lower than
initial results to some extent. In Figure 6, when ¢ = 25 mm, the average errors of rotation
and translation are about 0.38° and 4 mm (the corresponding results in Figure 4 are 0.5°
and 7.4 mm), respectively. In Figure 7, when o= 1 pixel, the average error of rotation and
translation are about 0.13° and 2.2 mm (the corresponding result in Figure 5 are 0.16° and
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2.7 mm), respectively. The performance means that the optimization method is effective in
decreasing errors of both rotation and translation.
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Figure 7. The relation between absolute errors and pixel noise level after optimization: (a) absolute errors of rotation and

(b) absolute errors of translation.

4.1.5. Performance with Respect to Number of Frames

As described in Section 3.2.2, our method can calibrate the extrinsic parameters
through one single capture. However, more frames of the camera and LiDAR can provide
more information of the target. In this experiment, we simulate 20 frames of the camera
and LiDAR, and randomly select several frames to figure out the calibration result. The
number of frames varied from 1 to 9, and for each number, we conduct 300 independent
tests. The noise level of pixel noise is set to o = 0.5 pixel, and the ¢ of point cloud noise is
set from 10 mm to 50 mm separately. Figures 8 and 9 plot the average absolute errors of
rotation and translation. It is shown that, as the number of frames increases, the rotation
and translation errors decrease obviously. However, when there are more than six frames,
the decrease in the measurement error is not obvious. So, it is wise to use a suitable number
of frames to obtain a precise result.
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Figure 8. Average absolute error of rotation for different number of frames.
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Figure 9. Average absolute error of translation for different number of frames.

4.2. Real Data Experiments
4.2.1. Experiment Settings

The method is further evaluated by a real camera and flash LiDAR system as shown in
Figure 2b. The camera is fixed on a precise rotation stage, and the flash LiDAR is fixed on a
precise motorized linear stage. The parameters of flash LiDAR are provided by the manu-
facturers, as shown in Table 2. The horizontal resolution of flash LiDAR is 50° /320 = 0.156°,
and the vertical resolution is 40° /240 = 0.167°. We can acquire 320 x 240 = 76,800 points.
The resolution of camera is 1280 x 1024 and the size of cell is 20 um x 20 um. The triangular
pyramid used in this experiment is about 1 m in base and about 0.4 m in height, whose
size need not be known. The size of the chessboard cell is 0.05 m x 0.05 m.

Table 2. Parameters of flash LiDAR.

Parameter LiDAR Value

fu/ (pixel) 300

fo/ (pixel) 300

g/ (pixel) 159

vo/ (pixel) 125
Resolution/ (pixel) 320 x 240
Frame Rate/(fps) 30

Range/(m) 0.1~25

Field of View/(degree) 50 x 40
Range Accuracy/cm 5

4.2.2. Performance of Intrinsic Calibration

In this section, we utilize the reprojection error to verify our intrinsic parameters
calibration method of the camera.

"7 3N

1 3
i=1

N
D \/(”i —uy)? + (v —0y)?, (24)
j=1

where N is the number of corner points on one chessboard, [u;, vi]T and [u;, vi/]T are the
theoretical coordinate and experimental coordinate of each corner point.



Appl. Sci. 2021, 11, 582 140f 18

We take 20 images of the triangular pyramid with different positions and angles. Each
image is divided to three parts by hand. Then, we calculate the intrinsic parameters of the
camera and reprojection error of 20 images. Figure 10a shows the result of each image. The
reprojection error of each image is below 0.5 pixel, and most are about 0.35 pixel.
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Figure 10. Average reprojection error and root mean square error (RMSE) of 20 frames of the camera and LiDAR: (a)
reprojection error and (b) RMSE.

4.2.3. Performance of Extrinsic Calibration with Number of Frames

To test the performance of a different number of camera and LiDAR frames, we keep
the camera and LiDAR fixed, move the triangular pyramid randomly, and take 20 pairs
of frames. One to nine pairs of frames are randomly selected to calibrate the extrinsic
parameters, and we conduct 100 repeated tests for each frame level, expect that 1 frame
is only tested 20 times. We also use Equation (23) to describe the single angle ¢(R) and
translation e(T) from LiDAR to camera. The boxplot of each number of frames is shown in
Figure 11.
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Figure 11. Extrinsic parameters of the camera and LiDAR system: (a) rotation from LiDAR to camera and (b) translation

from LiDAR to camera.

4.2.4. Performance of Root Mean Square Error

Our method employs geometric constraints of the triangular pyramid target to cal-
ibrate the extrinsic parameters of the camera and LiDAR system. There are no feature
points for flash LiDAR to detect and we cannot use the reprojection error to evaluate the
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calibration result, as the conventional method did. Therefore, we apply root mean square
error (RMSE) in this experiment.

K 3 M@k 2
kil 'Zl = (Ni,k(RPi,j,k‘i'T)_di,k)
=11= ]:
eRMSE = 3 / (25)
Y X M(i, k)
k=1i=1

where erprse represents the RMSE of all points to their corresponding chessboards. We
also calculate the RMSE of 20 pairs of frames, and the result is illustrated in Figure 10b. It
shows that the RMSEs of most frames are under 25 mm.

4.2.5. Incremental Verification Experiments

The difficulty of evaluating extrinsic calibration lies in the difficulty to obtain the
ground truth of rotation and translation between the camera and LiDAR. For this reason,
we employ incremental verification experiments to evaluate the proposed method. As
shown in Figure 2b, the camera is fixed on precise rotation stage and LiDAR is fixed on
precise motorized linear stage. First, we calibrate extrinsic parameters of system using five
pairs of frames through our method. Then, we move the precise motorized linear stage
80 mm away from camera, and we calibrate extrinsic parameters of system again. The
translation vector between the first time and second time is shown in Table 3. Similarly, we
rotate the precise rotation stage 11° clockwise, and figure out the rotation matrix before
and after the rotating stage as well. The result is shown in Table 3.

Table 3. Translation and rotation incremental verification results.

Measurement Before Translation After Translation Increment/mm
146.752 224.763
T 26527 11.835 79.383
—3.574 —3.267

0060 099  0.062 0058 099  0.008 11.041

0976  —0.072 0.207 0917  —0.083 0.389
—0.210 —0.048 0.976 —0.394 —0.047 0918

The increment of translation is 79.383 mm, and the error is within 0.8%. The incre-
ment of rotation is 11.041°, and the error is within 0.4%. This indicates that the error
of extrinsic parameters is within the tolerance range and the results of our method are
basically accurate.

4.3. Comparisons of Different Calibration Methods

In this section, we use the reprojection error to compare different calibration methods.
The work of [15] applies two chessboards and one auxiliary calibration object to calibrate
the extrinsic parameters of the camera and LiDAR system. They combine ten pairs of
3D-2D and 3D-3D point correspondences. The work of [32] employs more than three
diamond planar boards and extracts four vertexes of each board to obtain the intrinsic and
extrinsic parameters. The work of [28] is a targetless method and maximizes the mutual
information between the sensor-measured surface intensities to calibrate the extrinsic
parameters. The work of [33] proposes a method based on supervised learning to calibrate
the extrinsic parameters.

As shown in Table 4, the reprojection error of our method is 0.390, much smaller than
other methods. Moreover, our proposed method can calibrate both the intrinsic parameters
of camera and extrinsic parameters of the camera and LiDAR system.
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Table 4. Comparison of different calibration methods.

Calibration Method Intrinsic Parameters of Camera Extrinsic Parameters Reprojection Error/(Pixel)
Proposed method v v 0.390
Pei et al. method [15] X v 1.392
Park et al. method [32] v v 2.078
Pandey et al. method [28] X v 2.802
Cao et al. method [33] v v 0.801

4.4. Verification on Composition of Data

In order to test the actual effect of the proposed method, we use our calibration result
to reconstruct 3D scenes. The 2D image of camera is superimposed to 3D point cloud of
flash LiDAR, and the result is shown in Figure 12. As one can see in Figure 12c, the image
of the camera and point cloud of LiDAR match quite well.

(c)

Figure 12. Composition of 2D image and 3D point cloud: (a) 2D image captured by camera; (b) 3D point cloud captured
by flash LiDAR; and (c) result of superimposing 2D image to 3D point cloud using calibration parameters through the

proposed method.
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5. Conclusions

Up to now, far too little attention has been paid to the fusion of the camera and flash
LiDAR system. In this paper, we present a novel method of calibrating the camera and
flash LiDAR system, as the traditional calibration method has limited accuracy, restricted
by mechanical scanning LiDAR. Making use of dense point cloud from flash LiDAR, the
proposed method has state-of-the-art accuracy. We design a calibration target that is an
arbitrary triangular pyramid with three chessboards on its planes. With abundant 2D
information of the chessboards, we can obtain the intrinsic parameters of the camera, and
then utilize three planes of the triangular pyramid to obtain the extrinsic parameters of the
system. The extrinsic parameters can be optimized by minimizing the distance between
points in the LIDAR coordinate system and chessboards in the camera coordinate system.
Through the proposed method, one pair capture of the camera and LiDAR is enough to
calibrate the intrinsic parameters of the camera and extrinsic parameters of the system.
More pairs of frames can increase the accuracy. Emulation experiments demonstrate that
our method is robust to sensor noise. Moreover, we use RMSE to evaluate the accuracy and
the calibration result is shown by incremental verification experiments. In the future, we
will make efforts to increase the resolution of flash LiDAR to obtain a more accurate result.
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