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Abstract: It is increasingly necessary to perform risk analysis in marine structures, to ensure system
safety, as they are large and complex. In view of the shortcomings of failure mode and effect
analysis (FMEA), a modified fuzzy TOPSIS (Technique for Order Preference by Similarity to an Ideal
Solution) approach is proposed that is based on fuzzy evidence reasoning (FER), and considers
the risk factor rating and relative weight. The presented method is used to prioritize the risk of
equipment failure modes for the floating production storage and offloading system (FPSO) oil and
gas processing system. The subjective weights and objective weights of occurrence (O), severity
(S), and detectability (D) have been considered comprehensively. The subjective experience of the
experts and the objective information reflected by the O, S, and D ratings are all included in the
weights, making the ranking results closer to reality. The results can be scientific references for
decision-makers in risk identification.

Keywords: FPSO oil and gas processing system; failure mode and effect analysis (FMEA); fuzzy
evidence reasoning (FER); fuzzy TOPSIS; comprehensive weighting method

1. Introduction

One of the mainstream methods for offshore oil and gas development is the floating
production storage and offloading system (FPSO). It consists of more than a dozen large
systems such as subsea, hull, mooring positioning, oil and gas processing, power, fire
monitoring, oil storage and transportation, living system, and others. The flammable and
explosive characteristics of oil and gas make the oil and gas processing system the most
important high-risk system, which may cause fire and explosion accidents, like the 2015
explosion accident of Cidade de São Mateus FPSO in Brazil, which resulted in nine deaths
and 26 injuries [1–3]. Consequently, it is important to identify the oil and gas leakage risk
of the FPSO oil and gas processing system.

Failure mode and effect analysis (FMEA) has been used widely as a critical safety
and reliability analysis tool in various industries, especially in the aerospace, automotive,
nuclear, and healthcare industries [4–7]. Conventionally, the ranking of failure modes for
corrective actions is determined in terms of the risk priority number (RPN), which is the
result of the mathematical product of occurrence (O), severity (S), and detectability (D).
Here, O represents the frequency of the risk, D indicates the possibility of predicting the
risk before it occurs, and S indicates the severity of the risk to the system [8].

However, the conventional RPN method has several limitations and causes many
problems. The major ones are summarized as follows [9–12]: (1) O, S, and D are considered
to be equally weighted, without considering the relative importance between them; (2) since
areas of expertise may vary depending on the experience of the evaluator, it is difficult
to identify O, S, and D accurately; (3) there is no scientific basis for calculating RPN by
multiplying O, S, and D; and (4) the same RPN may be produced by different combinations
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of O, S, and D. In fact, 120 different RPN values can be calculated from O, S, and D, and
many of the numbers are in the range of 1–1000. The RPN elements have many duplicate
numbers as well. Hence, the mathematical formula for calculating RPN is questionable
and debatable. (5) RPN uses only three risk factors to evaluate safety, but the other
important risk factors, such as the economic direction of the error, are not considered. The
AIAG/VDA (Automotive Industry Action Group/Verband der Automobilindustrie) FMEA
Handbook [13] recommends using action priority (AP) fields in place of the RPN in design
failure mode and effects analysis (DFMEA), potential failure mode and effects analysis
(PFMEA), and FMEA for monitoring and system response (FMEA-MSR) to evaluate priority
for actions. The AP also provides all 1000 possible combinations of S, O, and D; and the
AP table recommends that measures be classified into high priority (H), medium priority
(M), and low priority (L). In essence, AP has the same disadvantages and problems as the
traditional RPN.

In order to overcome one or more of the limitations and to improve the effectiveness
of the traditional FMEA methods, several scholars have carried out the risk ranking of
failure modes by combining fuzzy evidence theory, Technique for Order Preference by
Similarity to an Ideal Solution (TOPSIS) theory, grey correlation theory, Decision-Making
Trial and Evaluation Laboratory (DEMATEL) theory, and other methods. Seyed-Hosseini
et al. [14] proposed the DEMATEL method to be applied in FMEA risk priority sequencing.
Chin et al. [15] developed the FMEA method based on the evidential reasoning method to
simulate the diversity and uncertainty of rating in the process of FMEA analysis. Sachdeva
et al. [16] proposed the TOPSIS method to rank the risk priority of all failure modes. Du and
Peng [17] presented a risk analysis method based on fuzzy evidence reasoning aiming
at the uncertainty of risk rating and the question of FMEA. Considering the correlation
between failure modes, Kang et al. [18] introduced fuzzy set theory and decision test,
and an experimental evaluation method into FMEA, and combined it with TOPSIS theory
to analyze the failure modes of offshore wind turbine, to improve the credibility of the
results. The information safety of small cities was evaluated by Li et al. [19] based on
trapezoidal fuzzy numbers and grey correlation theory. Based on cloud model theory and
hierarchical technology, Liu et al. [20] converted the linguistic evaluation of failure modes
into cloud fuzzy numbers, combining the advantages of cloud model in dealing with the
fuzziness and randomness of linguistic evaluation, and the advantages of hierarchical
TOPSIS in solving complex decision-making problems. However, there is no relevant
research combining fuzzy AHP method with fuzzy evidence reasoning (FER) and TOPSIS,
especially for failure assessment in FMEA, and FER is well-suited for handling incomplete
assessment of uncertainty.

For determining the weights of risk factors, the available literature provides details for
methods such as AHP [21], fuzzy AHP [22,23], and analytic network process (ANP) [24].
Kutlu and Ekmekçioğlu [7] introduced the fuzzy theory into FMEA analysis and used
the fuzzy analytic hierarchy process to determine the weight of risk factors, but ignored
the objective information of risk factors themselves. AHP was used to derive the relative
priorities of evaluation criteria in the FTOPSIS approach to rank failure modes by Carpitella
et al. [23]. Boral et al. [25] used Buckley’s fuzzy AHP method to calculate the fuzzy weights
of the risk factors. Li and Hao [26] used an example to verify the variable weight effect of
variable weight vector in the comprehensive decision-making. To weigh the risk factors,
Liu et al. [22] integrated the fuzzy analytic hierarchy process (AHP) and the entropy
method. Rezaei [27] proposed best-worst method (BWM) to determine the importance
weights of criteria, flexibly. This approach is a comparison-based method that establishes
the comparisons between items in a particular way. The traditional BWM uses crisp values
to conduct the comparisons so it fails to determine weights under uncertain environment.
Thus, to obtain the weights of risk factors, fuzzy BWM [28–30] is employed. However,
BWM involves tedious processes and a few pair-wise comparisons to achieve consistent
results. Moreover, in some FMEA models, the weights of FMEA team members are
assumed to be known or equal; such an approach cannot avoid subjective randomness.
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The current study proposes an integrated approach for FMEA. In the proposed frame-
work, using the fuzzy evidence reasoning method, the ratings of O, S, and D are represented
in fuzzy belief-structures to express the diverse and the uncertain. To determine the weights
of O, S, and D, the subjective experience of the experts and the objective information of the
ratings are considered comprehensively. The variable-weight method and entropy-weight
method are used to calculate the weights reflected by the objective information. Addition-
ally, the objective and the subjective weights are combined and integrated to obtain the
comprehensive weight of O, S, and D. To prioritize the risk of potential failure modes, the
fuzzy TOPSIS method is adopted.

The rest of the paper is organized as follows: FPSO oil and gas processing system
is introduced in Section 2. The proposed methodology is described in Section 3. Risk
identification of FPSO oil and gas processing system is offered in Section 4, and the analysis
of results is made in Section 5. Section 6 gives the conclusions of this paper.

2. FPSO Oil and Gas Processing System

As the most important component of the FPSO upper module, the FPSO oil and gas
processing system roughly resembles its on-shore contemporaries, including oil-gas-water
separation, associated gas processing, electric dehydration and desalination, production
sewage processing, crude oil external measurement, chemical injection, heating medium,
torch-venting systems, etc. The processing technology flow diagram of FPSO oil and gas
processing system is shown in Figure 1.
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Figure 1. The processing technology flow diagram of floating production storage and offloading
system (FPSO) oil and gas processing system.

The submarine oil-well produces fluid by a single-point hose, which is heated to a
certain temperature by a crude oil heat exchanger before it enters a primary (high-pressure)
separator. There, with the addition of chemicals, the separation of oil, gas, and water can
be initially realized. The separated gas is sent to the associated gas-processing system,
and the separated oily sewage enters the production sewage treatment system. The crude
oil that is separated is heated to a certain temperature by the heat exchanger and the
crude oil heater, and then enters the high-pressure separator for secondary separation.
The gas generated after the second separation enters the associated gas processing system;
the sewage enters the production sewage processing system; and the crude oil, after the
secondary separation treatment, enters the tertiary separator again for separation. The
crude oil is buffered, stabilized, and decompressed in the vessel after three separations,
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then heated and transported to the electric dehydration and desalination system to remove
impurities such as emulsified water and inorganic salts in crude oil, to finally obtain
relatively pure crude oil. The pure crude oil is sent to be measured at the crude oil external
measurement system. After that, it is transported to the cargo tank of the FPSO for storage.
The gas generated in the above process is uniformly transported to the associated gas
processing system for separation, dehydration, decontamination, and purification, before
the natural gas can be obtained. The purified natural gas can then be used as fuel for the
FPSO itself, and the excess can be injected into the oil field or to the torch to vent or burn.
The sewage generated in the process is collected in the production sewage processing
system for filtration, sedimentation, oil-water separation, and other processes. The purified
sewage can be directly discharged or can be injected back into the oil and gas field, while
the non-standard sewage will be processed again until it is purified and then discharged
into the sea.

3. The Proposed Approach

In this section, to prioritize the potential failure modes, a risk identification approach
based on a fuzzy TOPSIS integrated fuzzy evidential reasoning approach is proposed.

Fuzzy logic is a tool that transforms the vagueness of human feelings and recogni-
tions, and their decision-making ability into a mathematical formula. It also provides a
meaningful representation of measurement for uncertainties and vague concepts expressed
in natural language. So, a fuzzy multi-criteria decision-making method is preferred instead
of crisp decision-making methods for overcoming the conventional FMEA shortcomings.

Based on fuzzy evidence reasoning and comprehensive weighting method, the fuzzy
TOPSIS is improved. In view of the diversity and uncertainty of O, S, and D ratings, the
method uses fuzzy evidence reasoning to express the ratings of O, S, and D in a fuzzy
belief structure. In order to take the objective information contained in the O, S, and D
ratings into account, the O, S, and D subjective and the objective weights are combined
and weighted by a comprehensive weighting method. In determining the comprehensive
weight, two methods are proposed: subjective-entropy integrated weight method and
subjective-variable integrated weight method. Last, fuzzy TOPSIS is utilized to obtain
the closeness coefficients of processes, according to which, the ranking order of all failure
modes is determined.

All necessary steps required for making a risk prioritization assessment using the
proposed approach are outlined in Figure 2. The step-details of the proposed methodology
is discussed as follows:
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3.1. Risk Identification (Step 1)

In this step, the decision expert team should be determined first. Suppose there are K
experts to make decisions (DE1, DE2, · · · , DEK) in an FMEA team that is responsible for the
assessment. Different experts may have different knowledge, experience, and individual
preferences, so they will express various views and subjective perceptions on the same
failure modes. Therefore, each decision expert DEk is given a weight λk > 0 (k = 1, · · · , K)
satisfying ∑K

k λk = 1 to reflect his/her relative importance in the FMEA team. Expert
weights should be determined by direct rating, point allocation, the eigenvector method,
linear programming techniques for multi-dimension analysis of preferences (LINMAP),
the Delphi method, etc. In this paper, expert weight can be calculated by Equation (1).
If there is not enough reason or evidence to show the differences among the FMEA team in
their judgment qualities, the team experts should be given equal weight.
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λk =
Hk

∑K
k=1 Hk

(1)

where: Hk is the score of the expert DEk, given in Table 1.

Table 1. Weight allocation table of expert weight.

Aspects Classes Scores

Qualification

Senior expert 5
Senior designer or operator 4

Intermediate designer or operator 3
General technician 2
General operator 1

Work experience

More than 30 years 5
20–29 years 4
10–19 years 3

5–9 years 2
Less than 5 years 1

Field familiarity very familiar 5
familiar 3

Then potential leak sources of oil and gas leakage related to FPSO oil and gas process-
ing system should be identified.

3.2. Model Establishment (Step 2)

The purpose of Step 2 is to develop a quantitative assessment of risk factors related to
each failure mode, which is the core procedure of the proposed approach. This step can be
divided into four sub-steps.

(a) Establishment of Group fuzzy belief structures combining fuzzy logic;
(b) Determination of subjective weight;
(c) Determination of two kinds of comprehensive weighting methods;
(d) Establishment of weighted normalized decision matrix.

3.2.1. Establishment of Group Fuzzy Belief Structures Combining Fuzzy Logic (Sub-Step 1)

As a result of diverse and uncertain characteristics of subjective judgments, evidential
reasoning (ER) theory, integrated with fuzzy set theory, is used to express experts’ judg-
ments. The main advantage of the ER approach is that both precise data and subjective
judgments with uncertainty can be consistently modeled under the unified framework [31].
The ratings of O, S, and D are expressed in an individual evaluation grade set that is defined
as a fuzzy set H as follows:

H = {H11, H22, H33, H44, H55} = {VeryLow, Low, Moderate, High, VeryHigh}

Based on experts’ opinions, we can approximate all the five individual assessment
grades by using fuzzy numbers. Trapezoidal fuzzy number is mainly used to solve the
problem of membership degree, and the fuzziness and uncertainty of evaluation can be
expressed in the form of interval, which is consistent with the reason of using trapezoidal
fuzzy number in this paper. Therefore, linguistic variables are approximated as trapezoidal
fuzzy numbers [32]. Their membership function values can be determined according to
the historical data and the detailed questionnaire answered by all experts, as shown in
Figure 3 and Table 2.
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Table 2. Fuzzy ratings for linguistic terms of risk factors.

Linguistic Terms
Assessment Criteria Trapezoidal Fuzzy

NumberOccurrence(O) Severity(S) Detect Ability(D)

Very Low (VL)
Failure mode is

extremely unlikely
to happen

The failure mode has no effect
on the system function, and
the operator may not notice

the failure.

The defect still exists
until the system function

fails to complete the
established task to

some extent.

(0,0,0.1,0.2)

Low(L)
May happen once, but
it cannot happen again

or happen often

Failure has a slight impact on
the operator but does not

continue to affect the system

Defects still exist until
system performance is

severely degraded
(0.1,0.2,0.3,0.4)

Moderate(M) May happen again

Failure causes the operator to
be highly uncomfortable or has

a slight impact on system
function and can be perceived

by the operator

Defects still exist until
system functionality

is affected
(0.3,0.4,0.6,0.7)

High(H) Almost happen at
least once

Failure causes serious
problems on the system

function and may result in
minor personal injury

Defects still exist until
observation or testing (0.6,0.7,0.8,0.9)

Very High (VH) Almost happen several
times

Failure causes system function
to be greatly affected, which

may cause casualties

Failure cannot be
detected, and defects can

be detected.
(0.8,0.9,1.0,1.0)

Furthermore, we define the interval fuzzy assessment grade sets Hij for i = 1− 4 and
j = i + 1 to 5 as trapezoidal fuzzy sets that include fuzzy individual grades Hii, H(i+1)(i+1),
Hjj.

The assessment grades in the FMEA may represent a vague concept, and there
may be no clear distinctions between the meanings of two adjacent grades. In other
words, these evaluation grades may not be regarded as crisp sets. Such a problem can
be solved by the FER approach, which allows FMEA decision experts to provide their
subjective judgments flexibly: the assessment grades for each failure mode is expressed as{(

Hij, Uk
ij(FMn, VFl)

)
, i ≤ j, i, j = 1, · · · , 5, n = 1, . . . . . . , N, l = 1, 2, 3.

}
when l = 1, 2,

3, means O, S, and D, respectively. Where Uk
ij(FMn, VFl) is the confidence of the kth expert

on the fuzzy grade Hij. If ∑5
i=1 ∑5

j=1 Uk
ij(FMn, VFl) = 1, that is, the confidences (also called

belief degrees) of the kth expert in his/her subjective judgments are summed to one, then
the assessment is said to be complete; otherwise, it is said to be an incomplete assessment,
where the missing information is referred to as local ignorance and could be assigned to
any grade between Very Low and Very High. In particular, if the decision expert is not
willing to, or cannot provide an assessment for a failure mode with respect to the risk factor
under consideration, the assessment can be expressed as {(H15,1.0)}. Such judgments are
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referred to as total ignorance. Obviously, the belief structures in the FER approach provide
FMEA decision experts with an easy-to-use and very flexible way to express their opinions,
and can better quantify risk factors than the traditional RPN methodology.

The collective assessment of the K decision experts for each failure mode with respect
to each risk factor is also a belief structure, called group or collective belief structure, which
is denoted as:

Uij(FMn, VFl) = ∑K
k= 1 λkUk

ij(FMn, VFl), (2)

xn(l) = ∑5
i=1 ∑5

j=1 HijUij(FMn, VFl), (3)

where xn(l), n = 1, 2, · · · , N, l = O, S, D, is a fuzzy number. For comparison or ranking
purposes, fuzzy numbers often need to be defuzzified to crisp numbers. The most ex-
tensively used defuzzification approach is the centroid defuzzification [33]. So, the crisp
values of xn(l) is denoted as xn(l) by defuzzification. So, the group belief structures for the
N failure modes with respect to the risk factors O, S, D form a fuzzy belief decision matrix
are shown in Equation (4).

X =

O S D
FM1
FM2

...
FMN


x1(1) x1(2) x1(3)

x2(1)
...

xN(1)

x2(2)
...

xN(2)

x2(3)
...

xN(3)

 , (4)

3.2.2. Determination of Subjective Weight (Sub-Step2)

Since it is difficult to determine the O, S, and D weights, they are also expressed in
fuzzy linguistic terms by each decision expert. The triangular fuzzy number is mainly used
to solve multi-decision problems and is used to solve the weight value of factors. Therefore,
triangular fuzzy numbers are used to represent linguistic terms in this paper, as shown in
Table 3. Figure 4 shows the membership function for the sake of visualization.

Table 3. Fuzzy linguistic weights for the relative importance of risk factors.

Linguistic Variable Triangular Fuzzy Number

Very Unimportant (VUI) (0,0,0.25)
Unimportant (UI) (0,0.25,0.5)

Medium Important (MI) (0.25,0.5,0.75)
Strong Important (SI) (0.5,0.75,1)

Very Strong Important (VSI) (0.75,1,1)

Assume that the decision expert DE′Ks subjective weight rating for O, S, and D for a

failure mode is expressed as
(

ωk
lO, ωk

lS, ωk
lD

)
, then, by integrating all the decision experts’

weight of the same risk factor, the weight can be expressed as:

ωS
l =

(
∑K

k= 1 λkωk
lO, ∑K

k= 1 λkωk
lS, ∑K

k= 1 λkωk
lD

)
, (5)

The language rating in the weight is defuzzified using centroid defuzzification method,
and the subjective weights of O, S, and D can be normalized using the following equation:

ωS
l =

ωS
l

∑K
l= 1 ωS

l

, (6)

where ωS
l is the subjective weight obtained after normalization of ωS

l .
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3.2.3. Determination of Two Kinds of Comprehensive Weighting Methods (Sub-Step 3)

The final decision in the case of multi-attributive and multi-objective decision-making
problems is influenced by factors such as indicator characteristics and decision preferences.
Although the weight determination methods of these factors are diverse, the selection of
different methods is directly related to the accuracy and rationality of the final decision
results. In general, the weight determination method can be divided into subjective, objec-
tive, and comprehensive weighting method. The subjective weighting method determines
the relative weight of evaluation indicators through the subjective experience of analysts.
This analytical method is too biased toward the preferences and experiences of decision-
makers, mainly including AHP and the Delphi method (the expert investigation method).
The objective weighting method is based on the information contained in the obtained
index data to determine the weight but does not consider the subjective information such
as the experience of the decision expert. The comprehensive weighting method, which
integrated the indicator information and the decision-maker’s subjective experience, gives
more realistic results.

Two kinds of comprehensive weighting methods, namely the subjective-entropy
integrated weight method and the subjective-variable integrated weight method, are devel-
oped.

(a) Subjective-entropy integrated weight method

The main idea of this method is to use the information entropy to calculate the entropy
weight of each risk factor. The size of the information entropy reflects the degree of disorder.
The smaller the information entropy, the lower the degree of disorder, and the greater
the utility value, so the weight is larger. In the matrix obtained after defuzzification, the
entropy of the l-th risk factor is:

El = −
1

ln(N) ∑K
n= 1(xn(l)ln(xn(l))), (7)

where n = 1, 2, · · ·N, l = 1, 2, 3, so the entropy weight of each risk factor is:

ωE
l =

1− El

∑3
l= 1(1− El)

, (8)

The multiplicative combination weighting method is adopted. Subjective weight
determined based on expert experience and entropy weight is comprehensively weighted.
ωS

l is the subjective weight. That is, the subjective-entropy integrated weight is as follows:

ωSE
l =

ωE
l ωS

l

∑3
l= 1 ωE

l ωS
l

, (9)
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(b) Subjective-variable integrated weight method

Variable weight is adjusted based on the subjective weight of the risk factor, and
subjective weight is usually obtained through the subjective experience of the decision-
experts. The weight obtained by the variable weight method combines the subjective
experience of the decision-makers with the objective values of the factors, so the results
obtained are more scientific and reasonable.

First, the variable weight vector must be constructed. Here, the exponential state
variable weight vector selected due to the parameter setting is convenient, and the decision
requirements are obvious. A set of state vector functions based on the “incentive” or
“punish” variable weight mechanism is constructed so that the weight value can reflect
the influence of the value of each indicator on the decision result. Since the risk factors
O, S, and D are cost-type variables, that is, the smaller the risk factor value, the better. so
the larger state values should be given greater weight, which will attract the attention of
decision-makers.

A state vector for the failure mode is constructed as follows:

S(xn(l)) = eα(xn(l)−xn), (10)

xn = ∑3
l= 1 xn(l)/3, (11)

where xn(l) is the l-th risk factor rating of the nth failure mode; S(xn(l)) is the variable
weight vector corresponding to xn(l). xn is the arithmetic mean of xn(l), l = 1, 2, 3; the
constant α is any real number.

The level of decision-making requirements for the balance of the risk factor is reflected
by the constant, α. When it takes a positive number and is larger, the corresponding
state value is considered more when making the decision; that is, it will be given greater
weight. The state vector at this time is called an excitation variable weight vector. When
the negative value is taken, and it is smaller, the corresponding state value is considered
less, that is, the weight is smaller, and the result is preferably a more balanced state vector
of the risk factor. The state vector at this time is called a penalty variable weight vector.

The variable weight and the subjective weight determined are comprehensively inte-
grated:

ωSV
l (xn(l)) =

ωS
l S(xn(l))

∑N
n= 1

(
ωS

l S(xn(l))
) , (12)

where ωSV
l (xn(l)) is the subjective-variable integrated weight, n = 1, 2, · · ·N, l = 1, 2, 3.

3.2.4. Establishment of Weighted Normalized Decision Matrix (Sub-Step4)

The defuzzified matrix is obtained according to Equation (4). The comprehensive
weight is obtained from Equation (9) or (12), so the weighted normalization matrix can be
obtained by multiplication:

V = [vnl ]N×3, (13)

where vnl = xn(l)·ωSE
l or vnl = xn(l)·ωSV

l (xn(l)), n = 1, 2, · · · , N, l = O, S, D.

3.3. Topsis-Based Risk Prioritization (Step3)

TOPSIS, which is one of the classical multi-criteria decision-making methods, was
developed by Hwang and Yoon (1981). According to the weighted normalized fuzzy
decision matrix, we know that the elements vnl∀n, l are normalized positive numbers, and
their ranges belong to the closed interval [0, 1]. Then, we can define the positive-ideal
solution A+ and negative-ideal solution A− as

A+ = (1, 1, 1), (14)

A− = (0, 0, 0) (15)
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The distance of each failure mode from A+ and A− can be currently calculated as

d+n =
√

∑3
l= 1(vnl − 1)2, (16)

d−n =

√√√√ 3

∑
l= 1

(vnl − 0)2 (17)

where d+n is the Euclidean distance from the failure mode FMn to the positive-ideal solution;
d−n is the Euclidean distance from the failure mode FMn to the negative-ideal solution.

The closeness coefficient of each failure mode Cn can be calculated as follows:

Cn =
d−n

d+n + d−n
, n = 1, 2, · · · , N, (18)

Obviously, a failure mode FMn is closer to A+ and farther from A− as Cn approaches
to 1. Therefore, according to the closeness coefficient, we can determine the ranking order
of all failure modes.

4. Risk Identification of FPSO Oil and Gas Processing System Leakage

Taking the 150,000-ton “OFFSHORE-111” FPSO as the study subject, this module is
classified to simplify the FMEA analysis of the FPSO leakage risk. The International and
European Standard IEC EN 60079–10–2 “Classification of areas–explosive gas atmospheres”
pointed out that hazardous areas shall be classified in zones based on the frequency of
occurrence and persistence of the dangerous atmosphere, as reported in Table 4.

Table 4. Zone types.

Zones Characteristics

Zone 0 An explosive atmosphere is present continuously or for long periods or frequently
Zone 1 An explosive atmosphere is likely to occur in normal operation occasionally

Zone 2 An explosive atmosphere is not likely to occur in normal operation but, if it does
occur, will persist for a short period only

The oil and gas processing module includes equipment and facilities, such as oil
and gas storage tanks, transfer devices, protected fire containers, etc. Due to the high
concentration and release of explosive gas, this area should be classified as Zone 0. There
are 12 main failure modes in total, which were identified by an FMEA team and are
presented together with their causes and effects on the systems in Table 5.

The FMEA team consists of five cross-functional experts. The selection of experts
and their weight distribution have a significant impact on the accuracy and stability of
the evaluation results. In this research, the experts fulfill three significant criteria: (1) have
more than ten years’ experience in FPSO design, building, and inspection; (2) still working
in the offshore engineering industry; and (3) have high-level knowledge of and experience
in FPSO systems. Keeping in mind the above criteria, the expert team, which consists
of one professor of Harbin Engineering University with a major in offshore oil and gas
security, one senior chief engineer of China National Offshore Oil Corporation (CNOOC),
one senior designer of China International Marine Containers (CIMC Raffles), one senior
designer engaged in marine engineering design in a university, and one platform engineer
of China National Offshore Oil Corporation (CNOOC). Different scores and weights are
given to team experts, as shown in Table 6.
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Table 5. Failure mode and effect analysis (FMEA) for FPSO oil and gas processing system.

ITEM Component Failure Mode Cause of Failure Failure Effect

1 Primary separator Natural gas leakage Corrosion, fatigue crack,
quality defects

Equipment damage, Discontinuation
repair, Casualties

2 Secondary
separator Natural gas leakage Corrosion, fatigue crack,

quality defects
Equipment damage, Discontinuation

repair, Casualties

3 Crude oil
measurement Crude oil leakage Corrosion, suddenly strike,

maloperation
Equipment damage, Discontinuation

repair, Casualties

4 Electric
dehydration Crude oil leakage Suddenly strike, maloperation,

fatigue crack
Equipment damage, Discontinuation

repair, Casualties

5 Crude oil flash tank Crude oil leakage Corrosion, abrasion, fatigue
crack

Equipment damage, Discontinuation
repair, Casualties

6 Secondary heater Crude oil leakage Corrosion, suddenly strike,
maloperation

Equipment damage, Discontinuation
repair, Casualties

7 Crude oil cooler Crude oil leakage Corrosion, suddenly strike,
fatigue crack

Equipment damage, Discontinuation
repair, Casualties

8 Crude oil heat
exchanger Crude oil leakage Corrosion, maloperation,

fatigue crack
Equipment damage, Discontinuation

repair, Casualties

9 Fuel gas scrubber Natural gas leakage Suddenly strike, material
defect, fatigue crack

Equipment damage, Discontinuation
repair, Casualties

10 Fuel gas cooler Natural gas leakage Suddenly strike, material
defect, fatigue crack

Equipment damage, Discontinuation
repair, Casualties

11 Crude oil separator Crude oil leakage Corrosion, suddenly strike,
fatigue crack

Equipment damage, Discontinuation
repair, Casualties

12 Fuel oil filter Fuel oil leakage Corrosion, suddenly strike,
fatigue crack

Equipment damage, Discontinuation
repair, Casualties

Table 6. Determination of expert weight.

Decision Experts Qualification Work Experience Field Familiarity Scores Weight

DE1 5 (Senior expert) 5 (More than 30 years) 5 (Very familiar) 125 0.35
DE2 5 (Senior expert) 5 (More than 30 years) 3 (Familiar) 75 0.2
DE3 4 (Senior designer or operator) 3 (10–19 years) 5 (Very familiar) 60 0.15
DE4 4 (Senior designer or operator) 4 (20–29 years) 5 (Very familiar) 80 0.2
DE5 3 (Intermediate designer or operator) 4 (20–29 years) 3 (Familiar) 36 0.1

The FMEA team functions to prioritize these 12 failure modes in terms of their failure
risks, such as the probability of occurrence, severity, and detectability, so that high-risk
failure modes are corrected with top priority. Due to the difficulty in precisely assessing the
risk factors and their relative weight importance, the team members agree to evaluate them
using the linguistic terms that are defined in Tables 2 and 3. The assessment information of
the 12 failure modes on each risk factor and the risk factor weights provided by the five
decision experts are presented in Table 7, where incomplete assessments and ignorance
information are shaded and highlighted.

The data from the FMEA in Table 7 are analyzed using Equations (2) and (3), and the
crisp values of these 12 failure modes, O, S, and D factors, are obtained by using centroid
defuzzification, as shown in Figure 5.

Subjective-entropy integrated weight ωSE
l is obtained by using Equations (7)–(9), that

is, 0.383, 0.334, and 0.283. The risk factors O, S, and D are cost-type variables, that is,
the smaller these values, the better the risk evaluation. Therefore, when constructing a
state-type variable weight vector, a larger state value should be given a greater weight,
which can attract the attention of the decision-makers. The excitation variable weight
vector is selected, that is, α is a positive number, but its specific value can be analyzed by
sorting the result, and α = 1 is temporarily taken.
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Table 7. Assessment information on 12 failure modes by five FMEA experts.

Risk Factors FMEA Experts Factors Weights FM1 FM2 FM3 FM4 FM5 FM6

Occurrence

DE1(0.35) VSI H33
H33,0.5

H22 H12,0.9 H23,0.5
H22,0.9

H44,0.5 H33,0.1
DE2(0.20) MI H44 H23 H22 H22 H12 H34,0.8
DE3(0.15) SI H33 H23 H12,0.9 H13
DE4(0.20) SI H34 H23 H33 H12 H23,0.5 H33

DE5(0.10) MI H25 H22 H22 H22 H22,0.9
H34,0.7
H33,0.2

Severity

DE1(0.35) MI H35,0.9 H45,0.9 H34 H44 H34 H34
DE2(0.20) VSI H55 H45 H33 H33 H33 H35
DE3(0.15) SI H45 H34 H45 H33,0.9 H23,0.5 H34
DE4(0.20) SI H55 H44 H33 H33 H44 H35
DE5(0.10) VSI H44 H45 H44 H34 H33 H44

Detectability

DE1(0.35) SI H33 H33 H22 H23 H22 H23
DE2(0.20) UI H34 H44,0.9 H22 H23 H22 H22
DE3(0.15) MI H33 H24 H23 H12,0.8 H23 H22
DE4(0.20) UI H22 H34 H22 H33 H12
DE5(0.10) UI H23 H33,0.9 H24 H22 H14 H12

Risk factors FMEA experts Factors weights FM7 FM8 FM9 FM10 FM11 FM12

Occurrence

DE1(0.35) VSI H22 H22,0.9 H33
H22,0.7

H33,0.5 H22H33,0.3
DE2(0.20) MI H33 H23 H34 H22 H33 H23
DE3(0.15) SI H33,0.9 H33 H23 H33 H33 H23
DE4(0.20) SI H34 H34 H33 H33 H34 H22
DE5(0.10) MI H22 H22 H33 H23 H34 H12

Severity

DE1(0.35) MI
H22,0.4

H23 H45 H34 H33 H22H33,0.5
DE2(0.20) VSI H44 H33 H44 H33 H34 H13

DE3(0.15) SI H44 H34
H33,0.2

H33 H33 H22H44,0.6
DE4(0.20) SI H34 H23 H44 H44 H44 H23
DE5(0.10) VSI H44 H33 H44 H34 H34 H22

Detectability

DE1(0.35) SI H23 H23 H33 H33 H33 H33
DE2(0.20) UI H33,0.9 H22 H23,0.8 H23 H33 H23
DE3(0.15) MI H22 H23 H33 H22 H22 H33
DE4(0.20) UI H22 H22 H23 H23 H33
DE5(0.10) UI H22 H12 H33 H22 H33 H24

Variable weight state vector for each failure mode S(xn(l)) and subjective-variable
integrated weight ωSV

l (xn(l))
α= 1 can be obtained from Equations (10)–(12), as shown in

Table 8.

Table 8. Variable weight state vector and subjective-variable integrated weight for 12 failure modes.

Variable Weight State Vector (α = 1) Subjective-Variable Integrated Weight

Failure Modes Occurrence Severity Detect-Ability Occurrence Severity Detect Ability

FM1 1.190 1.280 1.063 0.109 0.083 0.067
FM2 0.877 1.215 1.380 0.080 0.079 0.088
FM3 0.943 1.333 1.223 0.086 0.087 0.078
FM4 0.785 1.287 1.416 0.072 0.084 0.090
FM5 0.768 1.323 1.375 0.070 0.086 0.087
FM6 0.843 1.400 1.275 0.077 0.091 0.081
FM7 0.923 1.216 1.229 0.085 0.079 0.078
FM8 0.962 1.204 1.244 0.088 0.079 0.079
FM9 0.967 1.444 1.304 0.089 0.094 0.083
FM10 0.835 1.302 1.433 0.077 0.085 0.091
FM11 0.896 1.282 1.405 0.082 0.084 0.089
FM12 0.926 1.048 1.412 0.085 0.068 0.090
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Figure 5. Defuzzified crisp values for 12 failure modes.

The weighted normalization matrix is calculated by Equation (13), and then, based
on the TOPSIS method, Euclidean distance to the positive-ideal solution d+n , Euclidean
distance to the negative-ideal solution d−n and the closeness coefficient Cn of all failure
modes can be obtained by Equations (14)–(18). Finally, as shown in Table 9, the scores
are ranked, and results show that the most important failure mode is “Fuel gas scrubber”
(FM9).

Table 9. Ranking of failure modes using the improved fuzzy Technique for Order Preference by Similarity to an Ideal
Solution (TOPSIS) approach.

Improved Fuzzy TOPSIS
(Subjective-Variable Integrated Weight Method)

Improved Fuzzy TOPSIS
(Subjective-Entropy Integrated Weight Method)

Failure Modes d+
n d−n Cn Ranking d+

n d−n Cn Ranking

FM1 1.667 0.075 0.043 2 1.491 0.275 0.156 3
FM2 1.676 0.058 0.033 9 1.510 0.228 0.130 8
FM3 1.675 0.061 0.036 6 1.506 0.241 0.138 5
FM4 1.678 0.061 0.035 7 1.530 0.230 0.131 7
FM5 1.683 0.060 0.034 8 1.550 0.222 0.126 9
FM6 1.676 0.065 0.037 5 1.521 0.242 0.137 6
FM7 1.689 0.044 0.026 12 1.556 0.184 0.106 12
FM8 1.683 0.050 0.029 11 1.530 0.207 0.119 10
FM9 1.648 0.089 0.051 1 1.417 0.334 0.191 1
FM10 1.666 0.070 0.040 4 1.482 0.264 0.151 4
FM11 1.662 0.071 0.041 3 1.463 0.276 0.159 2
FM12 1.682 0.053 0.031 10 1.533 0.201 0.116 11
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5. Discussion

The results obtained for the FMEA using the proposed approach are collated with the
results obtained from the fuzzy TOPSIS and are given in Table 10.

As different methods were adopted to obtain the relative closeness, and used to reflect
the risk priority of the failure mode, the relative closeness is quite different. Therefore,
it is not necessary to carry out a horizontal comparison because the focus is on the risk
prioritization of failure modes.

Table 10. Ranking Comparison.

Improved Fuzzy TOPSIS
Fuzzy TOPSISSubjective-Variable Integrated Weight

Method
Subjective-Entropy Integrated Weight

Method

Failure Modes Cn Ranking Cn Ranking Cn Ranking

FM1 0.043 2 0.156 3 0.163 3
FM2 0.033 9 0.130 8 0.134 8
FM3 0.036 6 0.138 5 0.145 6
FM4 0.035 7 0.131 7 0.135 7
FM5 0.034 8 0.126 9 0.131 9
FM6 0.037 5 0.137 6 0.146 5
FM7 0.026 12 0.106 12 0.110 12
FM8 0.029 11 0.119 10 0.123 10
FM9 0.051 1 0.191 1 0.199 1
FM10 0.040 4 0.151 4 0.155 4
FM11 0.041 3 0.159 2 0.163 2
FM12 0.031 10 0.116 11 0.112 11

Comparing the results of improved fuzzy TOPSIS and fuzzy TOPSIS, it is found that
the risk priority of each failure mode is basically the same. The failure modes with a higher
risk priority are FM9, FM1, and FM11, but there are minor differences (such as in FM1 and
FM11). The main reasons for this difference are: (1) the improved fuzzy TOPSIS expresses
the uncertainty, diversity, and absence of O, S, and D ratings in a comprehensive fuzzy
confidence structure, while fuzzy TOPSIS simply approximates these problems in rating;
(2) the improved fuzzy TOPSIS uses comprehensive weighting method (the subjective-
variable integrated weight method and subjective-entropy integrated weight) to make
full use of O, S, and D rating information, while fuzzy TOPSIS only considers subjective
weights, ignoring the objective information of O, S, and D ratings.

When determining the objective weights of O, S, and D, the entropy weight method
adjusts the weight of O (S or D) of any failure mode in the value of O (S or D) in all failure
modes. The variable weight method adjusts the weight according to the ratings of O, S,
and D in the same failure mode. In order to observe the variable weight effect when α

takes different values, those values are analyzed. The sorting results of the variable weight
method are shown in Table 11 and Figure 6, when α takes different values.

From Table 11 and Figure 6, it is seen that as α increases, the priority order of some
failure modes changes. For example, FM1 and FM6 rank up, while FM9 and FM11 rank
down. These changes are closely related to changes in the weights of O, S, and D. For
example, the O, S, and D values of FM1 are 0.580, 0.460, and 0.179, respectively, and the
subjective weights are 0.396, 0.367, and 0.237; whereas the O value is relatively large and
the subjective weight is also large. After the variable weight processing, along with α’s
increase, the risk factor of O value in the comprehensive weight increases continuously,
and the risk of O value is amplified. Therefore, FM1 sorting rises.

The equipment of the oil and gas processing system selected in this analysis is closely
related to the oil and gas processing process, so the failure of any risk factor will cause a
series of chain reactions. If the value of α is larger, then the consequences of the high-value
risk factor and the resulting consequences will also be magnified. Therefore, it is more
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necessary to attract the attention of decision-makers. According to the calculated results,
the primary separator and fuel gas scrubber have the highest risk of gas leakage, while
crude oil separator has the highest risk of oil leakage.

Table 11. Ranking comparison of taking different α value (Improved fuzzy TOPSIS using the subjective-variable integrated
weight method).

α = 0 α = 1 α = 2 α = 3 α = 4

Failure Modes Cn Ranking Cn Ranking Cn Ranking Cn Ranking Cn Ranking

FM1 0.037 4 0.043 2 0.052 2 0.063 1 0.076 1
FM2 0.034 8 0.033 9 0.033 9 0.032 9 0.032 10
FM3 0.034 7 0.036 6 0.036 7 0.036 7 0.037 7
FM4 0.034 6 0.035 7 0.036 6 0.037 6 0.037 6
FM5 0.033 9 0.034 8 0.035 8 0.036 8 0.037 8
FM6 0.035 5 0.037 5 0.040 5 0.042 4 0.045 3
FM7 0.027 12 0.026 12 0.024 12 0.023 12 0.022 12
FM8 0.030 11 0.029 11 0.028 11 0.027 11 0.026 11
FM9 0.047 1 0.051 1 0.056 1 0.060 2 0.065 2
FM10 0.039 3 0.040 4 0.041 4 0.042 3 0.044 4
FM11 0.040 2 0.041 3 0.042 3 0.042 5 0.042 5
FM12 0.031 10 0.031 10 0.031 10 0.032 10 0.033 9

In summary, by comparing the calculated results of improved fuzzy TOPSIS and
fuzzy TOPSIS, it is verified that the former is reasonable and effective in introducing fuzzy
evidence reasoning and the comprehensive weighting method, and solves the problems
caused by the uncertainty, diversity, and subjective weight of O, S, and D ratings. Therefore,
the proposed approach can reduce the risk priority ranking error of failure mode and
provide a more scientific basis for risk decision-making.

Appl. Sci. 2021, 11, x 17 of 19 
 

caused by the uncertainty, diversity, and subjective weight of O, S, and D ratings. There-
fore, the proposed approach can reduce the risk priority ranking error of failure mode and 
provide a more scientific basis for risk decision-making. 

 

Figure 6. Ranking comparison of taking different α value (improved fuzzy TOPSIS using subjec-
tive-variable integrated weight method). 

The risk identification approach based on a fuzzy TOPSIS integrated fuzzy evidential 
reasoning approach is proposed in this paper. In specific applications, the implementation 
process of the method will be limited due to the limitation of the number of experts, but 
in specific embodiments, the implementations will be constantly updated with the in-
crease in the number of experts and the wider adoption of opinions in the later stage, so 
as to get more convincing results. Somehow, the opinions of the experts in this paper rep-
resent the real risk identification results to some extent. 

In the process of the proposed method, some other secondary factors are not also 
considered, and these factors may also have a certain deviation and influence on the re-
sults. For example, in view of the fuzziness of the description language in the analysis, 
using the simplification of fuzzy numbers to describe the language will have an impact 
on the evaluation and results. The analysis data mainly comes from expert experience and 
historical statistics, which will inevitably bring certain subjective errors. How to minimize 
the subjective errors caused by individuals is a problem that needs to be further discussed 
in the future. 

6. Conclusions 
FMEA (failure mode and effect analysis) is an important safety and reliability analy-

sis tool that is widely used in a wide range of industries. Due to its difficulty in acquiring 
precise assessment information on failure modes, the defects in the traditional RPN (risk 
priority number) modes, and the difficulty in building a complete fuzzy rule base, we 
proposed a new FMEA using the FER (fuzzy evidence reasoning) approach and fuzzy 
TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), which adopt 
the comprehensive weighting method. 

The potential application of the proposed approach is examined and illustrated in 
FPSO (floating production storage and offloading system) oil and gas processing systems. 

0 5 10 15

FM1

FM2

FM3

FM4

FM5

FM6

FM7

FM8

FM9

FM10

FM11

FM12

α=4

α=3

α=2

α=1

α=0

Figure 6. Ranking comparison of taking different α value (improved fuzzy TOPSIS using subjective-
variable integrated weight method).

The risk identification approach based on a fuzzy TOPSIS integrated fuzzy evidential
reasoning approach is proposed in this paper. In specific applications, the implementation
process of the method will be limited due to the limitation of the number of experts, but in
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specific embodiments, the implementations will be constantly updated with the increase in
the number of experts and the wider adoption of opinions in the later stage, so as to get
more convincing results. Somehow, the opinions of the experts in this paper represent the
real risk identification results to some extent.

In the process of the proposed method, some other secondary factors are not also
considered, and these factors may also have a certain deviation and influence on the
results. For example, in view of the fuzziness of the description language in the analysis,
using the simplification of fuzzy numbers to describe the language will have an impact on
the evaluation and results. The analysis data mainly comes from expert experience and
historical statistics, which will inevitably bring certain subjective errors. How to minimize
the subjective errors caused by individuals is a problem that needs to be further discussed
in the future.

6. Conclusions

FMEA (failure mode and effect analysis) is an important safety and reliability analysis
tool that is widely used in a wide range of industries. Due to its difficulty in acquiring
precise assessment information on failure modes, the defects in the traditional RPN (risk
priority number) modes, and the difficulty in building a complete fuzzy rule base, we
proposed a new FMEA using the FER (fuzzy evidence reasoning) approach and fuzzy
TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution), which adopt
the comprehensive weighting method.

The potential application of the proposed approach is examined and illustrated in
FPSO (floating production storage and offloading system) oil and gas processing systems.
It is more in line with the engineering practice to assign different weights to O (occurrence),
S (severity), and D (detectability) for considering the influence of O, S, and D on the risk
when determining the risk of the failure mode. When determining the objective weight
of O, S, and D of failure mode, the variable weight method and entropy weight method
start from the horizontal and vertical directions of O, S, and D of failure mode, respectively.
That is, the weight of variable weight is adjusted according to the rating of O, S, and D in
the same failure mode. Entropy weight is to adjust the weight of O (S or D) of any failure
mode according to the values of O (S or D) in all failure modes. It provides a new idea for
determining the weight. Further, the variable weight method is the comprehensive effect
of assigning more weight to the larger value in O, S, and D, and less weight to the smaller
value; and then by increasing the variable weight coefficient α, the risk result of failure
mode can be magnified to attract attention. In particular, the proposed approach uses a
fuzzy confidence structure to represent the uncertainty, diversity, and absence of O, S, and
D ratings and give different beliefs.

The improved FMEA method in this paper can be used in situations where the data
obtained is incomplete and inaccurate, and in those systems where it is difficult to obtain
reliable data. In determining the risk of failure mode, different evaluation indicators (risk
factors) are considered to have different importance; different risk factors are given different
weights; and more risk factors can be added as needed, making the improved FMEA more
practical and flexible.
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