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Abstract: Many computer vision algorithms which are not robust to noise incorporate a noise
removal stage in their workflow to avoid distortions in the final result. In the last decade, many
filters for salt-and-pepper noise removal have been proposed. In this paper, a novel filter based
on the weighted arithmetic mean aggregation function and the fuzzy mathematical morphology
is proposed. The performance of the proposed filter is highly competitive when compared with
other state-of-the-art filters regardless of the amount of salt-and-pepper noise present in the image,
achieving notable results for any noise density from 5% to 98%. A statistical analysis based on some
objective restoration measures supports that this filter surpasses several state-of-the-art filters for
most of the noise levels considered in the comparison experiments.

Keywords: image processing; noise removal; impulsive noise; weighted arithmetic mean; fuzzy
mathematical morphology; open-close filter

1. Introduction

The field of image processing has made many efforts to effectively handle the in-
escapable noise that exists in most digital images. Indeed, when an image is taken, there
may be different reasons why the image is corrupted by some type of alteration. For exam-
ple, the source of capture or the image transmission are some of the most common causes.

To face this undesired effect, two main approaches were studied in the literature. The
first solution is to implement algorithms which are robust to noise and can therefore process
the image together with the associated noise. The other solution consists of preprocessing
the image in order to remove the alterations, obtaining a non-noisy image. It is in this
second solution where the noise removal filters are framed. Anyway, these filters must seek
a balance between removing the noisy pixels and the preservation of edges and textures
that exist in the image, which is not an easy task.

There are different mathematical models that attempt to describe the existing noise in
an image: the additive, the multiplicative, the Poisson and the impulsive noises, among
others, are the most common ones. When a random value from a distribution is added
to each pixel, we say that the image was corrupted with additive noise. For instance, the
Gaussian noise is a particular example of this type of noise when the added values come
from a Gaussian distribution. In the multiplicative noise, each pixel is altered according
to its intensity (as is the case of the speckle noise). In the Poisson noise, the pixels are
changed following a Poisson distribution with a parameter depending on the expected
incident photon count. In those above types of noise, every pixel is altered by the noise.
Whereas, the impulsive noise substitutes some pixels of the image randomly by some fixed
values (usually the least or the greatest value, leading to the salt-and-pepper noise) or by a
random value. In this article, we will tackle salt-and-pepper impulsive noise.
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In addition to the well-known standard median filter, many different impulsive noise
filters can be found in the literature. In [1] a method based on the detection of impulsive
noise as a first stage is proposed. After deciding if one pixel is noisy or not, it is replaced by
the median of the neighboring values of a 3× 3 2-D window in case the pixel is corrupted
and it is left unchanged otherwise. Another approach can be found in [2] where the stage
of detecting corrupted pixels is made using mathematical morphology, more specifically
by comparing the result of the opening and closing filters using a flat structuring element.
Another method that first identifies corrupted pixels is developed in [3]. This identification
is based on the idea that corrupted pixels can be considered to be local extremes of the
intensity function with respect to their neighbors. The next step is to filter corrupted
pixels as the median of the values of the non-noisy pixels in a window centred at that
pixel. A similar technique is performed in [4] where the median or the mean are used
to aggregate the neighbor’s values of the noisy pixels to restore the image in windows
of different sizes. In [5], a more complex approach is proposed. The maximum absolute
luminance difference is considered to classify pixels as non-noisy pixels, pixels lightly
affected by noise and heavily noisy pixels. In the filtering phase, the corrupted pixels are
reconstructed using a weighted mean value of (i) the weighted mean of the uncorrupted
pixels of the neighborhood and (ii) the original pixel value, with weights which depend on
the corruption level of the pixel and the distances to neighboring uncorrupted pixels.

The theory of fuzzy logic and fuzzy sets has also been considered to propose a set of
novel methods to filter corrupted images with salt-and-pepper noise. For example, in [6]
a fuzzy two-step color filter is proposed to reduce impulsive noise in color images. This
filter is based first on the computation of fuzzy gradient values and then fuzzy reasoning is
applied to determine three different membership functions that will be used in the filtering
stage. Another two-step scheme relying on an adaptive neural-fuzzy inference system can
be found in [7], where a local fuzzy membership function is used to improve the rate of
noise detection. Also, a two-stage method is developed in [8], where the histogram of the
image is considered in the detection stage to identify pixels affected by noise. Then fuzzy
reasoning is applied to adequately manage the unavoidable uncertainty, caused by noise,
when one deals with local information. Besides these methods, algorithms based on fuzzy
mathematical morphology are becoming increasingly popular. These methods generalise
the binary morphology (see [9]) using fuzzy sets theory (we refer the reader to [10,11]).
For example, in [12], an improvement of the method introduced in [2] is presented using a
fuzzy mathematical morphology approach. An even better improvement of the previous
filter is proposed in [13] by using another function to identify noisy pixels and a window
with an adaptive size. These methods have a drawback: images corrupted by a high-
density noise (≥90%) are not restored successfully. To solve it, and to get better results than
the ones obtained by the previous filters, in [14] a refinement in the fuzzy mathematical
morphology open-close filter is fully described which does not use any corrupted pixel
into the operations.

In this study, a new filter to restore images with salt-and-pepper impulsive noise
is explored. The algorithm consists of two phases: detection and filtering. While fuzzy
mathematical morphology is the basis of the detection step, in the filtering step, the value
of each corrupted pixel is substituted by a Weighted Arithmetic Mean (WAM) of the
values of those noncorrupted neighbors of the corrupted pixel, in which the weights of
the WAM depend on the distance of each neighbor to the corrupted pixel. The number
of neighbors needed to do this aggregation is a crucial parameter of the algorithm which
is deeply analysed. Thus, the algorithm proposed in this paper consists of an adaptive
filtering stage, which produces high performance results in comparison with the previously
mentioned salt-and-pepper noise filters. This paper extends a preliminary study presented
in [15], where the filter was introduced and its potential was briefly analysed. In this paper,
the filter is formally defined, more configurations of the filter are considered and a deep
statistical study is performed to ensure the superiority of this filter when compared with
the other existing ones.
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The structure of the paper is as follows. In Section 2 some definitions of the noise mod-
els, as well as the operators used in the stages of the algorithm are introduced. In Section 3
the algorithm is described in depth. Then, after some experiments are performed to
determine the best parameters of the algorithm, the comparison study with the other
considered filters is developed in Section 4. Finally, Section 5 contains some conclusions
and future work.

2. Preliminaries

The basic definitions on impulsive noise, fuzzy operators and fuzzy mathematical
morphology, as well as its notation are introduced below.

2.1. Impulsive Noise Models

When an image is taken or transmitted, some noise may appear, mainly due to the
sensors or to transmission channels. Different noise models were proposed in order to deal
with these corrupted images. One of these models is the impulsive noise, in which some
pixels are changed by random values. Thus, if we have an original image I, we will refer
the noisy image obtained from I as A. The gray level values of A are given by

A(i, j) =
{

I(i, j), with probability 1− p,
ν(i, j), with probability p,

(1)

where (i, j) ∈ {1, . . . , M}× {1, . . . , N}, and ν(i, j) is an identically distributed, independent
random process with an arbitrary underlying probability density function [16], which is
the intensity value of the noisy pixel. Two types of impulsive noise were deeply studied:
the salt-and-pepper noise and the random-valued impulsive noise. In some impulsive
noise models, noisy pixels are often replaced by some alternative values smin and smax,
where [smin, smax] is the image dynamic range. Then, the observed gray level is given by

A(i, j) =


smin, with probability p,
smax, with probability q,
I(i, j), with probability 1− (p + q),

where r = p + q defines the noise level. The model (1) is more general since the noisy
pixel is any value from [smin, smax]. In our study we deal with smin = 0 (pepper) and
smax = 255 (salt).

2.2. Fuzzy Logic and Fuzzy Morphological Operators

This paper uses the fuzzy mathematical morphology, which is based on fuzzy con-
junctions and fuzzy implication functions. It was introduced in [17], and it was used
successfully in many applications (see [14,18]). We recall the definitions of fuzzy logic
operators that are used in this framework (see [19–21]).

Definition 1. A t-norm is a commutative, associative, increasing function T : [0, 1]2 → [0, 1]
which has neutral element 1 (that is, T(1, x) = x for all x ∈ [0, 1]).

Definition 2. A binary operator I : [0, 1]2 → [0, 1] is a fuzzy implication function if it is
decreasing in the first variable, increasing in the second one and it satisfies I(0, 0) = I(1, 1) = 1
and I(1, 0) = 0.

Using the previous definitions, the basic fuzzy morphological operators can be defined
by using a t-norm T as a conjunction, a fuzzy implication function I, and taking a gray-level
image A and a gray-level structuring element B.
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Definition 3 ([11]). The fuzzy dilation DT(A, B) and the fuzzy erosion EI(A, B) of A by B
are the gray level images defined by

DT(A, B)(y) = sup
x∈dA∩Ty(dB)

T(B(x− y), A(x)),

EI(A, B)(y) = inf
x∈dA∩Ty(dB)

I(B(x− y), A(x)),

where dA = {(i, j) | A(i, j) is defined} and Tv(A) with v ∈ Rn is given by Tv(A)(x) = A(x− v).

Two basic fuzzy morphological operators such as the fuzzy closing and the fuzzy
opening are defined as follows.

Definition 4 ([17]). The fuzzy closing CT,I(A, B) and the fuzzy opening OT,I(A, B) of A by
B are the gray level images defined by

CT,I(A, B)(y) = EI(DT(A, B), B)(y),

OT,I(A, B)(y) = DT(EI(A, B), B)(y),

where B(x) = B(−x).

A more detailed account on these operators, their properties and applications can be
found in [11,17,22,23].

2.3. Aggregation Operators and Distances

Aggregation operators are a very helpful tool in order to obtain a result from some
given data. Some of their applications are in the fields of decision making, rule-based
systems or consensus (see [24,25]).

Definition 5 ([25]). An n-ary aggregation function F in [0, 1] is a function F : [0, 1]n → [0, 1]
that is increasing in each variable and fulfills the boundary conditions F(0, . . . , 0) = 0 and
F(1, . . . , 1) = 1.

Definition 6 ([25]). An aggregation function F has averaging behaviour (or is averaging) if for
every x ∈ [0, 1]n, it is bounded by min(x) ≤ F(x) ≤ max(x).

Some examples of averaging functions are the minimum and the maximum operators,
the arithmetic mean and the weighted arithmetic mean. This last one is defined as follows.

Definition 7 ([25]). Let w = (w1, . . . , wn) ∈ [0, 1]n be a weight vector such that
n

∑
i=1

wi = 1. The

weighted arithmetic mean function WAM associated to w is given by

WAM(x1, . . . , xn) =
n

∑
i=1

wixi,

for all (x1, . . . , xn) ∈ [0, 1]n.

The weights of the WAM function used in the proposed algorithm are defined
from distances.

Definition 8. Let X be a non-empty set. A function ρ : X × X → R is called a metric or a
distance on X if it satisfies the following conditions:

(a) ρ(x, y) ≥ 0 for all x, y ∈ X.
(b) ρ(x, y) = 0 if and only if x = y.
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(c) ρ(x, y) = ρ(y, x) for all x, y ∈ X.
(d) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z ∈ X.

The following distances, defined on X = Z2, will be used in the following sections:

• Manhattan distance: ρ1(x, y) = |x1 − y1|+ |x2 − y2|,
• Euclidean distance:

ρ2(x, y) =
√
(x1 − y1)2 + (x2 − y2)2,

• Infinity distance: ρ∞(x, y) = max{|x1 − y1|, |x2 − y2|}
where x = (x1, x2) and y = (y1, y2).

3. Weighted Arithmetic Mean Based Fuzzy Filter Algorithm

From now on, the novel filter for salt-and-pepper noise is described thoroughly. The
algorithm consists of two main phases: first, a noise detection phase and then, a filtering
phase. While in the first phase the corrupted pixels are identified through a noise detection
function, in the second phase the proper filter is applied but only in those pixels which
were identified as noisy in the first phase. Early salt-and-pepper noise filters used to filter
every single pixel, blurring the whole image and losing the fine details and textures on
it. This is significantly reduced by this two-phase approach, leading to a family of better
filters. Next, we will explain in depth each of the two phases of the algorithm.

3.1. Noise Detection Phase Based on Fuzzy Open-Close Operators

The noise detection phase is usually implemented through a noise detection function
which classifies each pixel of the image as corrupted or noncorrupted by the considered
noise. From the straightforward salt-and-pepper noise detection function that classifies
as corrupted those pixels which are black or white to the most advanced ones based on
morphological operations, several different approaches were analysed in the literature to
detect salt-and-pepper noise. Here, we will consider the same noise detection function
used in [14]. This noise detection function has proved its potential for corrupted images by
high-density salt-and-pepper noise (≥90%) and most of the corrupted pixels are detected.
In Section 4.3.1 a comparison of this algorithm with other functions designed for noise
detection proposed in the literature is performed to justify this choice.

The proposed noise detection function has its origins in the noise detection function
used in [26] but was improved recently by considering fuzzy mathematical morphology
operators instead of the standard gray-scale morphological operators. The key idea is
to use adequate combinations of the fuzzy opening and closing, leading to the so-called
alternate filters. We recall here, for the sake of completeness, the steps of the Algorithm 1
where (i, j) denotes a pixel of the corrupted image A:
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Algorithm 1: (Detection Phase)

1. Detect the minimum (Smin) and the maximum (Smax) values of a squared window
of size N centred at (i, j).

2. Calculate value d as

d(i, j) =
∣∣∣∣CT,IT (OT,IT (A, B), B)(i, j)

2
+

OT,IT (CT,IT (A, B), B)(i, j)
2

− A(i, j)
∣∣∣∣

where T is a t-norm and IT is its R implication.
3. Calculate value b as

b(i, j) =
{

255, if (A(i, j) = Smax or A(i, j) = Smin) and d(i, j) ≥ t,
0, otherwise,

where t is a threshold which must be predefined.
4. A(i, j) will be considered to be a noisy pixel when b(i, j) = 255.

3.2. Filtering Phase Based on Aggregation Functions

Once the potentially corrupted pixels have been identified in the previous phase,
the second phase is devoted to reconstructing these pixels only from the information
provided by the remaining pixels. Please note that it would be pointless to use the gray-
level values of those pixels identified as noisy by the previous noise detection function.
However, this approach was the one used in the classical median or mean-based filters
which aggregate the gray-level values of those pixels that belong to a neighborhood centred
at a given pixel to reconstruct it. In fact, although state-of-the-art impulsive noise filters no
longer apply this strategy preferring the two-phase approach considered also in this paper,
incomprehensibly the mean and median-based filters are still in use in many block-chain
computer vision algorithms.

Focusing on the noise filter we present in this paper, the main idea is to aggregate
the gray-level values of the pixels in the neighborhood in order to reconstruct a given
pixel of the image. This idea is also the leitmotiv of the median or mean-based filters but,
in this case, several restrictions and refinements are implemented to drastically boost the
behaviour of the algorithm.

First, we keep in the output image the gray-level value of all the pixels identified as
noncorrupted in the noise detection stage. Thus, only those pixels classified as corrupted in
the first phase are filtered. The reconstruction is based on an aggregation of the gray-level
values of the neighboring non-noisy pixels. Although this idea is not novel, the novel key
points of the proposed filter are the choice of the pixels to aggregate and the influence of
each of these pixels in the aggregation. Let us explain in detail these two special features.

It is straightforward to check whether, if the image is corrupted by a higher density
noise, the corrupted pixel has fewer noncorrupted pixels in its neighborhood. Thus, the
filter needs to consider an increasing sequence in size of neighborhoods centred at the
corrupted pixel until a certain reasonable quantity of noncorrupted pixels are available in
order to get a representative value when the aggregation is computed. This can be observed
in Figure 1. Salt-and-pepper noise at a 90% density has been applied to the original image
given in Figure 1a. The corrupted image is available at Figure 1b. A detail near the
dreadlocks has been selected in both images (Figure 1c,d). The result provided by the first
stage, explained in Section 3.1, can be seen in Figure 1e where all the pixels were correctly
identified as corrupted or noncorrupted accordingly. At this point, in order to reconstruct
the central pixel of the detail, which is a corrupted pixel, we will consider, for instance, a
sequence of squared neighborhoods centred at this pixel of sizes 3, 5 and 7. As it can be
observed in Figure 1e, there are 0 noncorrupted pixels in the 3× 3-neighborhood. There
are only 3 noncorrupted pixels in the 5× 5-neighborhood, but this number increases to 7
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when the 7× 7-neighborhood is considered. It is clear that the size of the neighborhood to
obtain a reasonable number of noncorrupted pixels may vary for each pixel of the image.

(a) Original image (b) Corrupted image (90%)

(c) Top original detail (d) Top corrupted detail (e) Result of the first phase (top) (f) Available noncorrupted
pixels (top)

(g) Down original detail (h) Down corrupted detail (i) Result of the first
phase (down)

(j) Available noncorrupted
pixels (down)

Figure 1. Two graphical examples of the result of the function described in the noise detection stage introduced in Section 3.1
and the available noncorrupted pixels.

The unavoidable need to use noncorrupted pixels which are quite distant from the
central corrupted pixel has an important drawback. The probability that the gray-level
value of an arbitrary noncorrupted pixel is close to the original gray-level value of a
noisy pixel decreases when the distance between them increases. Therefore, the closer a
noncorrupted value is to the corrupted pixel, the more reliable is its value and its influence
must be higher in the output. This is certainly the case in the original detail of Figure 1c.

However, this idea does not hold in certain cases. For instance, near an edge, depend-
ing on its direction, closer pixels can have distant gray-level values when compared to
the central pixel as long as they are located at the other side of the edge. See for instance
Figure 1g which corresponds to a detail located near the arm of the man where an edge
divides a black region and a lighter region. After applying the first phase of the algorithm,
only four pixels are classified as noncorrupted and can be used for restoring the corrupted
center pixel (see Figure 1i). Pixel with value 7 is closer than pixel with value 163 although
this latter pixel has a more similar value to the centre pixel. Nevertheless, taking into
account that (i) edges constitute a small part of the image and (ii) the impossibility to detect
edges in images with a high percentage of salt-and-pepper noise, the proposed algorithm
will follow that general rule.
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The implementation of the previous idea can be easily done by using an aggregation
function that applies weights to the noncorrupted input pixels based on how far the input
pixel is from the corrupted pixel which is currently being processed. In this paper, a
weighted arithmetic mean function (WAM), introduced in Definition 2, is considered. Let
us describe the method to compute the weights of the WAM operator. Let p0 = A(i0, j0) be
the pixel that is going to be processed and {p1, . . . , pm0} = {A(i1, j1), . . . , A(im0 , jm0)} be
the m0 noncorrupted pixels which will be aggregated to reconstruct p0. Please note that m0
depends on the pixel p0, and the only requirement that we impose is that it must exceed n,
which is the least number of non-noisy pixels that are going to be considered to restore p0.
The formula of the aggregation function is as follows:

WAM(p1, . . . , pm0) =
m0

∑
k=1

wk pk, (2)

where the weights wk for all 1 ≤ k ≤ m0 are given by

wk =
αk

∑m0
t=1 αt

, where αr =
1

βd((ir ,jr),(i0,j0))
for all 1 ≤ r ≤ m0, (3)

where β > 1 and the d is a distance on Z2. Please note that these weights are based on an
exponential decay with respect to the distance between the available non-noisy pixel and
the pixel that is currently being processed. This ensures that if this distance increases, the
weight of the noncorrupted pixel in the final output is smaller.

It is evident that the performance of the filter relies heavily on (i) the least quantity of
non-noisy pixels considered in the aggregation function, which is denoted by n, (ii) on the
exponential base of the weights, β and (iii) on the considered distance, d. In Section 4.3,
an in-depth analysis of the optimal values of these three parameters according to the noise
level is included.

Let us explain how the search of those pixels designated as noncorrupted (at least n) is
implemented to restore a concrete corrupted pixel p0. Let D = 1 and take into account the
set of all the noncorrupted pixels whose distance to p0 is≤ D. If a minimum of n non-noisy
pixels are found, no more iterations are necessary and these pixels will be aggregated by
using Equation (2). Otherwise, D is incremented by 1 and the search resumes. This step
ends when enough non-noisy pixels are found. It is clear that the search step does depend
on the considered distance. In Figure 2, the evolution of the search window for each of the
distances considered in Section 4.3 is displayed.

(a) Manhattan D = 1 (b) Manhattan D = 2 (c) Manhattan D = 2 (d) Manhattan D = 4

(a) Euclidean D = 1 (b) Euclidean D = 2 (c) Euclidean D = 2 (d) Manhattan D = 4

(a) Infinity D = 1 (b) Infinity D = 2 (c) Infinity D = 2 (d) Infinity D = 4

Figure 2. Evolution of the search window (in black) of noncorrupted pixels for some values of D in a 7× 7 image and three
different distances.
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Summarising the filtering stage, let A be the corrupted image, b the image computed
in step 3) of Algorithm 2, n the minimum number of non-noisy pixels to perform the
aggregation, β the base of the exponential function considered in the weights and d the
selected distance. For each corrupted pixel p0 = A(i0, j0) detected by the noise detection
function, the following steps are carried out:

Algorithm 2: (Filtering Phase)

1. Let CD = {pk = A(ik, jk) | d((ik, jk), (i0, j0)) ≤ D and b(ik, jk) = 0} be the set of
pixels that has been classified as non-noisy in the first phase at a distance ≤ D
from p0.

2. Set D = 1.
3. Compute |CD| where | · | denotes the cardinal of a set. If |CD| < n, then D = D + 1

and repeat this step. Otherwise, go to the next step.
4. The output gray-level value of the processed pixel p̂0 is given by

p̂0 = WAM(p1, . . . , pm0),

where pi ∈ CD for all 1 ≤ i ≤ m0 = |CD| through Equation (2) with base β and
distance d.

From now on we will denote this filter as the adaptive weighted arithmetic mean,
AWAM for short.

4. Comparison Experiments and Analysis

In this section, first, we will describe the image database that we used in the visual
and numerical experiments. To find the best parameter configuration of the proposed filter,
we will explain how we divided the image database into the training and test sets. Next,
we will present the performance measures to compare the filters considered in this work.
The last part of this section will be devoted to the description of the considered filters and
the numerical and visual results of the experiments.

4.1. Image Database

To analyse the performance of the proposed filter, a set of experiments were carried out
over a set of 44 images. We selected the 36 natural images that belong to the miscellaneous
set of the USC-SIPI image database developed by the University of Southern Carolina.
This image database is publicly available at http://sipi.usc.edu/database/misc.tar.gz.
Moreover, some well-known images that are usually used in noise removal: barbara,
cameraman, elaine, goldhill, lenna, tiffany and two test images lenna with gray rectangles
and bycicle test have also been included into the database. Applying salt-and-pepper
noise (where 255 means salt and 0 means pepper) with the same probability leads to the
generation of the database for the comparison experiments. Specifically, densities from 5%
to 95% with a step of 5% were considered as well as a final 98% density and applied to each
of the images of the database.

Given that the proposed filter depends on the parameters n, β and d, we need to
divide the set of 44 images into two subsets: the training set and the test image set. With the
training set, as we will explain in Section 4.3, we will find the best parameter configuration
for our filter. Then, the test set will be used to compare the performance of the AWAM filter
setting the optimal configuration, found with the training set, with respect to several filters
that will be presented in Section 4.4. With this procedure, a fair comparison is achieved.

More specifically, 26 of the 44 images (≈60%) are chosen as the training set and the
remaining 18 (≈40%) as the test set. The choice of all these images has been made randomly
by setting a randomization seed.

http://sipi.usc.edu/database/misc.tar.gz
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4.2. Performance Measures

In addition to the visual comparison of the results obtained by the filters, the restora-
tion performance should be measured using several quantitative performance measures.
The objective evaluation of the quality of the results is of great importance when an im-
age must be restored or its noise reduced. For this reason, a set of measures which are
representative of the state of the art were used. We selected and used four measures,
Mean-Squared Error (MSE), Mean Structural Similarity Index Measure (M-SSIM), Peak
Signal-to-Noise Ratio - Human Visual System (PSNRHVS ), and Visual Information Fidelity
(VIF). The first two measures are widely used, and PSNRHVS and VIF were introduced
more recently with the aim to incorporate the human visual system (HSV) in the metric.
The code for these metrics are freely accessible and can be used by any researcher. The
M-SSIM code can be found in http://live.ece.utexas.edu/research/quality/ssim/ or in
https://ece.uwaterloo.ca/~z70wang/research/ssim/. The code for PSNRHVS is acces-
sible in http://ponomarenko.info/psnrhvsm.htm. The code for VIF can be found in
http://live.ece.utexas.edu/research/quality/index.htm. A brief overview of each selected
metric is presented below.

Hereinafter, we will denote by I1 the noise-free original image, on which some restora-
tion filter has been used. Let I2 be the output of the restoration filter. MSE is computed
using the following equation:

MSE(I1, I2) =

∑
m,n

(I1(m, n)− I2(m, n))2

M× N
.

This metric is computed solely on differences among pixels and sometimes its results
are very far from those perceived by the HSV. Lower MSE values are an indication of better
capabilities of the considered filter. In contrast, Structural Similarity Index Measure (SSIM)
was defined in [27] under the assumption that human visual perception is highly adapted
to extract structural information from a scene. The measure is computed as follows:

SSIM(I2, I1) =
(2µ1µ2 + C1)

(µ2
1 + µ2

2 + C1)
· (2σ12 + C2)

(σ2
1 + σ2

2 + C2)
,

where µ1, µ2, σ2
1 , σ2

2 are the means and variances of the images I1 and I2 respectively, σ12
is the covariance between I1 and I2, C1 = (0.01× 255)2 and C2 = (0.03× 255)2. This
is a mathematically defined performance measure for grayscale images, which does not
incorporate a model of the human visual system. This measure incorporates the three main
characteristics of the images: contrast, luminance, and structure, in order to compare the
noise-free original image I1 with the restored image I2. In [27,28] the authors state that for
image quality assessment, it is more appropriate to apply the SSIM index locally rather
than globally. They use a windowing approach, computing local statistics within a B× B
square window, which moves pixel-by-pixel over the entire image, and then use the mean
to evaluate the quality of the restored image. Namely,

M-SSIM(I1, I2) =
1
L

L

∑
j=1

SSIMj(I1, I2).

where SSIMj(I1, I2) is the value of SSIM when the image is restricted to the local window j
(L local windows in total). To compute the SSIM values in this paper we will consider the
default parameter values as are established in [27]. This measure takes values in [0, 1] and
higher values correspond to better capabilities of the used filter.

To avoid the issues related with the performance of MSE, together with the M-SSIM,
two different measures were added to our set of performance measures, the PSNRHVS and
the VIF measures, because they improve the correlation with subjective quality judgement
taking into account the HSV.

http://live.ece.utexas.edu/research/quality/ssim/
https://ece.uwaterloo.ca/~z70wang/research/ssim/
https://ece.uwaterloo.ca/~z70wang/research/ssim/
http://ponomarenko.info/psnrhvsm.htm
http://live.ece.utexas.edu/research/quality/index.htm
http://live.ece.utexas.edu/research/quality/index.htm
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The PSNRHVS quality index is presented by Egiazarian et al. in [29] and it is based on
the HVS and MSE. This measure considers a scanning window with the aim of removing
mean shift as well as contrast stretching in a similar way to the measure presented in [28].
The PSNRHVS quality index is then calculated using the next expression:

PSNRHVS(I1, I2) = 10 log10

(
2552

MSEHVS(I1, I2)

)
, (4)

where MSEHVS is defined as follows (see [30]):

MSEHVS(I1, I2) =
1

64 · (M− 7) · (N − 7)
·

M−7

∑
i=1

N−7

∑
j=1

8

∑
m=1

8

∑
n=1

((I2(m.n)ij − I1(m.n)ij)Tc(n, n))2,

where M× N are the image dimensions, Ik(m.n)ij, k ∈ {1, 2} is the Discrete Cosine Trans-
form (DCT) coefficients of the 8× 8 block such that the coordinates of its left upper corner
are equal to i and j for the original and distorted image respectively, and Tc is the matrix of
correcting factors ([29]). The units of this performance measure are dB and the performance
of the filter is higher as larger values of PSNRHVS are obtained.

Sheikh and Bovik in [31] proposed the VIF metric which is based on a HVS model.
The main idea of the VIF index is to measure the loss of human-perceivable information in
the distortion process. The construction of the VIF index is based on a statistical model for
natural scenes, a model for image distortions, and a HVS model in an information-theoretic
setting, and it is derived from a quantification of mutual information quantities [31]. Sheikh
and Bovik studied the VIF properties and they note that for all practical distortion types,
VIF takes values in [0, 1]. Again, higher values correspond with better capabilities of the
used filter. They show that VIF(I1, I1) = 1, and that if VIF(I1, I2) = 0 this means that all in-
formation from the original image has been lost in the restored image. The authors pointed
out that if the VIF is applied to the original image and to a linear contrast enhancement
of it with no added noise, then VIF returns a value larger than unity. To compute the VIF
measure we follow the steps outlined in [31].

4.3. Parameter Selection

In this section, some experiments are carried out to determine the best parameter
values of the algorithm according to the considered performance measures.

4.3.1. Noise Detection Function

The performance of the AWAM noise detection function was deeply studied in [14]
according to the values of the threshold t. In this section, a comparison with other known
noise detection functions is performed. Namely, the noise detection functions introduced
in [2] (OCS), [3] (Fabijanska) and [13] (c-FMMOCS) are considered and their performance is
compared with respect to two configurations of the AWAM noise detection function: both
with N = 5; T = TM and I = IGD, i.e., the minimum t-norm and its residual implication,
the Gödel implication, given by

TM(x, y) = min{x, y}, IGD(x, y) =
{

1, if x ≤ y,
y, if x > y;

B a flat structuring element with an squared shape of size 5 (a 5× 5 matrix of 255 values)
and one with t = 0 and the other one with t = 10. To evaluate the performance we
compute the values of F1, Accuracy and the False Positive Rate (FPR) obtained by the
aforementioned noise detection functions in the training set images, as three examples
of well-known performance measures in binary classification tasks. In Figure 3 we show
the evolution of the mean value of these measures with respect to the noise density. It is
clear from the figure that both configurations of the AWAM noise detection functions
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outperform heavily the other noise detection functions at low noise densities while all
the noise detection functions obtain similar results for high densities. Therefore, we will
consider the configuration with t = 10 as the best configuration of the parameters for this
noise detection function.
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Figure 3. Plots of the means of several measures obtained by the considered noise detection functions versus noise density.

4.3.2. Noise Filter

Using the performance measures introduced in Section 4.2 and the training set of
images, we found the best parameters of the AWAM filter for each level of noise between
5% and 98%. These parameters are:

d, the considered distance, where d = 1 corresponds to Manhattan distance, d = 2,
to Euclidean distance and d = 3, to infinity distance.

β, the value of the exponential base of the weights wk in Expression (3).

n, the number of noncorrupted pixels in the neighborhood of the considered pixel needed
in order to do the aggregation.

To find the optimal values of the parameters, a 3-D grid of possible values of the
three parameters is considered, where d ∈ {1, 2, 3}, β ∈ {1.25 + 0.25 · i, i ∈ {0, . . . , 7}},
n ∈ {3, . . . , 10} (It is possible that the algorithm is unable to find the minimum quantity of
non-noisy pixels to restore a noisy pixel even when the search window increases till the
whole image. This will happen when the algorithm is applied to small images corrupted
with high-density noise. In this case, the WAM operator is applied to the non-noisy pixels
that were found even when the minimum quantity has not been reached). The β and n
values included in the grid were chosen in order to guarantee a reasonable exponential
decay of the weights of the WAM operator and a reasonable minimum quantity of non-
noisy pixels to aggregate to restore a noisy pixel. For each similarity measure, and for each
value of the grid, we find the mean of the values of the similarity measure for all the images
of the training database and we select the value of the grid that obtains the best mean value
for this similarity measure. The optimal value of these parameters for each noise level are
shown in Table 1. As seen in the table, as the noise level increases, the optimal value of
the parameter n also grows according to all the considered similarity measures. On the
contrary, for M-SSIM and MSE performance measures, the best value of the β parameter
also grows as the noise level increases to approximately 75%-85% but then decreases as
the noise level reaches 98%. On the other hand, for PSNRHVS and VIF similarity measures,
it remains constant at 3.00 until the value of the noise level is approximately 85% and then
the optimal values decrease until the noise level reaches 98%. The best distance corresponds
mainly to the Manhattan distance for MSE, PSNRHVS and VIF performance measures. For
M-SSIM performance measure, there is no clear difference between the Manhattan and the
Euclidean distances since in approximately half of the noise levels, the best distance chosen
is the Manhattan distance and, in the rest, the Euclidean distance. Anyway, the infinity
distance is never used in the estimation of the best parameters of the proposed algorithm.
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Table 1. Best parameters values d, β and n for each noise level according to the considered measures.
hhhhhhhhhhhhhhhNoise level

Measure M-SSIM MSE PSNRHVS VIF

5 (1, 1.75, 3) (1, 1.25, 3) (1, 3.00, 3) (1, 3.00, 3)
10 (1, 1.75, 3) (1, 1.75, 3) (1, 3.00, 3) (1, 3.00, 3)
15 (2, 1.75, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
20 (2, 1.75, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
25 (2, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
30 (2, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
35 (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
40 (2, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
45 (1, 2.50, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
50 (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
55 (1, 2.50, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
60 (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
65 (1, 2.50, 3) (1, 3.00, 3) (1, 3.00, 3) (1, 3.00, 3)
70 (1, 3.00, 3) (1, 3.00, 4) (1, 3.00, 3) (1, 3.00, 3)
75 (2, 3.00, 3) (1, 3.00, 5) (1, 3.00, 3) (1, 3.00, 3)
80 (2, 3.00, 3) (1, 2.50, 6) (1, 3.00, 3) (1, 3.00, 3)
85 (2, 3.00, 3) (1, 2.25, 7) (1, 3.00, 4) (1, 3.00, 3)
90 (2, 3.00, 4) (1, 2.75, 7) (1, 2.00, 6) (1, 3.00, 3)
95 (1, 1.75, 7) (1, 1.75, 10) (1, 1.75, 10) (1, 2.00, 10)
98 (2, 1.75, 10) (2, 1.50, 10) (2, 1.50, 10) (1, 1.75, 10)

At this point, the set-up of the AWAM filter has been completed and a flow chart of
the algorithm including the parameter values is depicted in Figure 4.

Figure 4. Flow chart of the AWAM filter with the recommended parameter values.
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4.4. Statistical and Visual Comparison with the State-of-the-Art Filters

To evaluate the performance of the AWAM filter, a collection of the most representative
state-of-the-art filters for salt-and-pepper noise removal has been chosen. These filters are
based on very different approaches and parameters trying to find out the best algorithm
that removes the salt-and-pepper noise of the corresponding noisy image:

• SMF5. The classical median filter with a window size of 5 × 5.
• AMF9 and AMF17. AMF stands for Adaptive Median filter and two configurations

are considered depending on the maximum allowed size (9 or 17) of the neighborhood
window for each pixel.

• DBA. The decision-based filter for highly corrupted images by salt-and-pepper noise
proposed by Srinivasan and Ebenezer in [1]. The method changes only corrupted
pixels by the median value or by the preceding restored neighboring pixelvalue.

• OCS and OCSFlat. The nonlinear filter based on Open-Close sequence of the classical
gray-level morphology. This filter was designed by D. Ze-Feng et al. in [2]. Depend-
ing if the structuring element is flat or non-flat, two different versions of the filter
were considered.

• c-FMMOCS and c-FMMOCSFlat. The nonlinear filter based on Open-Close sequence
within the fuzzy gray-level Mathematical Morphology introduced in [13]. Also, two
different filters were considered depending on the type of the structuring element.

• i-FMMOCS and i-FMMOCSFlat. Two versions of the so-called improved Fuzzy Math-
ematical Morphology Open-Close Filter recently introduced in [14] depending on the
choice of the structuring element (non-flat or flat).

• Toh. The two-stage algorithm named noise adaptive fuzzy switching median filter
based on fuzzy logic introduced in [8].

• Fabijańska. An algorithm developed in [3] designed to reduce salt-and-pepper noise for
extremely corrupted images via analysing local intensity extrema and a median filter.

• Jourabloo. A two-stage filter designed to restore extremely corrupted images with
salt-and-pepper noise presented in [4]. In this filter, a noisy pixel is replaced using a
non-fixed median filter computed in a window of maximum size of 9, or by estimating
the value of the pixel using the values of their neighbors.

• Hosseini. The algorithm designed by Hosseini and Marvasti in order to perform a fast
restoration of natural images corrupted by high-density impulsive noise presented
in [32].

• AhmedDas. A two-stage adaptive iterative fuzzy filter for denoising images corrupted
with high-density salt-and-pepper noise proposed in [33]. In this filter, the detection of
noisy pixels is performed with an adaptive fuzzy detector followed by denoising using
a weighted arithmetic mean filter, with weights expressed as a potential function of the
Euclidean distance between the pixel to be restored, and a set of selected noncorrupted
pixels in the filter window.

• Wang. The filter proposed in [5] classifies pixels into three categories: uncorrupted
pixels, lightly corrupted pixels, and heavily corrupted pixels, through the maximum
absolute luminance difference. In the filtering stage, a weighted average value of the
weighted mean of some neighboring pixels and the original pixel value is used to
reconstruct the corrupted pixels.

All of them were implemented following the descriptions and parameter values
recommended in the original contributions.

The next step is to determine the best filter according to the considered performance
measures and to analyse if this filter significantly outperforms the others. Recall that the
images in the test set were corrupted using a sequence of 5% to 95% noise levels with a 5%
step and 98% noise level. Each considered filter has been applied to all the noisy images.
For each filter and noise level, we computed the values of the similarity measures for all
the images in the test set. Next, for each pair of filters, the p-value of a paired Wilcoxon
signed-rank test based on a 95% confidence level was calculated. From these p-values of
these tests, we obtained which filter achieves the finest results, i.e., we found the filter
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that surpasses the other filters taking into account the statistical test. Table 2 displays
those filters that have achieved the best results. If one filter is included in a row, it means
that it stands out (as previously explained) for the performance measure indicated in the
column and the noise density included in each cell. The color code indicates whether or
not the filter significantly surpasses the competitors. For example, according to all the
measures, the AWAM filter significantly overcomes the competitors for the 20% noise
density, whereas although it always obtains the greatest mean value for the 35% noise,
it does not significantly overcome the Hosseini filter (according to M-SSIM and MSE) or
the Wang filter (according to PSNRHVS and VIF).

Table 2. Densities of salt-and-pepper noise for which the row filter is not surpassed by any of the
rest in accordance with the Wilcoxon test. A green cell implies that the filter obtains the greatest
mean value for that noise density, significantly outperforming the competitors in accordance with
the Wilcoxon test. On the other hand, a lime cell implies that although the filter achieves the greatest
mean value for that noise density, the difference is not significant according to the Wilcoxon test with
respect to those filters coloured in yellow.
````````````Filter

Measure M-SSIM MSE PSNRHVS VIF

DBA 5 10
15

Jourabloo
60 65
70 75
80 85

Hosseini

35 40 35 40 40 50 70 75
45 75 70 75 65 70 80 85
80 85 80 85 75 85 90 95
90 95 90 95 90 95 98
98 98 98

AhmedDas 5 5 5 15

Wang

5 5 35 35 40
40 45 45 50
50 55 55 60
60 65 65 70
70 75 75 80

85

AWAM

10 15 10 15 10 15 15 20
20 25 20 25 20 25 25 30
30 35 30 35 30 35 35 40
45 50 40 45 40 45 45 65
55 60 50 55 50 55 70 75
65 70 60 65 60 65 80 85
75 80 70 75 70 75 90 95
85 90 80 85 80 85 98
95 98 90 95 90 95

98 98

As it can be seen, the AWAM filter stands out in almost all the noise densities and in
all the performance measures. Furthermore, in a non-negligible quantity of the cases, it is
significantly the best among the considered filters. In 28 of the 80 cases, the AWAM filter
significantly outperforms the others; in 25 cases, it stands out but not significantly and in
only 6 cases, there is another filter that significantly outperforms the others. These 6 cases
correspond to low or medium noise levels: 5% (2 cases), 10%, 40%, 50% and 55% (one case).
In short, in approximately 66% of the cases, the AWAM filter outperforms the others and
this performance is significant in more than half.
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Tables 3 and 4 show the means and standard deviations using the performance
measure PSNRHVS of the filters considered for all noise densities. The meaning of the color
of the cells is similar to the meaning of the color of the cells of Table 2. The AWAM filter
corresponds to the last row and 9 of the 20 possibles boxes, are coloured green and 10 in
lime. It means that the AWAM filter almost always outperforms all others filters and in all
noise levels. More specifically, in 9 of the 20 noise levels, it significantly outperforms all
other filters and in 10, it outperforms them but not significantly.

Table 3. PSNRHVS average values and standard deviations of the studied algorithms for the sequence of densities of noise
from 5% to 50% with a step of 5%. For a concrete density, green cells mean that the filter gets the highest average value,
significantly surpassing the competitors; lime cells mean that the filter achieves the highest average value but its results are
not statistically different from the ones obtained by the filters depicted in yellow.

PSNRHVS
PPPPPPPPFilter

Density 5 10 15 20 25 30 35 40 45 50

SMF5 26.9347
(3.4878)

26.1864
(3.225)

25.173
(2.9323)

24.0986
(2.7744)

22.9593
(2.6622)

21.9985
(2.4855)

21.1476
(2.5378)

20.1334
(2.4787)

19.1332
(2.3318)

17.7891
(1.9789)

AMF9 39.1894
(6.9303)

37.7209
(6.1117)

36.4263
(5.7789)

34.8658
(5.1215)

33.7104
(4.817)

32.3589
(4.2517)

31.3176
(4.0607)

30.2051
(3.7715)

29.1403
(3.6024)

28.0795
(3.3279)

AMF17 39.1485
(6.9364)

37.6654
(6.0918)

36.3827
(5.7734)

34.8425
(5.1105)

33.695
(4.8189)

32.3458
(4.2572)

31.3053
(4.0652)

30.1976
(3.7706)

29.1294
(3.6024)

28.1076
(3.3646)

DBA 24.649
(6.7212)

23.1323
(6.0807)

24.3758
(6.4933)

23.8099
(6.2379)

24.1931
(6.1899)

24.0316
(6.5102)

24.0347
(4.3064)

24.2327
(6.4104)

26.9072
(3.973)

26.6071
(3.2205)

OCS 26.4768
(2.9584)

30.3077
(3.6476)

31.5089
(4.2357)

30.7622
(3.9525)

29.5329
(3.719)

28.3702
(3.4508)

27.329
(3.2533)

26.4405
(3.0966)

25.6827
(3.0112)

24.8736
(2.9657)

OCSFlat 26.4194
(3.2332)

27.8637
(3.2693)

29.3509
(3.5016)

30.1432
(3.5182)

30.6669
(3.8569)

30.5093
(3.8045)

29.8363
(3.6878)

29.2399
(3.5902)

28.5
(3.5297)

27.7513
(3.4699)

c-FMMOCS 42.8134
(6.4137)

39.4501
(5.2994)

36.4781
(4.5702)

34.552
(4.0504)

33.1435
(4.2453)

31.8472
(3.9334)

31.1221
(3.7794)

30.0079
(3.5827)

29.1688
(3.4777)

28.298
(3.3272)

c-FMMOCSFlat 42.8533
(6.3973)

39.4158
(5.3244)

35.8379
(4.4527)

33.6664
(3.796)

32.7425
(4.1497)

31.6111
(3.9323)

30.3965
(3.8688)

29.5443
(3.6667)

28.6462
(3.5513)

27.8047
(3.474)

Toh 43.2835
(8.9896)

39.3197
(7.0554)

36.9303
(6.1568)

34.9056
(5.3021)

33.2705
(4.8732)

32.1235
(4.5785)

30.8589
(4.2884)

29.7921
(4.0263)

29.0183
(3.8763)

28.0089
(3.7512)

Fabijanska 39.3124
(8.0773)

39.2268
(7.9001)

38.7759
(7.8441)

35.2144
(5.7044)

34.1578
(5.4746)

33.1158
(5.119)

32.035
(4.6979)

29.8035
(4.4094)

28.6963
(3.9288)

27.7764
(3.7594)

Jourabloo 24.7901
(9.7845)

25.7069
(10.1582)

23.9203
(9.813)

24.6778
(8.9245)

24.2541
(9.0367)

22.8316
(7.6355)

23.1764
(6.4811)

22.9134
(6.123)

21.6584
(6.1386)

21.3743
(5.7676)

Hosseini 42.4886
(8.9946)

39.2295
(7.1681)

37.2189
(6.1775)

35.6564
(5.3314)

34.4328
(4.9069)

33.5285
(4.6281)

35.1024
(5.4371)

33.8548
(5.0639)

32.8755
(4.6957)

30.9554
(4.4952)

i-FMMOCSFlat 42.5117
(7.8488)

40.5869
(6.7997)

38.327
(6.0609)

36.4507
(5.2564)

34.6738
(4.8144)

33.4011
(4.3808)

32.1953
(4.0242)

30.9319
(3.8524)

30.1532
(3.6607)

29.0768
(3.5581)

i-FMMOCS 41.6821
(8.307)

39.6141
(7.1966)

37.8645
(6.3421)

35.9664
(5.3997)

34.4861
(4.9431)

33.1658
(4.4553)

32.0817
(4.077)

30.8619
(3.8878)

30.0064
(3.6815)

28.9951
(3.591)

AHMEDDAS 47.2499
(10.1026)

43.4539
(8.1188)

41.3014
(7.5772)

39.0793
(6.4089)

37.3597
(5.8515)

35.8686
(5.4101)

34.5611
(4.8402)

33.0974
(4.3903)

32.1015
(4.106)

30.8659
(3.8499)

Wang 46.6626
(11.7866)

43.1728
(9.4759)

41.0871
(8.5742)

39.1932
(7.3974)

37.6615
(6.7207)

36.4326
(6.309)

35.3056
(5.6904)

33.9505
(5.2762)

33.1349
(5.0817)

31.9649
(4.7607)

AWAM 45.952
(10.3152)

44.2291
(8.9868)

41.7796
(8.3114)

39.8834
(7.2065)

37.964
(6.6779)

36.749
(6.1297)

35.3073
(5.6544)

33.9066
(5.1581)

33.1664
(4.9551)

31.8979
(4.5645)
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Table 4. PSNRHVS average values and standard deviations of the studied algorithms for the sequence of densities of noise
from 55% to 95% with a step of 5% and 98%.

PSNRHVS
PPPPPPPPFilter

Density 55 60 65 70 75 80 85 90 95 98

SMF5 16.1569
(1.6077)

14.1935
(1.198)

12.0668
(0.877)

9.9239
(0.6396)

7.9577
(0.5416)

6.1402
(0.4179)

4.5567
(0.4047)

3.2217
(0.3631)

2.1765
(0.3863)

1.6803
(0.4412)

AMF9 27.0453
(3.1569)

25.8747
(3.0251)

24.5091
(2.7761)

22.4308
(2.1461)

19.502
(1.589)

15.9104
(0.8369)

12.0141
(0.6363)

8.3751
(0.4419)

4.8385
(0.3515)

2.6712
(0.4341)

AMF17 27.045
(3.1703)

26.0632
(3.142)

24.8973
(2.9137)

23.7544
(2.7435)

22.569
(2.5939)

21.2255
(2.4493)

19.298
(2.077)

15.194
(1.1932)

9.4361
(0.505)

5.1718
(0.5598)

DBA 25.3809
(2.9644)

24.1253
(2.6811)

22.6324
(2.5245)

21.5187
(2.2547)

20.0383
(2.1528)

18.6933
(2.1624)

17.0736
(2.107)

15.2665
(2.0022)

13.0719
(1.9046)

10.9203
(1.9457)

OCS 24.2041
(2.8768)

23.5789
(2.8554)

22.8804
(2.8421)

22.2886
(2.7981)

21.7155
(2.7549)

21.0545
(2.7269)

20.4362
(2.7145)

19.4644
(2.5245)

16.4843
(2.186)

11.2404
(2.5592)

OCSFlat 26.8645
(3.3489)

26.2566
(3.3167)

25.3074
(3.2162)

24.5294
(3.1596)

23.7089
(2.9871)

22.7825
(2.9117)

21.0451
(2.5221)

17.3356
(1.8085)

11.7075
(1.9025)

9.9308
(2.3418)

c-FMMOCS 27.3265
(3.1853)

26.4624
(3.0734)

25.4045
(2.883)

24.2952
(2.7772)

23.1807
(2.5495)

21.7395
(2.5019)

19.9983
(2.3031)

17.1692
(1.8636)

10.0703
(0.8482)

8.0481
(1.2007)

c-FMMOCSFlat 26.9152
(3.3247)

26.3061
(3.2959)

25.3437
(3.1893)

24.5772
(3.1193)

23.7466
(2.9502)

22.8735
(2.8895)

21.5205
(2.6805)

19.3401
(2.1972)

12.2416
(1.6844)

9.8104
(2.2395)

Toh 27.1508
(3.5172)

26.3527
(3.4021)

25.5438
(3.2867)

24.7032
(3.1317)

23.8548
(2.9828)

22.883
(2.8443)

21.7604
(2.6886)

19.7102
(2.1894)

14.3217
(1.2432)

8.8001
(0.9735)

Fabijanska 26.9871
(3.5592)

26.2216
(3.4031)

25.4466
(3.3092)

24.6587
(3.1502)

23.8507
(3.0261)

23.0056
(2.9335)

22.0251
(2.8302)

20.75
(2.6438)

18.8201
(2.5114)

16.4288
(2.2721)

Jourabloo 22.1063
(5.609)

20.0846
(4.8323)

20.2878
(5.0741)

20.2099
(4.9746)

19.3982
(4.9636)

18.814
(4.3512)

17.4689
(4.2545)

16.7872
(3.488)

15.3009
(2.9712)

13.0979
(2.2259)

Hosseini 30.0239
(4.1804)

28.9768
(3.841)

28.041
(3.6149)

26.9753
(3.4019)

25.9183
(3.1632)

24.7778
(3.0602)

23.4
(2.8982)

21.8856
(2.6415)

19.773
(2.4639)

17.515
(2.2823)

i-FMMOCSFlat 28.1693
(3.4019)

27.3407
(3.2942)

26.4693
(3.1205)

25.5716
(3.0302)

24.7957
(2.9575)

23.8411
(2.9289)

22.71
(2.8233)

21.2317
(2.6221)

19.1874
(2.5334)

16.7463
(2.2941)

i-FMMOCS 28.1264
(3.4079)

27.2828
(3.2963)

26.3977
(3.1118)

25.5273
(3.0222)

24.7476
(2.9422)

23.7897
(2.9018)

22.6603
(2.785)

21.1642
(2.5785)

19.0727
(2.4509)

16.5233
(2.172)

AHMEDDAS 29.704
(3.6213)

28.6374
(3.4397)

27.3324
(3.1582)

26.1311
(2.9442)

24.6422
(2.664)

23.1318
(2.5443)

21.3632
(2.2143)

19.2931
(2.1176)

16.5661
(2.0999)

13.2168
(1.8015)

Wang 30.8821
(4.4199)

29.8596
(4.117)

28.6951
(3.8371)

27.5574
(3.659)

26.3675
(3.4374)

24.962
(3.3237)

23.3436
(3.0815)

21.4173
(2.7589)

18.9109
(2.5665)

16.4121
(2.2776)

AWAM 30.7956
(4.2378)

29.7656
(3.9741)

28.6752
(3.7045)

27.5556
(3.5011)

26.4377
(3.2774)

25.1227
(3.1733)

23.6385
(2.9561)

21.9579
(2.6329)

19.8551
(2.4572)

17.7174
(2.2577)

Figure 5 shows the plots of the evolution of the PSNRHVS means depending on the
noise densities for each filter. For most of the noise densities, the AWAM filter is positioned
at the top of the other filters displaying the best results. For the other performance measures,
the conclusions are similar.

In summary, the AWAM filter represents a significant advance in the salt-and-pepper
noise removal with respect to the existing filters in the literature.

From the above statistical analysis, we conclude that AWAM improves the results of
the other algorithms from the numerical point of view. Anyway, we will analyse visually
the results given by some of the algorithms comparing them visually to the ones obtained
by the proposed AWAM filter.

To develop this visual comparison, the Hosseini and the Wang algorithms were chosen
due to their numerical performance. First, Figure 6 shows the results of these filtering
algorithms for the image 7.1.02.tiff (which is an aerial photograph of a plane in a hanger)
that has been corrupted with 20%, 40%, 60% salt-and-pepper noise. It can be observed that
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the Hosseini algorithm has a bad performance when the noise is 60%, obtaining as a result
an image with undesirable blurred areas. Besides, the values of the PSNRHVS are lower
than the values obtained by the AWAM filter. With respect to the results of the Wang filter,
they are very similar to the ones obtained by the AWAM filter. In this case, the performance
of both filters is very similar.

(a) (b)

Figure 5. Graphical evolution of the means of the PSNRHVS values obtained by all the filters in the test set versus noise density.
(a) Complete figure. (b) Figure including only those filters that obtain the best results in general according to Table 2.

Original Corrupted 20% Hosseini Wang AWAM
PSNRHVS = 42.101 PSNRHVS = 46.48 PSNRHVS = 46.657

Corrupted 40% Hosseini Wang AWAM
PSNRHVS = 40.458 PSNRHVS = 40.900 PSNRHVS = 40.589

Corrupted 60% Hosseini Wang AWAM
PSNRHVS = 21.706 PSNRHVS =35.875 PSNRHVS = 35.450

Figure 6. Restoration results, including the PSNRHVS values, of Hosseini, Wang and AWAM filters for the original image
7.1.02.tiff (an aerial photograph of a plane in a hanger) corrupted with 20%, 40% and 60% salt-and-pepper noise.
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A second experiment was performed on the image I11.tiff (a test image of a bicycle and
some other elements such as a clock, a plant and a tennis racket) which was corrupted with
80%, 90%, 95%, and 98% salt-and-pepper noise. The corrupted images were filtered with
the Hosseini, the Wang and the AWAM filters. Results can be observed in Figure 7. In this
case the results given by the Hosseini filter are very blurry and from the 90% to the 98%
noise levels, the outputs of the filter are full of spots, leading to a bad visual performance.
In the case of the Wang filter, for high density noise levels, the results provided by the
AWAM and Wang filters are visually different, and it seems like the results obtained by
the AWAM filter are slightly better, also shown by the differences of the PSNRHVS values.
Indeed, the values of the PSNRHVS measure are lower because the restoration step of the
Wang filter involves a lower number of pixels. On the contrary, for the AWAM filter, the
visual performance seems more blurred, but the intensity levels are closer to the ones of
the original image.

Original Corrupted 80% Hosseini Wang AWAM
PSNRHVS = 7.829 PSNRHVS =16.417 PSNRHVS = 16.946

Corrupted 90% Hosseini Wang AWAM
PSNRHVS = 7.323 PSNRHVS = 13.431 PSNRHVS = 14.421

Corrupted 95% Hosseini Wang AWAM
PSNRHVS = 7.013 PSNRHVS =11.200 PSNRHVS = 12.540

Corrupted 98% Hosseini Wang AWAM
PSNRHVS = 6.006 PSNRHVS =9.419 PSNRHVS = 11.210

Figure 7. Restoration results, including the PSNRHVS values, of Hosseini, Wang and AWAM filters for the original image
I11.tiff (bycicle test image) corrupted with 80%, 90%, 95% and 98% noise.

Another experiment that was developed involves the study of some details of the
output images given by these algorithms. The image 4.1.07.tiff was chosen and corrupted
by 60% salt-and-pepper noise. As observed in Figure 8, the edges in the filtered images
obtained by the Hosseini filter are not well defined meanwhile in the filtered images by
Wang and AWAM they are preserved, although with the AWAM filter the edges have less
drastic changes. Some other examples were performed obtaining similar results.
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Original Region Detail Noise 60%

Hosseini Wang AWAM

Figure 8. Restoration results of Hosseini, Wang and AWAM filters for the original image 4.1.07.tiff
corrupted with 60% salt-and-pepper noise.

Finally, a visual comparison study was performed with the results obtained by the
Wang and AWAM filters for corrupted images with high levels of noise (namely, 80%, 90%,
95% and 98%). In Figure 9 we can observe some of them. In general, the results obtained
with the AWAM filter are superior, both from the numerical and and the visual points of
view. Since the Wang filter uses fewer pixels in order to restore each pixel of the noisy
image, the obtained images look like a piecewise reconstructed image, as observed in the
images 4.2.03.tiff and 5.1.09.tiff. On the contrary, the results obtained by the AWAM filter
are more realistic, as they do not have these artifacts.

From all these experiments it can be concluded that the AWAM filter outperforms the
results obtained by other filters from the visual point of view.

To end this section, a comparison of the computational processing time of the consid-
ered filters is carried out. In Figure 10a, the average computational processing times for
the images of the test set are depicted for all the filters and noise densities considered in
this section. Figure 10b shows a zoomed version of the previous graph with the vertical
range restricted to the interval [0, 1], i.e., average computational processing times smaller
or equal to 1 s. From this figure, several conclusions emerge. First, the filters SMF5, AMF9,
AMF17, Fabijanska, OCS and OCSFlat have very low average processing times, but they
constitute also the worst filters from both the statistical and visual points of view. With
respect to the most competitive filters such as AWAM, Jourabloo, Hosseini and Wang, all
of them have higher average processing times but still inferior to 1 s for noise densities less
than 85%. For noise densities greater than 90%, the computation time of the AWAM filter
is higher than most of the other methods but (i) its performance compensates it and (ii) this
time could be greatly reduced by parallel computing. The experiments were performed in
MATLAB R2020b with a Windows 10 operating system with 16 Gb of RAM memory and
an Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz 2.59 GHz.
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7.2.01.tiff Corrupted 80% Wang AWAM
PSNRHVS = 29.074 PSNRHVS = 31.818

Barbara.tiff Corrupted 90% Wang AWAM
PSNRHVS = 19.133 PSNRHVS = 20.667

4.2.03.tiff Corrupted 95% Wang AWAM
PSNRHVS = 14.754 PSNRHVS = 16.428

5.1.09.tiff Corrupted 98% Wang AWAM
PSNRHVS = 19.057 PSNRHVS = 20.865

Figure 9. Restoration results of Wang and AWAM filters when applied to the original images shown in the first column,
corrupted with high levels of salt-and-pepper noise.



Appl. Sci. 2021, 11, 560 22 of 24

(a)

Figure 10. Evolution of the average computational processing times of all the filters for the images of the test set with
respect to the considered noise densities. (a) Complete figure. (b) Zoomed figure for processing times less than 1 s.

5. Conclusions and Future Work

In this work the AWAM filter was presented. This filter is a new salt-and-pepper
noise filter that uses a fuzzy mathematical morphology-based noise detection function,
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followed by an adaptive filtering phase formulated on a weighted arithmetic mean. Two
main phases are clearly differentiated: a noise detection phase and a filtering phase. First,
a noise detection function classifies each pixel of the image as corrupt or not based on
some alternate morphological filters. This detection function is suitable even when a 98%
of salt-and-pepper noise has affected an image. In the final phase the gray-level values
of those pixels classified as corrupt in the first phase are restored. Given a noisy pixel, its
gray-level is restored through an aggregation of the gray-level values of the neighboring
noncorrupted pixels by means of an adaptive weighted arithmetic mean operator.

An in-depth evaluation of the performance of the filter is also carried out. The optimal
values for the parameters of the AWAM filter were determined for each noise density
and performance measure (MSE, M-SSIM, PSNRHVS and VIF) by using a training set.
Then, a comparison in a test set whose images had been corrupted with salt-and-pepper
noise densities in {5%, 10%, 15%, . . . , 95%, 98%} was made with other 15 top salt-and-
pepper noise filters. Both from the visual and numerical standpoints, the proposed filter
outperforms all the competition. More specifically, in accordance with the PSNRHVS

performance measure, the AWAM filter obtains significantly the best results for 9 noise
densities and not significantly for 10 noise densities. Similar results were obtained for the
other performance measures.

Finally, the basis of the future work we want to develop is to make some adjustments
to the AWAM filter in order to be able to remove general impulsive noise or Gaussian noise.
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