
applied  
sciences

Article

Reinforcement-Learning-Based Asynchronous Formation
Control Scheme for Multiple Unmanned Surface Vehicles

Jiajia Xie 1, Rui Zhou 1, Yuan Liu 1 , Jun Luo 1,2, Shaorong Xie 1, Yan Peng 1,* and Huayan Pu 1

����������
�������

Citation: Xie, J.; Zhou, R.; Liu, Y.;

Luo, J.; Xie, S.; Peng, Y.; Pu, H.

Reinforcement-Learning-Based

Asynchronous Formation Control

Scheme for Multiple Unmanned

Surface Vehicles. Appl. Sci. 2021, 11,

546. https://doi.org/10.3390/

app11020546

Received: 2 December 2020

Accepted: 31 December 2020

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;
bigjjia@shu.edu.cn (J.X.); zr901122@sina.com (R.Z.); liuyuanji@shu.edu.cn (Y.L.); luojun@shu.edu.cn (J.L.);
srxie@shu.edu.cn (S.X.); phygood_2001@shu.edu.cn (H.P.)

2 State Key Laboratory of Mechanical Transmission, Engineering Department, Chongqing University,
Chongqing 400030, China

* Correspondence: pengyan@shu.edu.cn

Abstract: The high performance and efficiency of multiple unmanned surface vehicles (multi-USV)
promote the further civilian and military applications of coordinated USV. As the basis of multiple
USVs’ cooperative work, considerable attention has been spent on developing the decentralized
formation control of the USV swarm. Formation control of multiple USV belongs to the geometric
problems of a multi-robot system. The main challenge is the way to generate and maintain the
formation of a multi-robot system. The rapid development of reinforcement learning provides
us with a new solution to deal with these problems. In this paper, we introduce a decentralized
structure of the multi-USV system and employ reinforcement learning to deal with the formation
control of a multi-USV system in a leader–follower topology. Therefore, we propose an asynchronous
decentralized formation control scheme based on reinforcement learning for multiple USVs. First,
a simplified USV model is established. Simultaneously, the formation shape model is built to provide
formation parameters and to describe the physical relationship between USVs. Second, the advantage
deep deterministic policy gradient algorithm (ADDPG) is proposed. Third, formation generation
policies and formation maintenance policies based on the ADDPG are proposed to form and maintain
the given geometry structure of the team of USVs during movement. Moreover, three new reward
functions are designed and utilized to promote policy learning. Finally, various experiments are
conducted to validate the performance of the proposed formation control scheme. Simulation results
and contrast experiments demonstrate the efficiency and stability of the formation control scheme.

Keywords: deep reinforcement; formation control; formation generation; formation maintenance
learning; multi-USV system

1. Introduction

Due to the rapid development of communication, navigation, and computer tech-
nology related to ship motion control, cooperative ship control has an extensive range of
application prospects in military and production fields, including fleet cooperative combat,
ocean-going replenishment, environmental monitoring, oil and gas detection, etc. Because
of higher operational security, lower cost, and greater autonomy and flexibility, unmanned
surface vehicles (USVs) are applied to perform extensive missions in hazardous maritime
environments instead of manned vehicles [1]. Compared with a single USV, multiple
USVs’ cooperation has the advantages of strong adaptability and fault tolerance. The fleet
can form a dynamic network during the navigation. Through division and cooperation,
each USV can perceive the environmental information about the area quickly and accu-
rately to accelerate the completion of missions and improve the efficiency of the system.
Formation control is the most fundamental problem of multiple USV cooperative control.
Therefore, formation control of USVs has become one of the hot issues in the research of
USV motion control. A collective scheme is necessary to ensure that the USVs work together
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to complete a common task and coordinate in time and space. As of today, many scholars
have studied the formation control problem of a multi-USV system. The formation con-
trol problems are summarized into two fundamental problems: (1) formation generation,
which refers to how to form a designated formation [2,3], and (2) formation maintenance,
which refers to how to keep formation unchanged in the process of movement [4].

USVs’ formation originated from the study of biological cluster dynamics, which can
be traced back to the Boid model proposed by Reynolds [5]. Based on this model, Olfati-
Saber [6] extended the multi-agent consistency work to the usual swarm formation control
field, introduced obstacle avoidance and tracking agents, and designed a distributed control
framework including gradient-based term, velocity consensus term, and navigational feed-
back. Su et al. [7] further developed the collective formation control strategy based on the
work of Olfati-Saber, using a virtual leader to replace the actual leader. Ponomarev et al. [8]
proposed a consistency control method based on a predictive mechanism to accelerate
the convergence speed of multi-agent consistency. Chen et al. [9] proposed the collective
circular motion behavior control of heterogeneous multi-agents under arbitrarily closed
curves. In the research of multi-agent formation control, most researchers treat the model as
a linear system of first-order or multi-orders [6–8]. Taking into consideration the dynamic
characteristics (nonlinearity, coupling, underactuation, etc.) of the robots in a multi-robot
formation, it is often difficult to directly consider it as a system for analysis. To better
achieve stability and efficiency, and at the same time be useful to the theoretical analysis of
the multi-robot formation, researchers have proposed the following formation methods: the
virtual structure method, the behavior-based method, and the leader–follower method [10].
The virtual structure method [11] is not flexible, and it is difficult to achieve obstacle
avoidance with that method. It is hard to express the entire system in mathematical form
and difficult to prove and guarantee the stability of the system using the behavior-based
method [12]. In contrast, the leader–follower method [13] is easy to design and implement,
and easy to ensure stability. The advantages of the leader–follower method are that the
moving goal is only assigned to the leader to navigate the movement of the agent swarm,
and each member only needs to collect information about its immediate leader instead of
the whole swarm. For example, when performing seafloor terrain scanning, hydrological
sampling, target search, and resource detection, a team of robots performs tasks in forma-
tion, and the path trajectory is assigned to the leader of the formation. Other robots keep a
certain distance (for example, sonar detection radius) from their associates. The swarm can
perform tasks with a fixed geometric structure, which improves work efficiency and safety.

The current full actuated leaderless formation control algorithms and leader–follower
formation control algorithms are all based on back-stepping [14–16]. The repeated deriva-
tion of the virtual control law by a back-stepping method in practical design will bring
about a sharp increase in partial derivative calculations as the order of the system increases,
which obviously increases the complexity of nonlinear system design. Through interacting
with the environment through a trial-and-error mechanism, reinforcement learning opti-
mizes policy by maximizing cumulative rewards and finally achieves the optimal policy.
Other existing works only use the current optimal sample update, while reinforcement
learning makes full use of historical samples to get the gradient descent direction based
on the cumulative discounted reward. Since the cumulative discounted reward is based
on all the existing samples, the sample information is more fully utilized, and the effi-
ciency of policy learning is significantly improved. The combination of reinforcement
learning and deep learning can provide optimal decision-making strategies for complex
high-dimensional multi-agent systems and can lead to efficient performance of tasks in
challenging environments. The policy gradient adopted and improved in this paper is a
direct parametric policy, optimizing the trajectory from the initial state to obtain an optimal
policy, which is a continuous function of the state–action value and more suitable for deal-
ing with continuous problems, such as formation control. The advantage of deterministic
policy gradient is that less data need to be sampled and the algorithm efficiency is high.
One way of optimizing policies is to adjust the gradient toward the direction of “good”
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actions. Advantage function is usually used to measure the quality of each action in each
state. Therefore, we propose an improved DDPG based on advantage function to train
policy for formation control of a multi-USV system.

In this paper, to solve the above problems, an asynchronous formation control scheme
based on reinforcement learning and leader–follower structure is proposed for multiple
USVs. First, a USV model and a novel formation shape model are established. Second,
the advantage deep deterministic policy gradient algorithm (ADDPG) is proposed and used
to learn a formation generation policy, which is used to generate the formation according
to the control requirements. Finally, a formation maintenance policy based on the ADDPG
and the designed reward function is utilized to maintain the given geometry structure of
the team of USVs during movement.

To summarize, the main contributions of this paper are threefold.

• Modeling for maritime formation control: We introduce a USV model for underactu-
ated USV, only considering its kinematics model. Moreover, we propose a formation
shape model to describe the physical relationship between USV members, includ-
ing relationship in formation, relative distance offset, and scaling coefficient.

• Formation control scheme: We propose an asynchronous decentralized formation
control scheme for multiple cooperative USVs, in which we propose the ADDPG
algorithm, and design the reward functions for the formation control problem. Then,
based on the required specific geometry shape of the USV team, the decentralized
formation generation policies and decentralized formation maintenance policies are
trained based on the ADDPG to generate the formation and keep the geometric shape,
respectively.

• Performance validation: Evaluation criteria are designed to evaluate the performance
of the proposed scheme. Extensive simulations are conducted to verify the effective-
ness of the proposed formation control scheme. The simulation results show that the
proposed scheme can realize the effectiveness of formation generation and the stability
of formation maintenance.

The remainder of this paper is arranged as follows. In Section 2, we review the relevant
research studies. In Section 3, we describe the system model. In Section 4, we present
the formation control scheme. In Section 5, we verify the performance of the proposed
formation control scheme by simulation. The paper is concluded in Section 6.

2. Related Works

In this section, we review the related works, including the formation control algorithms
of the multi-robot system.

Fahimi [17] studied the nonlinear model predictive about the control formation prob-
lem of USVs in the environment with obstacles. Based on the decentralized geometric
control strategy in the leader–follower structure, the underactuation of USVs, and envi-
ronmental obstacles, a formation controller for real-time optimization nonlinear predictive
control method was designed to realize formation and obstacle avoidance. Do [18] pre-
sented a design of cooperative controllers for several agents based on the constraint of
sensing ranges and collision avoidance. Then, Do [19] discussed the formation control
of underactuated ships limited to collision avoidance and communication. An elliptic
collision avoidance method was proposed, and the nonlinear coordinate transformation
and additional control were introduced to control the underactuated ship. Simultaneously,
the potential energy function was used in the controller design with collision avoidance
between the ships.

Peng et al. [20] proposed a neural-network-based leader–follower underdrive UAV
formation controller based on the uncertainty of leader dynamics and environmental in-
terference. The uncertainty dynamics of the leader were approximated only by the sight
distance and angle measured by the local sensor, and a control law that does not rely on
an accurate model was designed. After that, an observer-based distributed formation
controller was proposed. The formation controller based on neighbor information was
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designed using a neural network, back-stepping, and graph theory, and used to estimate
the speed information [14]. Since then, to overcome problems such as model uncertainty,
ocean noise, and unpredictable speed of leaders and followers, adaptive control, neu-
ral networks, high-gain observers, and minimum learning parameter algorithms have
been combined into the backstepping design, a new adaptive output feedback control
scheme has been proposed, which realizes the leader–follower formation based only on
position and heading angle, and only two parameters need to be learned online [21,22].
Ding et al. [23] proposed a distributed adaptive cooperative formation control strategy
based on a virtual leader, designed a navigation system and an adaptive neural network
synchronization controller that can calculate a specified trajectory, and solved the problem
of model uncertainty to achieve stable formation. Sun et al. [24] studied the formation
control of USVs in a leader–follower structure, considering model uncertainty and dynamic
disturbance of the environment.

Shojaei [25] proposed a leader–follower formation tracking controller for USVs af-
fected by torque limitation and environmental noise. The saturation function was used to
reduce the risk of driver saturation. The radial basis function and adaptive robust control
technology were used to improve the robustness of the controller in a disturbance envi-
ronment. On this basis, the formation method was developed into the three-dimensional
formation control of underactuated underwater vehicles based on the neural network,
and the nonlinear saturation observer was introduced to estimate the speed of the fol-
lower [26]. Sun et al. [27] considered the autonomous navigation of the leader–follower
USV formation in a complex environment, and the predictive control based on the limited
control set realized the USV team to reach the destination in a certain formation with
internal collision avoidance under the condition of no prior knowledge of the environment
and predefined trajectory.

In other respects, Breivik et al. [28] studied the leader–follower formation control
problem of fully actuated ships and proposed a navigation formation control method,
which uses control, navigation, and synchronization algorithms to ensure that each in-
dividual can converge and stay in the assigned formation position to achieve formation.
Cui et al. [29] proposed a control method based on an approximation method to address
the unknown uncertainty in the leader–follower formation control model of multi-AUV.
Fan et al. [30] proposed a formation control strategy based on two-layer predictive control.
One layer guarantees the leader–follower cooperative formation between USVs, and the
other layer realizes the USVs’ tracking of the optimal command. Park [31] aimed at the
asymmetry of the quality and attenuation matrix of the underwater vehicles and the uncer-
tainty of the hydrodynamic attenuation term, introduced additional control input to solve
the underactuated control, and realized the leader–follower control when only using posi-
tion information. Liu et al. [32] designed two different algorithms for formation forming
and path planning based on the heading navigation fast marching algorithm, which solved
the heading constraint problem of the unmanned boat and realized that the USVs can fol-
low the planned trajectory and formation through any initial state. Sui et al. [33] presented
a novel formation control with collision avoidance policy using imitation learning and
reinforcement learning, but only one leader and one follower are considered.

The failure of the leader may affect the robustness of the whole swarm, so selecting
the best leader from the swarm is an important issue for the study in leader–follower
formation control. Hou et al. [34] proposed a leader–follower formation with multiple
changeable leaders and proposed a switching distributed saturated control law, which en-
ables the formation to work even if a leader fails. Based on the status of the multi-robot
system evaluated by a fuzzy inference system, Li et al. [35] proposed an affection-based
dynamic leader selection model to switch leaders autonomously. To solve the failure of
the current leader, Li et al. [36] proposed a neuroendocrine system to switch and evaluate
a leader autonomously. Considering the time-varying and fully-decentralized structure
in the leader–follower multi-agent system, Franchi et al. [4] proposed an online leader
selection strategy to periodically select the best leader for the team during the movement.
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Xue et al. [37] introduced a supermodular optimization approach to fixed-size set and
minimum-size set of leaders to select the optimum leader for minimizing convergence
error in leader–follower formation control.

Formation control of multi-robot is to control multiple robots mainly based on preset
inter-robot parameters, which determines the distance and orientation displacements
among these robots [38–43] during task execution. Many formation strategies are proposed
to obtain and keep the stability of formation under different formation shapes. Aranda
et al. [44] achieved the local and global stability of formation, while Oh et al. [45] obtained
the local stability of formation, and Lin et al. [46] ensured global stability of formation.
Lin et al. [47] presented a formation method based on complex Laplacian to achieve global
stability by the inter-agent relative displacement.

3. System Models

In this section, we analyze the system model of maritime cooperative formation for a
team of USVs, as shown in Figure 1, including the USV model, formation shape control,
and control objective.
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Figure 1. The standard V-shape formations for multiple unmanned surface vehicles (USVs). Every
USV should keep the required distance from its immediate leader in the x-axis and y -axis according
to the new coordinate frame O− X′Y′.

3.1. USV Model

We consider a group of N USVs for formation control in the leader–follower structure,
described as U = {u1, u2, . . . uN} with geometric shapes, such as V-shape, as shown in
Figure 1. Because this paper focuses on how to design and train formation generation
policies and formation maintenance policies for the USV team, we simplify the USV into a
particle, mainly considering the kinematics model

.
pui

= vui of the particle, and temporarily
ignoring the impact of the kinetics model of the particle. Each USV ui has coordinates
pui = (xui , yui ) and velocity vui = (vx

ui
, vy

ui ) =
.
pui

in the O− XY coordinate frame in the
two-dimensional maritime plane. At each time step, the action taken by USV ui is the
change of velocity, aui = (∆vx

ui
, ∆vy

ui ). In a leader–follower structure, the followers should
follow the leader in a geometrically balanced manner and keep a specific direction and
distance from the leader. Thus, we establish a new relative coordinate frame O− X′Y′ that
the origin is the original origin, and the direction of the Y′-axis is the heading angle of
the leader. Each USV ui has new coordinates p′ui

= (x′ui , y′ui
) in the relative coordinate

frame, as calculated by the coordinate transformation matrix in Equation (1), where θ is
the leader’s heading angle. The formation control of a multi-robot system transforms the
formation control problem into the problem of followers tracking the leader’s position and
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direction. The classical leader–follower mode is that all the followers track a single leader
with different distance offsets individually, while a chain leader–follower formation is used
in this paper. The chain leader–follower is inspired by three flocking rules of Reynolds [5]
that agents in a group should stay close to their neighbor agents, avoid collisions with
their neighbor agents, and match speed with its neighbor agents instead of the leader of
the group. In short, each agent aligns with its neighbors. In a cooperative USV team, it is
more conducive to improve the team efficiency to use communication to share information
than to collect information of members in the team with sensors. USVs are equipped
with industrial control computers, GPS, and other sensors, so the followers obtain the
coordinates of their leaders through wireless communication. For instance, the USV u2
tracks the USV u1 while the USV u4 tracks the USV u2 according to the required chain
formation. USV u2 is regarded as the immediate leader of its follower USV u4. In addition
to the leader USV, Hi = (dX′

i , dY′
i ) is the predefined offset vector, i.e., the relative positional

relationship for USV ui concerning its immediate leader in the O− X′Y′ coordinate frame.
Each USV takes action following its formation generation policy µθi to make the USV

team generate the expected formation shape (see Section 4.2.1). Each USV takes action
following its formation maintenance policy µ

f m
θi

to keep the stability of the formation
structure with the predefined teammate spacing (see Section 4.2.2).[

x′ui

y′ui

]
=

[
cos(θ − π

2 ) sin(θ − π
2 )

− sin(θ − π
2 ) cos(θ − π

2 )

][
xui

yui

]
(1)

3.2. Formation Shape Model

The USV team needs the geometry configuration of formation in the collective for-
mation mission. Reasonable formation shapes of the USV team can increase the efficiency
of formation task execution. To establish or maintain a specific geometric formation, it is
necessary to establish a representative method of geometric formation. At present, there is
no unified formation representative method to designate the formation of the USV team.
In this paper, the formation shape matrix is established by combining with the formation
description mode of chain guidance reference, defined as a 4× N formation shape matrix,
Fs as shown in Equation (2). The matrix is adopted to represent the geometric relationship
of USVs, where N is the number of USVs in the formation. In the matrix Fs, the first row
denotes the number of geometric nodes in the formation. The second and third rows
represent the distance offsets between the USV and its immediate leader USV in x-axis
and y-axis directions. The fourth row denotes the node number of the immediate leader
of the USV in each formation node. N USVs form a geometric shape. The centric USV is
the leader of the team, while the other USVs form the chain tracking one by one. Follower
USVs keep the distance displacement (dX′

i , dY′
i ) from their immediate leader. If one or

several immediate leaders in the formation fail during the movement, it is necessary to
reconstruct a formation according to the size Nt of good USVs and the first Nt columns of
the formation shape matrix Fs.

Fs =


1 2 3 . . . N
0 αdX′

2 αdX′
3 . . . αdX′

N
0 βdY′

2 βdY′
3 . . . βdY′

N
0 Il(n2) Il(n3) . . . Il(nN−2)

 (2)

where dX′
i and dY′

i are the horizontal and vertical distance of each follower–leader pair.
α ∈ (0, 1] and β ∈ (0, 1] are the expansion coefficients in horizontal and vertical directions,
respectively. By adjusting the values of α and β, the horizontal and vertical expansion and
contraction of the same formation can be realized. Il(ni) is the immediate leader of the
USV located in the formation node ni.
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3.3. Control Objective

For formation generation, the USV team starts from the respective current locations
and generates a predefined formation shape in the target location. Therefore, the goal is to
minimize the sum of the length of the movement path of the team of USVs,

min
(
∑N

i=1(len(s(ui), e(ui)))
)

(3)

where s(ui) is the initial position of USV ui, and e(ui) is the final position of USV ui in the
formation. len(s(ui), e(ui)) is the length of the moving path for USV ui from position s(ui)
to position e(ui) during formation generation.

For formation maintenance, in this paper, we aim at training USVs to learn policies
to move in a predetermined formation and maintain the shape of the formation. All the
followers keep a certain distance with their respective leaders, which reduces the stability
error (i.e., distance difference between the current relative distance and the predefined
distance). Thus, another control goal is defined as follows:

Lpg = min
i

∣∣H′ i − Hi
∣∣, ∀ui ∈ U f ollower (4)

H′ i = p′ui
− p′ Il(ui)

(5)

where Il(ui) denotes the immediate leader of USV ui. U f ollower is the set of all the followers
except the only leader USV, and p′ Il(ui)

is the position of the immediate leader Il(ui) of
USV ui. Hi is the required distance offset between USV ui and its immediate leader, and H′ i
is the current relative distance between USV ui and its immediate leader.

4. Proposed Scheme

In this section, we introduce the problem formulation for a cooperative formation
control followed by a formation control algorithm based on reinforcement learning in
which policies for formation generation and formation maintenance are presented.

4.1. Problem Formulation

For the formation control of USVs in the leader–follower structure, the main problem
is the question of how to form the predetermined formation shape with collision-free
movement and maintain the global formation shape.

An asynchronous formation control scheme based on reinforcement learning for
multiple USVs is proposed to address the problems mentioned above, making the USV
team generate a formation with a minimum total length of movement path and maintain
the formation. The proposed scheme contains two parts: formation generation policy and
decentralized formation maintenance policy. In formation generation, each USV observes
the positions and velocities of all USVs by sensors and communication, and the positions
of points in formation shape are given to all USVs, and then learn a formation generation
policy µ∗θi

based on cost function Ji to make the team form the formation quickly with a
series of optimal actions a∗, as shown in Figure 2. However, only the leader collects the
information about the team’s goal; each follower obtains its immediate leader’s position
and velocity by communication and follows the formation maintenance policy µ

f m
θi

to track
the leader, as shown in Figure 3.



Appl. Sci. 2021, 11, 546 8 of 18

Appl. Sci. 2021, 10, x FOR PEER REVIEW 8 of 19 
 

the formation. The proposed scheme contains two parts: formation generation policy and 
decentralized formation maintenance policy. In formation generation, each USV observes 
the positions and velocities of all USVs by sensors and communication, and the positions 
of points in formation shape are given to all USVs, and then learn a formation generation 
policy *

iθμ  based on cost function iJ  to make the team form the formation quickly with 

a series of optimal actions *a , as shown in Figure 2. However, only the leader collects the 
information about the team’s goal; each follower obtains its immediate leader’s position 
and velocity by communication and follows the formation maintenance policy 

i

fm
θμ  to 

track the leader, as shown in Figure 3. 

 
Figure 2. Formation generation. 

 
Figure 3. Formation maintenance. 

4.2. Formation Control Algorithm Based on Reinforcement Learning 
4.2.1. Formation Generation Policy 

In a sophisticated maritime environment, the formation control problem can be re-
garded as a Markov decision process (MDP) and described as , , ,S A P r< > . S  describes 
a set of the possible states s  of each USV. A  is a set of actions a  that a USV can take. 
The transition probability distribution for each pair of state s and action a   is ex-
pressed as [ ]: 0,1P S A S× × → . The expected reward for each state–action pair is com-

puted as :r S A× →  . Moreover, a deterministic policy : ASμ →   is defined to out-
put a deterministic action a  in state s  that will obtain a reward ( , )r s a  and make the 
environment change to a new state s′  with an environmental transition probabil-
ity ( | , )P s s a′ . Policy optimization is realized by maximizing the cumulative return 

0

T t t
i it

R rγ
=

=  of each USV, where [0,1]γ ∈  is the discount factor. 
We propose an improved deep deterministic policy gradient based on the advantage 

function and deep deterministic policy gradient (DDPG) proposed in [48], named the 
advantage deep deterministic policy gradient (ADDPG). The multi-USV system for for-
mation control considered in this paper is decentralized, and each USV runs its policy 
independently. We use the ADDPG to train the decentralized formation generation pol-
icy set { }1 2

, ,...,
Nθ θ θμ μ μ=μ  for the team of USVs, as described in Algorithm 1. We use the 

Figure 2. Formation generation.

Appl. Sci. 2021, 10, x FOR PEER REVIEW 8 of 19 
 

the formation. The proposed scheme contains two parts: formation generation policy and 
decentralized formation maintenance policy. In formation generation, each USV observes 
the positions and velocities of all USVs by sensors and communication, and the positions 
of points in formation shape are given to all USVs, and then learn a formation generation 
policy *

iθμ  based on cost function iJ  to make the team form the formation quickly with 

a series of optimal actions *a , as shown in Figure 2. However, only the leader collects the 
information about the team’s goal; each follower obtains its immediate leader’s position 
and velocity by communication and follows the formation maintenance policy 

i

fm
θμ  to 

track the leader, as shown in Figure 3. 

 
Figure 2. Formation generation. 

 
Figure 3. Formation maintenance. 

4.2. Formation Control Algorithm Based on Reinforcement Learning 
4.2.1. Formation Generation Policy 

In a sophisticated maritime environment, the formation control problem can be re-
garded as a Markov decision process (MDP) and described as , , ,S A P r< > . S  describes 
a set of the possible states s  of each USV. A  is a set of actions a  that a USV can take. 
The transition probability distribution for each pair of state s and action a   is ex-
pressed as [ ]: 0,1P S A S× × → . The expected reward for each state–action pair is com-

puted as :r S A× →  . Moreover, a deterministic policy : ASμ →   is defined to out-
put a deterministic action a  in state s  that will obtain a reward ( , )r s a  and make the 
environment change to a new state s′  with an environmental transition probabil-
ity ( | , )P s s a′ . Policy optimization is realized by maximizing the cumulative return 

0

T t t
i it

R rγ
=

=  of each USV, where [0,1]γ ∈  is the discount factor. 
We propose an improved deep deterministic policy gradient based on the advantage 

function and deep deterministic policy gradient (DDPG) proposed in [48], named the 
advantage deep deterministic policy gradient (ADDPG). The multi-USV system for for-
mation control considered in this paper is decentralized, and each USV runs its policy 
independently. We use the ADDPG to train the decentralized formation generation pol-
icy set { }1 2

, ,...,
Nθ θ θμ μ μ=μ  for the team of USVs, as described in Algorithm 1. We use the 

Figure 3. Formation maintenance.

4.2. Formation Control Algorithm Based on Reinforcement Learning
4.2.1. Formation Generation Policy

In a sophisticated maritime environment, the formation control problem can be re-
garded as a Markov decision process (MDP) and described as < S, A, P, r >. S describes
a set of the possible states s of each USV. A is a set of actions a that a USV can take.
The transition probability distribution for each pair of state s and action a is expressed
as P : S× A× S→ [0, 1] . The expected reward for each state–action pair is computed
as r : S× A→ R . Moreover, a deterministic policy µ : S→ R|A| is defined to output a
deterministic action a in state s that will obtain a reward r(s, a) and make the environment
change to a new state s′ with an environmental transition probability P(s′|s, a) . Policy
optimization is realized by maximizing the cumulative return Ri = ∑T

t=0 γtrt
i of each USV,

where γ ∈ [0, 1] is the discount factor.
We propose an improved deep deterministic policy gradient based on the advantage

function and deep deterministic policy gradient (DDPG) proposed in [48], named the
advantage deep deterministic policy gradient (ADDPG). The multi-USV system for for-
mation control considered in this paper is decentralized, and each USV runs its policy
independently. We use the ADDPG to train the decentralized formation generation policy
set µ =

{
µθ1 , µθ2 , . . . , µθN

}
for the team of USVs, as described in Algorithm 1. We use

the advantage function of state–action value instead of the state–action value to calculate
the policy gradient, which can make the policy update toward the direction of the larger
action value and accelerate the efficiency of policy learning. For each USV, its observation
includes information about its velocity and position, the relative distance of other USVs,
the predefined parameters of the formations. Its action is the change of velocity. At each
time step t of formation generation, each USV ui obtains its observation si

t, uses its policy
µθi to generate an action ai

t, and receive a reward ri
t+1 from the environment. After the USV

executes the action ai
t, the environment state si

t transfer to the next state si
t+1 contains. The

transition experience ei
t =

(
si

t, ai
t, ri

t+1, si
t+1
)

of all USVs is collected and stored in the shared
experience replay buffer Ds and used to train the formation generation policy.

The network structure of the ADDPG is illustrated in Figure 4. Inspired by the target
network in DQN, we introduce target networks and actor-critic paradigm in the proposed
scheme to address continuous actions and action-value estimation and improve the stability
of learning. Thus, there are four neural networks in the ADDPG. The critic is used to train
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the state value network to approximate the value of the state–action, including the current
critic network and target critic network, which are three-layer multilayer perceptron (MLP)
with parameters θV and θV′ , respectively. The actor is designed to train the formation
policy to output the action that should be taken in the current state, containing current actor
network and target actor network, with parameters θµ and θµ′ , respectively. The target
networks’ parameters θV′ and θµ′ use the parameters from some previous iteration of θV

and θµ. We use an advantage function to evaluate the relative advantage of each action in a
state and accelerate the learning of policies. The actor part based on advantage function
uses the DPG method; the critic part uses the TD error method to update the parameters.
During training, each USV in the team has independent networks with different parameters
and independent optimization for its formation control policy.
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The advantage function describes the advantage of selecting an action a in the state s,
compared with other actions under the state s, as denoted by

A(si, ai) = Q(si, ai)−V(si) (6)

For the critic part, the loss function is denoted as follows:

L
(

θV
i

)
=
(

Ri −Vi

(
si|θV

i

))2
(7)

where
Ri = r0 + γr1 + γ2r2 + . . . + γn−1rn−1 + γnVi

′
(

sn|θV′
i

)
(8)

The critic is updated by minimizing the loss,

∇θV
i

L
(

θV
i

)
= −Es,a,r,s′

[(
Ri −Vi

(
si|θV

i

))
∇θV

i
Vi

(
si|θV

i

)]
(9)

The actor is updated by the gradient of Q-value and advantage function:

∇θ
µ
i

L
(

θ
µ
i

)
= Es

[
∇ai (Ri −V(si))|ai=µi(si)

∇θ
µ
i
µi

(
si|θ

µ
i

)]
(10)

The interactions between the USV team and the ocean environment can be divided
into separate episodes. An episode starts in a random state of the team and ends at a
terminal state or after a specified number of time steps. The number of episodes is set to
20,000, and the maximum episode length is 100—that is, each episode has up to 100 time-
steps. At each time step in every episode, every USV interacts with the environment,
selects its action at according to the current state st, and dynamically calculates the reward
rt+1 generated by the environment in real time according to the reward function r1 and r2.
The reward function r1 is defined to be the minimum distance between the USVs and the
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geometric points of formation. If a collision occurs between members during the formation
control process, a collision penalty is given—that is, the negative reward value r2.

r1 = −
N

∑
j=1

(min
ui

Dis(p′ui
− p′nj

)) (11)

r2 = −c1 (12)

where p′nj
is the position of the formation node nj in the coordinate frame O − X′Y′,

which can be calculated by the predefined location of the leader and the parameters in the
formation shape matrix Fs. Dis

(
p′ui

, p′nj

)
is the Euclidean distance between the USV ui

and the formation node nj. c1 is a positive constant.

Algorithm 1: Formation Generation Policy Based on the Advantage Deep Deterministic Policy
Gradient (ADDPG)

Input Reward Function r1,r2 for formation generation scenario
Input The predefined formation shape Fs
Output formation generation policies µ =

{
µθ1 , µθ2 . . . µθN

}
for the USV team

Initial experience replay buffer Ds
1: for episode = 1 : M do
2: Initialize a random process Nrp for action exploration
3: Receive environment state
4: for t = 1 : T do
5: for i = 1 : N do
6: Select action at = µi

(
st

∣∣∣θµ
i

)
+ Nrp

7: Execution actions at and observe reward rt and new state st+1

8: Add ei
t =

(
si

t, ai
t, ri

t, si
t+1

)
into replay buffer Ds

9: Sample a random minibatch of transitions ej from Ds

10: Calculate reward in real-time Ri =

{
0 for terminal st

V(st) for non− terminal st
11: for m = {t− 1, t− 2, . . . , tend} do
12: Ri = rm + γRi
13: Update the critic by (9):
14: θV

i ← Adam
(

θV
i ,∇θV

i
L
(
θV

i
))

15: Update the formation generation policy for USV ui by (10):
16: θ

µ
i ← Adam

(
θ

µ
i ,∇θ

µ
i

L
(

θ
µ
i

))
17: Update the “soft” target networks for the actor and critic:
18: θ V ′

i ← τθV
i + (1− τ)θV

i
19: θ

µ′

i ← τθ
µ
i + (1− τ)θ

µ′

i
20: end for
21: end for
22: end for
23: end for

The details of the proposed formation generation policies are shown in Algorithm 1,
where M is the number of episodes, T is the maximum episode length, and N is the number
of USVs. The inputs are the designed reward r1,r2 for the formation generation scenario
and the formation shape Fs. The output are the formation generation policies for the
USV team. In each episode, every USV adopts a random process Nrp to achieve sufficient
exploration and collects experiences ei

t =
(
si

t, ai
t, ri

t, si
t+1
)

that are stored in the replay buffer
Ds (lines 8–9) and sampled randomly to update the policies. The value of each state–action
pair is estimated by the cumulative discount reward Ri (lines 10 and 12), which is used
to calculate the advantage of action. A random minibatch of samples in the replay buffer
is sampled by each USV to improve the formation generation policies (lines 13–16). The



Appl. Sci. 2021, 11, 546 11 of 18

“soft” updates are used to make the target function change more slowly and improve the
stability of learning (lines 18–19).

4.2.2. Decentralized Formation Maintenance Policy

The leader–follower method requires the followers to maintain a specific position
and direction offset from the leader, so the structure is simple and robust engineering. We
consider a chain mode in the leader–follower structure, in which each follower tracks its
immediate leader instead of the mode in which all followers track the same leader. The
advantage of this method is that the communication pressure of the leader is reduced,
and the stability of the formation structure is realized by minimizing the tracking error for
each USV.

We adopt the proposed ADDPG in this paper to train the decentralized formation
maintenance policy set µ f m =

{
µ

f m
θ1

, µ
f m
θ2

, . . . , µ
f m
θN

}
for the decentralized multi-USV system,

similar to the training of formation generation policy. For each USV, the state s contains
information about its velocity and position and the relative distance from its immediate
leader. The action a contains the change of velocity. At each time step j of formation
maintenance, each USV ui obtains its observation si

j, uses its policy µ
f m
θi

to generate an

action ai
j and receive a reward ri

j+1 from the environment. After the USV executes the

action ai
j, the environment state si

j transfers to the next state si
j+1. The reward function r3 is

defined to be the distance difference, which is the error between the current distance H′ i
and the expected distance Hi between the USV and its immediate leader. The transition
experience ei

j =
(

si
j, ai

j, ri
j+1, si

j+1

)
of the USV ui is stored in the experience replay buffer

Di and sampled randomly to update the policy. The reward r3 is used to measure the
performance of the formation maintenance policy, aiming to reduce the difference between
the current formation and the expected formation. All UAVs choose and execute actions
asynchronously and are not limited to synchronous operations.

r3 = −
∣∣H′ i − Hi

∣∣ (13)

5. Experiment and Analysis

In this section, we design comparative experiments to evaluate the proposed scheme
and analyze the simulation results.

5.1. Experimental Setting

We design a formation generation scenario based on the simulation platform designed
by [49]. A V-shape formation is used in the experiments. In the formation generation
scenario, N USVs are moving in the two-dimensional maritime surface, which is considered
as a square with a side length of 2. Only the kinematics model of USVs is considered.
In a formation generation scenario, the formation generation is to control the team of
USVs to form a predefined formation Fs by following the formation generation policies
µ =

{
µθ1 , µθ2 , . . . , µθN

}
. The input of the formation generation policy of each USV ui is a

row vector sui = (pui , vui , repoint, reoth), including 1× 2 position vector pui , 1× 2 velocity
vector vui , 1× 2N relative position vector repoint between USV ui and N formation points,
and 1× 2(N − 1) relative position vector reoth between USV ui and N − 1 other USVs. The
output aui = ∆vui = (∆vx

ui
, ∆vy

ui ) is the velocity change of USV ui. The main hyperparame-
ters of the generation policies are shown in Table 1. The cumulative discounted return and
the average length of the movement path of the team are used to evaluate the performance
of the policies. However, for the formation maintenance task, all the followers follow
the leader’s movement while maintaining the whole formation geometry. In a formation
maintenance scenario, the goal is to minimize the error between the current formation
shape and the expected formation shape by following the decentralized formation mainte-
nance policies µ f m =

{
µ

f m
θ1

, µ
f m
θ2

, . . . , µ
f m
θN

}
. The input of the formation generation policy
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of each USV ui is a row vector sui = (pui , vui , reileader), including the 1× 2 position vector
pui , 1× 2 velocity vector vui , and 1× 2 relative position vector reileader between USV ui
and its immediate leader. The output is the change of velocity aui = ∆vui = (∆vx

ui
, ∆vy

ui ).
The cumulative discounted return and the average of the error are utilized to measure the
performance of the maintenance policies.

Table 1. The summary of the main hyperparameters and their values.

Hyperparameter Value

Minibatch size 1024
Replay buffer size 106

Discount factor 0.95
Learning rate 0.01

Maximum episode length 100
Number of episodes 20,000

Number of units in the multilayer perceptron (MLP) 64

5.2. Results Analysis
5.2.1. Formation Generation

We compare the performance of the proposed scheme with the following other
schemes through simulation results and analysis of the results:

• The deep deterministic policy gradient (DDPG) scheme: In this scheme, USV learns
formation generation policy based on the deep deterministic policy gradient.

• The deep Q-learning (DQN) scheme: In this scheme, USV learns formation generation
policy based on deep Q-learning.

We train the decentralized formation maintenance policies based on the control objec-
tive in Equation (3). We evaluate the proposed scheme by averaging the episode reward
for every 100 episodes. Figure 5 shows the mean episode reward of the USV team with
different configurations of formations and different team sizes over 20,000 episodes when
using the proposed formation generation policies. Figure 5a–c show the performance
of the team with 3 USVs, 5USVs, and 7 USVs, respectively. The proposed scheme can
learn effective formation generation policies for different USV team sizes. As shown in
Figure 5, with the policy training going on, the formation generation policies based on
deep reinforcement learning is continuously optimized, and the cumulative discounted
return increases until the policy converges. Figure 5 shows that the proposed formation
control scheme can perform formation generation with different team sizes effectively.

Next, we study the performance comparison of the proposed scheme and other
existing schemes. Figure 6 shows the total length len f g = ∑N

i=1(s(ui)− e(ui)) and average
length Mlen f g = 1

N ∑N
i=1(s(ui)− e(ui)) of the moving path of the team with different team

sizes. It illustrates that in the case of changing team size, the proposed scheme can still
form an expected formation shape with the shortest path length. Moreover, the proposed
scheme can obtain better performance than other schemes. Figure 6a shows that the total
length of the USV team’s moving path increases as the size of the team increases, and the
proposed scheme has the shortest total length during the formation generation. Figure 6b
shows that the proposed scheme has the shortest average length of the moving path during
the formation generation. The reasons for these are as follows: first, the proposed scheme
is used directly to parameterize the whole policy and find the optimal policy, which can
get rid of the limitation of discrete action space. Second, the designed reward function is
designed to drive all USVs to reach nodes in the predefined formation as soon as possible to
maximize the cumulative discounted return of the team. Third, the advantage accelerates
the learning of policies. As for the DDPG and DQN, the target locations in the generated
formation for each USV maybe not the optimal, and the average moving path is not the
shortest. Consequently, the proposed scheme is better compared with other schemes, as
shown in Figure 6.
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5.2.2. Formation Maintenance

Aiming at the formation maintenance problem of the dynamic moving UAV team,
we train the path planning algorithm for the leader and design the formation maintenance
algorithm for the followers so that the whole formation team can move toward the target
with a relatively stable geometric structure. Thus, we evaluate the performance of the
proposed scheme according to the following evaluation criteria:

• Cumulative discounted reward during training
• The final distance between the leader and the team goal in each episode
• The stability difference of the whole team

We train the decentralized formation maintenance policies based on the reward func-
tion in Equations (12) and (13) and the control objective in Equation (4). Figure 7 shows the
reward of the USV team with decentralized formation maintenance policies with different
numbers of USVs and over 10,000 episodes. Figure 7a–c show the mean episode reward for
the team of 3 USVs, 5USVs, and 7 USVs, respectively. We can see that the policies quickly
converge to stable optimized policies.

In the formation maintenance scenario, the leader of the formation guides the move-
ment of the USV team. Hence, the path planning algorithm of the leader determines the
success of the formation task directly. As shown in Figure 8a–c, we test the performance
of the formation maintenance policy of the leader in the team of 3 USVs, 5 USVs, and 7
USVs. The mean episode distance between the leader and the team goal all become near
zero from about 2000 episodes. That means the leader in these teams can successfully reach
the mission target quickly.

We adopt a stability error function SF(U) = 1
T×n ∑T

j=0 ∑N
i=1|H′ i − Hi| to measure the

formation stability when following the leader. Comparison simulations are conducted
amongst the proposed decentralized formation maintenance policies, DDPG, and DQN.
The stability error of formation with different team sizes is selected for analysis, as shown
in Figure 9. We can see that the average stability error in the proposed scheme is lower
than that in other schemes. The results show that the followers can track their respective
immediate leaders and maintain the predefined distance and direction from their imme-
diate leaders. The proposed scheme can obtain the best performance for maintaining the
formation compared with other schemes.
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6. Conclusions

In this paper, we have proposed an asynchronous formation control scheme based
on reinforcement learning and leader–follower structure for multiple USVs in a complex
maritime environment. First, a specific USV model and a novel formation shape model have
been established, where the formation shape model provides the parameters for formation
generation and maintenance. Second, the formation control policies have been proposed for
the cooperative USVs to generate the predefined formation shape with minimum moving
path while the decentralized formation maintenance policies have been presented to
maintain the stability of the geometric formation structure by minimizing the stability error
between the real-time relative distances and the expected relative distances for all the USVs.
Finally, simulation results have demonstrated that the proposed scheme can generate the
required formation shape and maintain the geometry structure of the formation effectively
compare with other schemes. In future work, we will take the communication interruption
and the disturbance of wind, wave, and current into consideration.
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