

Article A Phantom Study to Investigate Robustness and Reproducibility of Grey Level Co-Occurrence Matrix (GLCM)-Based Radiomics Features for PET

Mahbubunnabi Tamal +

Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; mtamal@yahoo.com or mtamal@iau.edu.sa

+ Submission is extension of conference paper: Tamal, M. Grey Level Co-occurrence Matrix (GLCM) as a Radiomics Feature for Artificial Intelligence (AI) Assisted Positron Emission Tomography (PET) Images Analysis. *Materials Science and Engineering Conference Series*, 2019, 646, 12047, doi:10.1088/1757-899X/646/1/012047.

Citation: Tamal, M. A Phantom Study to Investigate Robustness and Reproducibility of Grey Level Co-Occurrence Matrix (GLCM) Based Radiomics Features for PET. *Appl. Sci.* 2021, *11*, 535. https://doi.org/10.3390/app11020535

Received: 09 December 2020 Accepted: 04 January 2021 Published: 7 January 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses /by/4.0/).

Supplemental Table

Study (group)	# of Pa- tients	Machine	Cancer Type	Smoothing	Dose and Tracer	Metrics	Quantisa- tion	Segmentation	Direction	Tumor Size (baseline)	Tumor Size (after treat- ment)	Prediction of Response
Hatt (2011). IN- SERM France [1]	25	Biograph PET/CT Sie- mens	Non-small cel lung cancer	Ordered sub- sets maximiza- tion algorithm l (4 iterations, 8 subsets). At- tenuation cor- rection using CT data.	45–60 min	Measuring using COV, lobec- tomy, CT im- ages, MATV		2 manual delinea- tions on CT, I50, adaptive (Nestle) and FLAB				Relationship between vol- umes and impact of size and uptake in heterogeneity
Tixier (2011). INSERM France [2]	41	PET/CT Gem- ini; Phillips	Esophogeal	3D row action maximum likelihood algorithm (2 iteration, re- laxation 0.05 & 3D gaussian post filtering of 5 mm in FWHM)	avg. 54 min	SUV, intensity his- togram, voxel alignment matrix, intensity—size zone matrix, co- occurrence, neigh- bourhood intensity- difference matrix. ROC curves	discrete val- ues. 64 is subsequent-	and then delineat-	n 13 differ- ent angu- lar direc- tion			Homogeneity and entropy significantly differentiate between non- responders with others (partial or complete re- sponders). No significant differences between
Tixier (2012). INSERM France [3]	16	PET/CT Gem- ini; Phillips relaxation parameter 0.05	Esophogeal		2 min acquisi- tion time, 60 min after injecting 6 MBq/kg	8 parameters for histogram, 17 for co- occur- rence/intensity-size zone	8,16,32,64,12 8	Primary was first identified by expe- rienced nuclear medicine physician and then delineat- ed automatically using fuzzy locally adaptive	13 differ- nent angu-	Larger than 10 cm ³	Reproducibil- ity study (En- tropy is the most repro- ducible). En- tropy, homo- geneity and dissimilarity	

Table S1. Relationships of textural features with tumor heterogeneity for different parameters and methods.

								Bayesian algorithm (FLAB)			are preferred features
Hatt (2013). IN- SERM France [4]	50	Philips Gemi- ni PET/CT	Locally ad- vanced oe- sophageal	laxation pa- rameter 0.05, 5 mm 3D Gaussian post filtering, 4 × 4 × 4 voxel grid sampling)	5 MBq/kg 60 min before scan	AUC-CSH -only those shown as robust for differ- ent reconstruction, acquisition &reproducibility -entropy, homoge- neity, dissimilarity, intensity variability, size-zone variabil- ity, zone percent- age, high intensity emphasis. (pre- ferred) Correlations as- sessed using Pear- son's correlation coefficient Bland-Altman as- sessed variability of image derived pa- rameter AUC-ROC		Delineated in 3 ways: 42% of SU- V _{max} threshold; adaptive threshold accounted for tu- mor/background difference; Fuzzy locally adaptive Bayesian (FLAB)			Heterogeneity parameter more depend- ent on delinea- tion than PVC. Entropy and homogeneity were robust to delineation and PVC
Tixier (2014). INSERM France [5]	102	Philips Gemi- ni PET/CT	Non-small cel lung cancer	CT-based at- tenuation cor- rection and a 3D row- action maxi- mum likeli- hood algo- rithm with a previously optimized protocol (2	1		A 64-gray- level quanti- zation was used.	FLAB was exploited in this work using 2 or 3 classes to ade- quately cover the entire MATV, including low-uptake re- gions.	Local features were comput- ed over 13 direc- tions	Primary tu- mors with a MATV larger than 3 cm ³	Change of size is not explicit- ly reported. Homogeneity, entropy and dissimilarity

			iterations; re-	range, 22 <mark>3–</mark>				
			laxation pa-	690)				
			rameter,					
			0.05; 5 mm in					
			full width at					
			half maximum					
			3D Gaussian					
			post filtering;					
			$4 \times 4 \times 4$ mm					
			voxels grid					
			sampling)					
Hatt (2015). IN-	555						FLAB	
SERM France [6]	555						TLAD	
			Ordered-	10 100				
			subset expec-					
			tation maxi-	(median,				
		Hybrid	mization (sub-	,				
		PET/CT scan-	set and itera-	the admin-				3 months after
Kidd (2008).		ner (Biograph Cervical car	tion are not	istration of	H (dV/dT) is heter-		40% threshold	treatment.
Washington [7]	72	LSO 2, Sie- cer	mentioned)	15–20 mCi	ogeneity			Change of size
, , dorini Gron [,]		mens Medical	post recon-	FDG, with				is not explicit-
		Solutions)		imaging times	3			ly reported
		Solutions)	Gaussian filter					
			(5 mm full	4 min/bed				
			width half	position				
			maximum)					
			Ordered-	42–120 min				
			subset expec-	(median,				
		Hybrid	tation maxi-	65 min) after				
		PET/CT scan-	mization (sub-	the admin-				
Brooks (2011).		ner (Biograph Cervical car	,	istration of	The standard devia-			Change of size
Washington [8]	73	LSO 2, Sie- cer	tion are not	15–20 mCi	tion, skewness	8 bit	40% threshold	is not explicit-
, asing ton [0]		mens Medical	mentioned)	FDG, with	and kurtosis			ly reported
		Solutions)	,	imaging times	2			
		controllay	struction	of 2–	,			
			Gaussian filter					
			Gaussian filter	4 mm/bed				

Brooks (2013). Washington [9]	Hybrid PET/CT scan- ner (Biograph Cervical car LSO 2, Sie- cer mens Medical Solutions)	(5 mm full) positionwidth halfmaximum)Ordered-subset expec-42–120 mintation maxi-(median,New heterogeneitymization (sub-65 min) aftermetric the spherici-set and itera-the admin-tion are notistration of 15entioned)to 20 mCiaccrued deviationpost recon-FDG, withfrom smootheststructionimaging times gradients (ζ) as im-Gaussian filterof 2 toage heterogeneity(5 mm full4 min/bedmaximum)	40% threshold	Compared against experi- enced expert
Brooks (2013). 8 Washington [10]	n = 58 Siemens Bio- graph 2 Cervical can n = 27 cinoma Siemens Bio- graph 40	maximum) $n = 58$ OSEM 8 sets 2iterations and5.3 mm postreconstructionGaussiansmoothing $n = 27$ OSEM 8 sets 4iterations and 4 mm post reconstructionGaussiansmoothing $n = 27$ OSEM 8 sets 4iterations and 4 mm post reconstructionGaussiansmoothing (9)most recentBiograph 40image setsunderwent anadditionalpoint-spread	40% threshold (The oncologist then made slight manu- al adjustments to the ROI to remove any obvious non- tumor pixels such as those compris- ing bladder or bowel regions)	Size was not explicitly men- tioned

Brooks (2015). Washington [11]	27 pa- tients as well as sim- ulation	Siemens Bio- graph 40	Cervical car- cinoma	function/time- of-flight cor- rection) OSEM 8 sets 4 iterations and 4 mm post reconstruction Gaussian smoothing (9 most recent Biograph 40 image sets underwent an	Dissimilarity, ho- mogeneity, energy and entropy	8-bits (i.e., 256 gray levels)	threshold to com- lar dire pare with the simu- tion	After 3 months
	tients as well as sim-			Gaussian smoothing (9 most recent Biograph 40 image sets	mogeneity, energy	256 gray	original data. Re- 26 diff peated with 50% ent ang threshold to com- lar dire	After 3 months
Orlhac (2014). France [12]	colo- rectal	MCC— Discovery LS System. NSCLC and 3C: Gemini TF PET/CT	MCC, NSCLC and BC	MCC—OSEM with 2 iter 28 subsets and Gaussian post filtering (FWHM = 5.45 mm). NSCLC and BC: BLOB-OS-TF with 2 iter and 33 subsets			Adaptive thresh- olding and 40% fixed threshold	VOI greater than 5 mL used for texture analysis (77 voxels for MCC and 78 voxels for NSCLC and BC). MCC > 5.0030 cm ³ . NSCLC and BC > 4.9920 cm ³

	cer)]								
Cheng (2013). Taiwan [13]	70	Healthcare). 9 × Biograph	Orapharynge- al squamous cell carcinoma (Head & neck)	tation maxi-	-imaged 50 min after injection -370 to 555 MBq	SUV histogram analysis, GLCM, NGTDM, -Spearman correla- tion coeff.,	4, 16, 32, 64	PMOD 3.3 software package	
Galavis (2010). Wisconsin [14]	20	PET/CT	Adrenal gland carcinoma,	Ordered sub- set expectation maximization algorithm (4 iterations, 14	10 mCi	8 first order, 23 co- occurrence, 11 grey level run length matrix, 5 neigh- bouring grey level, 3 neighbourhood grey tone difference matrix			
Willaime (2013). Hammersmith. London [15]	15	ECAT 962/HR+ scanner (CTI/Siemens)	Breast cancer	OSEM itera- tive recon- struction method (360 iterations, 6 subsets). Fil- tered back projection to validate re- sults	153–381 MBq for 95 min	-SUV, Coefficient of variation, Skew- ness, Entropy, area under a cumulative histogram curve, GLCM, GLSZM, NGTDM, Homoge- neity, Complexity. -Normality of rela- tive distances as- sessed using Shapiro-Wilk. -Limits of repeata- bility were calculat- ed.		Regions of interest were drawn manu- ally	

11 (for test retestECAT Exact -normalization and attenua- tion weightedLeijenaar (2013). cohort). Test-retest.MATOM Sen- sation 16ordered subset expectationNetherland [16]ter- ter- ECAT ACCEL for other co- hortECAT ACCEL subsets)maximization (2 iteration, 16	Gray level co- occurrence (GLCM), Equally 50% for test retest 26 differ- gray level run- gray level run- spaced bins cohort. Manual ent angu- of 0.5 units delineation for lar direc- of SUV other cohort tion ces (GLSZM)	Test-retest and inter ob- server
--	---	--

Lopez (2015). Spain [17]	38	Discovery STI 16 PET CT	^E NSCLC	OSEM with manufacturer recommended parameters	FDG (370 MBq)	Energy, entropy, contrast, correlation and homogeneity are calculated using GLCM	SUV greater than 2.5	13 differ- ent angu- lar direc- tion	kelationship between het- erogeneity, metabolic parameters and patholog- ic staging
El Naqa (2009) [18]	14/9	PET/CT Sie- mens bio- graph	Cervix/head & neck	Ordered sub- set' expecta- tion maximi- zation algo- rithm		SUV, Intensity- volume histogram, co-occurrence, shape based, spearman's rank. ROC curve			

8 of 9

References

- 1. Hatt, M.; Rest, C.C.-L.; Van Baardwijk, A.; Lambin, P.; Pradier, O.; Visvikis, D. Impact of Tumor Size and Tracer Uptake Heterogeneity in 18F-FDG PET and CT Non-Small Cell Lung Cancer Tumor Delineation. *J. Nucl. Med.* **2011**, *52*, 1690–1697, doi:10.2967/jnumed.111.092767.
- Tixier, F.; Le Rest, C.C.; Hatt, M.; Albarghach, N.M.; Pradier, O.; Metges, J.-P.; Corcos, L.; Visvikis, D. Intratumor Heterogeneity Characterized by Textural Features on Baseline 18F-FDG PET Images Predicts Response to Concomitant Radiochemotherapy in Esophageal Cancer. J. Nucl. Med. 2011, 52, 369–378, doi:10.2967/jnumed.110.082404.
- 3. Tixier, F.; Hatt, M.; Le Rest, C.C.; Le Pogam, A.; Corcos, L.; Visvikis, D. Reproducibility of Tumor Uptake Heterogeneity Characterization Through Textural Feature Analysis in 18F-FDG PET. *J. Nucl. Med.* **2012**, *53*, 693–700, doi:10.2967/jnumed.111.099127.
- 4. Hatt, M.; Tixier, F.; Le Rest, C.C.; Pradier, O.; Visvikis, D. Robustness of intratumour 18F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. *Eur. J. Nucl. Med. Mol. Imaging* **2013**, *40*, 1662–1671, doi:10.1007/s00259-013-2486-8.
- Tixier, F.; Hatt, M.; Valla, C.; Fleury, V.; Lamour, C.; Ezzouhri, S.; Ingrand, P.; Perdrisot, R.; Visvikis, D.; Le Rest, C.C. Visual Versus Quantitative Assessment of Intratumor 18F-FDG PET Uptake Heterogeneity: Prognostic Value in Non-Small Cell Lung Cancer. J. Nucl. Med. 2014, 55, 1235–1241, doi:10.2967/jnumed.113.133389.
- Hatt, M.; Majdoub, M.; Vallières, M.; Tixier, F.; Le Rest, C.C.; Groheux, D.; Hindié, E.; Martineau, A.; Pradier, O.; Hustinx, R.; et al. 18F-FDG PET Uptake Characterization Through Texture Analysis: Investigating the Complementary Nature of Heterogeneity and Functional Tumor Volume in a Multi-Cancer Site Patient Cohort. J. Nucl. Med. 2015, 56, 38–44, doi:10.2967/jnumed.114.144055.
- 7. Kidd, E.A.; Grigsby, P.W. Intratumoral Metabolic Heterogeneity of Cervical Cancer. *Clin. Cancer Res.* 2008, 14, 5236–5241, doi:10.1158/1078-0432.ccr-07-5252.
- 8. Brooks, F.J.; Grigsby, P.W. Current measures of metabolic heterogeneity within cervical cancer do not predict disease outcome. *Radiat. Oncol.* **2011**, *6*, 69–8, doi:10.1186/1748-717X-6-69.
- 9. Brooks, F.J.; Grigsby, P.W. Quantification of heterogeneity observed in medical images. *BMC Med Imaging* 2013, *13*, *7*, doi:10.1186/1471-2342-13-7.
- 10. Brooks, F.J.; Grigsby, P.W. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement. *Radiat. Oncol.* **2013**, *8*, 294, doi:10.1186/1748-717x-8-294.
- 11. Brooks, F.J.; Grigsby, P.W. Low-Order Non-Spatial Effects Dominate Second-Order Spatial Effects in the Texture Quantifier Analysis of 18F-FDG-PET Images. *PLOS ONE* **2015**, *10*, e0116574, doi:10.1371/journal.pone.0116574.
- 12. Orlhac, F.; Soussan, M.M.; Maisonobe, J.-A.J.-A.; A Garcia, C.; Vanderlinden, B.; Buvat, I. Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis. *J. Nucl. Med.* **2014**, *55*, 414–422, doi:10.2967/jnumed.113.129858.
- 13. Cheng, N.-M.; Fang, Y.-H.D.; Chang, J.T.-C.; Huang, C.-G.; Tsan, D.-L.; Ng, S.H.; Wang, H.-M.; Lin, C.-Y.; Liao, C.-T.; Yen, T.-C. Textural Features of Pretreatment 18F-FDG PET/CT Images: Prognostic Significance in Patients with Advanced T-Stage Oropharyngeal Squamous Cell Carcinoma. *J. Nucl. Med.* **2013**, *54*, 1703–1709, doi:10.2967/jnumed.112.119289.
- 14. Galavis, P.E.; Hollensen, C.; Jallow, N.; Paliwal, B.; Jeraj, R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. *Acta Oncol.* **2010**, *49*, 1012–1016, doi:10.3109/0284186x.2010.498437.
- Willaime, J.M.Y.; E Turkheimer, F.; Kenny, L.M.; O Aboagye, E. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography. *Phys. Med. Biol.* 2012, *58*, 187–203, doi:10.1088/0031-9155/58/2/187.
- Leijenaar, R.T.H.; Carvalho, S.; Zquez, E.R.V.; Van Elmpt, W.J.C.; Parmar, C.; Hoekstra, O.S.; Hoekstra, C.J.; Boellaard, R.; Dekker, A.L.A.J.; Gillies, R.J.; et al. Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and interobserver variability. *Acta Oncol.* 2013, *52*, 1391–1397, doi:10.3109/0284186x.2013.812798.
- López, O.V.G.; Vicente, A.M.G.; Martínez, A.F.H.; Castrejón, Ángel M.S.; Londoño, G.A.J.; Udias, J.M.; Atance, P.L. Heterogeneity in [18F] Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography of Non–Small Cell Lung Carcinoma and Its Relationship to Metabolic Parameters and Pathologic Staging. *Mol. Imaging* 2014, 13, doi:10.2310/7290.2014.00032.
- 18. El Naqa, I.; Grigsby, P.; Apte, A.; Kidd, E.; Donnelly, E.; Khullar, D.; Chaudhari, S.; Yang, D.; Schmitt, M.; Laforest, R.; et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. *Pattern Recognit.* 2009, 42, 1162–1171, doi:10.1016/j.patcog.2008.08.011.