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Abstract: This study focuses on the detectable metabolome of high-quality raw hazelnuts (Cory-
lus avellana L.) and on its changes after dry-roasting. Informative fingerprinting was obtained by
comprehensive two-dimensional gas chromatography with fast-scanning quadrupole mass spectrom-
etry (GC×GC-qMS) combined with dedicated data processing. In particular, combined untargeted
and targeted (UT) fingerprinting, based on pattern recognition by template matching, is applied to
chromatograms from raw and roasted samples of Tonda Gentile Trilobata and Anakliuri hazelnuts
harvested in Italy and Georgia. Lab-scale roasting was designed to develop a desirable organoleptic
profile matching industrial standards. Results, based on 430 peak features, reveal that phenotype
expression is markedly correlated to cultivar and pedoclimatic conditions. Discriminant components
between cultivars are amino acids (valine, alanine, glycine, and proline); organic acids (citric, aspartic,
malic, gluconic, threonic, and 4-aminobutanoic acids); and sugars and polyols (maltose, xylulose,
xylitol, turanose, mannitol, scyllo-inositol, and pinitol). Of these, alanine, glycine, and proline have
a high informational role as precursors of 2-acetyl- and 2-propionylpyrroline, two key-aroma com-
pounds of roasted hazelnuts. Roasting has a decisive impact on metabolite patterns—it caused a
marked decrease (−90%) of alanine, proline, leucine and valine, and aspartic and pyroglutamic acid
and a −50% reduction of saccharose and galactose.

Keywords: high-quality hazelnuts; hazelnut roasting; primary metabolites; comprehensive-two
dimensional gas chromatography; food metabolomics; combined untargeted and targeted finger-
printing; template matching

1. Introduction

Roasting is a key technological step for hazelnut industrial transformation that yields
distinctive flavors, color, and crunchy texture. It triggers a complex array of many different
chemical reactions, mainly involving major constituents—carbohydrates, proteins, free
amino acids, and fats [1–6]. Carbohydrates are subjected to dehydration, caramelization,
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and hydrolysis; amino acids and thermo-labile vitamins are degraded; and proteins can
decompose or polymerize by cross-linkage between reactive functionalities. Moreover,
the high temperatures adopted during roasting impact the integrity of oleosomes (reserve
bodies of lipids in raw hazelnuts) and reduce oxidative stability [7]. Lipid oxidation
contributes to the formation of reactive carbonyl compounds (in particular, glyoxal and
methylglyoxal).

Furthermore, reducing sugars and polyols can react with amino acids and free amino
groups forming Amadori and/or Heyns products within the first stages of the Maillard
reaction [8]. The evolution of Maillard reaction forms more stable, moderately to highly
polar, and volatile compounds, such as carbonyl derivatives (ketones and aldehydes),
alcohols, acids, esters, lactones, and sulfur derivatives, together with many heterocycles
(furans, pyrazines, pyrroles, thiophenes, pyridines, thiazoles, and oxazoles), aromatic
compounds and phenols responsible for major aroma notes of roasted hazelnuts. At the
same time, high-molecular-weight products characterized by a brown color (melanoidins)
are formed, contributing to the final color of the product.

Texture changes during roasting are due to microstructure modification. Indeed,
the roasting leads to thermal degradation of the middle lamella, one element of the cell wall
composed of pectic compounds responsible for connecting cells. Consequently, cellular
and intercellular spaces become larger, causing an increase in crispness and crunchiness.

Few studies have been devoted to a comprehensive understanding of the impact
of dry-roasting on the detectable metabolome of raw hazelnuts. The existing literature
covers specific fractions of interest while applying dedicated/targeted methodologies to
profile primary metabolites (amino acids, sugars, organic acids, fatty acids, amines, etc.) or
specialized metabolites (formerly defined as “plants secondary metabolites”) with known
bio-activity (e.g., antioxidants), nutritional role, or organoleptic profile (e.g., tastants and
astringent compounds). Of these, Ozdemir et al. [9] evaluated changes in total amino acids,
thiamine, and riboflavin contents; peroxide value; and free fatty acids profiles in roasted
Giresun and Akçakoca hazelnuts. The authors demonstrated a meaningful decrease on
all tested parameters with a marked reduction of riboflavin level (−30%) in hazelnuts
from the Akçakoca region of Turkey and of thiamine level (−50%). Within the group
of nutritionally relevant amino acids, lysine (Lys) diminished <−6% in roasted Giresun
hazelnuts but −31% in Akçakoca hazelnuts. Alasalvar et al. [10] screened eighteen native
hazelnut varieties from the Giresun province of Turkey for their sugars, organic acids,
condensed tannins, and free phenolic acids profile. Fructose, glucose, sucrose, myo-inositol,
raffinose, and stachyose ranged from 1.99 g/100 g to 4.94 g/100 g among the considered
samples. Organic acids (oxalic, maleic, citric, malic, lactic, succinic, and acetic) ranged
between 0.96 g/100 g to 2.72 g/100 g, while gallic acid was between 0.159 mg/100 g and
0.871 mg/100 g. The authors observed that roasting brought significant losses (p < 0.05) of
both condensed tannins (−97%) and gallic acid (−67%), whereas its effect on sugars and
organic acids was not noteworthy.

In a study aimed at evaluating the impact of different roasting conditions on phenolic
compounds, Schmitzer et al. [11] revealed a marked decrease of all individual phenolics,
with the exception of gallic acid while confirming the presence of flavan-3-ols (catechin,
epicatechin, 2 procyanidin dimers, and 3 procyanidin trimers), flavonols (quercetin pen-
toside, quercetin-3-O-rhamnoside, and myricetin-3-O-rhamnoside), hydrobenzoic acids
(gallic acid, protocatechuic acid), and phloretin-2′-O-glucoside (dihydrochalcone class).
Nevertheless, the authors evidenced that roasting did not impact the total phenolic content
(TPC) and antioxidative potential of kernels. These results are in accordance with those
obtained by Belviso et al. [12], who monitored the TPC and antioxidant activity along
shelf-life. The effects of roasting on proanthocyanidins were studied by Lainas et al. [13],
who compared the content of extractable and bound proanthocyanidins of raw and roasted
Turkish Tombul hazelnuts. In raw hazelnuts, extractable proanthocyanidins fraction was
81% of the total phenolic fraction with the presence of oligomers (4–9 mers) and polymers
(≥10 mers), whereas in roasted hazelnuts, extractable moieties were only monomers to
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trimers. This variation, likely related to skin loss during roasting, was accompanied by
a higher recovery of dimers, trimers, and tetramers after alkaline hydrolysis of roasted
hazelnut skins.

Amaral et al. [14] focused on the lipid fraction and revealed just minor changes in
fatty acid and triacylglycerol compositions. After intense roasting conditions (165–200 ◦C
for 15 min on average), the authors observed a slight increase of oleic acid, saturated fatty
acids, and triacylglycerols containing oleic acid moieties; and a decrease of linoleic acid,
phytosterols (maximum 14.4%), and vitamin E homologues (maximum 10.0%). Negligible
amounts of trans fatty acids also were detected.

Of the studies focused on the effect of roasting in the development of characteristic
brown color, Fallico et al. [15] evaluated the role of fat fraction, hexanal, and saccharose
in color development and hydroxymethylfurfural (HMF) formation. HMF levels were
highest in hazelnuts with the deepest browning; the lowest HMF and brown color were
correlated to lower fat content (or defatted) samples. Arlorio et al. correlated color and
D- amino acids distribution, proposing a complex mathematical model (Back Propagation
Neural Network on the Discrete Fourier Transform output of the whole surface color) to
predict the occurrence of toxic compounds.

The present study was designed to cover gaps for a more comprehensive under-
standing of the impact of roasting on the detectable metabolome of hazelnuts and on
different hazelnut cultivars and harvest regions. The approach takes inspiration from
food metabolomics [16–19] principles and exploits the information potential of multi-
dimensional analytical (MDA) platforms that combine techniques for physicochemical
discrimination/separation (e.g., gas chromatography GC) of analytes with spectroscopic
detection (e.g., mass spectrometry MS).

MDA technologies enable comprehensive untargeted investigations and provide
a larger number of features (i.e., aggregated information for pattern recognition) that,
by suitable chemometrics, give access to higher-level information [20]. Characteristic
and/or discriminant patterns of chemicals might inform on: (a) food sensory quality
and spoilage [4,21–23]; (b) the impacts of environmental conditions on plant pheno-
type [24–28] and metabolome expression [29,30]; (c) the qualities and diagnostic roles
of fat fractions [31,32]; and (d) the impact of harvesting and storage practices [19,33,34].

To be truly useful, an “untargeted” approach should detect and monitor as many
features as possible by annotation and tracking across multiple samples [35,36]. It is
conceptually in contrast to purely “targeted” strategies, that, a priori, define a limited
number of known analytes and therefore provide limited information with regard to the
total composition of a sample.

Based on preliminary results obtained by exploring the distribution of the detectable
metabolome in hazelnuts of different cultivars/origins [37], this study makes a step forward
in examining the impact of roasting, as an additional yet fundamental variable/process
on the chemical signature of primary metabolites in hazelnut kernels. Quali-quantitative
variations on known and unknown features/analytes are tracked using chromatographic
fingerprinting based on peak features and template matching algorithms.

In particular, the approach known as combined untargeted and targeted (UT) finger-
printing [23,37–39] was applied to raw hazelnuts from the Tonda Gentile Trilobata cultivar
(Protected Geographical Indication PGI) harvested in Piedmont (Italy) or Georgia, and
from the Anakliuri cultivar, native to Georgia. Raw hazelnuts were submitted to lab-scale
dry-roasting in a ventilated oven under time/temperature conditions tuned to develop the
desired flavor and crunchy texture. A more intense roasting was also applied to exacerbate
thermal stress and capture metabolites variations under even more drastic conditions.

2. Materials and Methods
2.1. Reagents and Chemicals

Methanol and ethanol (GC grade) were purchased from Merck (Darmstadt, Germany).
Heptane (>99.0%) and pyridine (>99.5%) were from Carl Roth (Karlsruhe, Germany).



Appl. Sci. 2021, 11, 525 4 of 18

N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane
(TMCS) was supplied by Macherey-Nagel (Düren, Germany). O-Methoxylamine hydrochlo-
ride was purchased from Chemos (Regenstauf, Germany). Internal standards, as well as
standards used for identity confirmation of amino acids and sugars, were commercially
acquired from Sigma-Aldrich (Steinheim, Germany), Carl Roth (Karlsruhe, Germany),
ABCR (Karlsruhe, Germany), Merck (Darmstadt, Germany), TCI (Zwijndrecht, Belgium),
Alfa-Aesar (Ward Hill, MA, USA), and ChromaDex (Irvine, CA, USA). All standards had a
minimum purity of 95%.

2.2. Hazelnut Samples and Roasting Conditions

Commercial grade samples of raw hazelnuts (Corylus avellana L.), with a uniform
caliber of 13–14 mm and harvested in 2017, were supplied by Soremartec Italia Srl (Alba,
Cuneo, Italy). They were from different geographical areas: (a) cultivar Nocciola Gen-
tile Trilobata (T), harvested in Piedmont (Italy—IT) and Georgia—GE, and (b) cultivar
Anakliuri (AN), native to and harvested in Georgia along the Black Sea West coasts.

Two post-harvest drying regimes were used: (a) conventional in-shell drying, after
de-husking, for the Anakliuri cultivar, in-field at 35–38 ◦C (E1) or (b) industrial processing
by artificial dryers operating at 18–20 ◦C (E2). Drying achieved a final kernel humidity of
6%, a condition that keeps the product stable throughout its shelf-life. Before shipping to
the laboratory, kernels were stored in (a) controlled conditions keeping the equilibrium
relative humidity (ERH) at 65% (Controlled—C) or (b) without any stabilization of relative
humidity (Uncontrolled—U). Post-harvest treatments were conducted by the R&D Raw
Materials Department of Soremartec Italia Srl (Alba, Cuneo, Italy).

Raw hazelnuts were manually cut in half to check their quality, then put in liquid
nitrogen in order to perform ball milling (model MM 400, Retsch, Haan, Germany) at
18 Hz for 10 s. After that, milled hazelnuts were stored in 40 mL glass vials at −18 ◦C until
analysis.

Lab-scale roasting was carried out on a traditional ventilated oven by two different
time-temperature protocols:

• 180 ◦C for 10 min, to obtain optimally-roasted hazelnuts, in terms of flavor and
color (roasted—R). These conditions were optimized to obtain full and balanced
development of major key-odorants [6] and roasting markers [2,3].

• 200 ◦C for 10 min for a higher level of roasting (over-roasted—OR).

After roasting, hazelnuts were left to reach ambient temperature and ball-milled at
14 Hz for 5 s.

Quality control samples (QC) for response normalization were prepared by mixing
1.00 g of each sample and then carefully mixed to obtain a homogeneous powder.

Table 1 summarizes the samples’ characteristics and notations used in the text.

Table 1. The samples’ characteristics and notations used in the text.

Harvest Cultivar Geographical Area Drying Condition Storage Roasting Grade

2017
Tonda Gentile
Trilobata—T

Piedmont, Italy—IT
Conventional—E1
Mild Temp.—E2

Uncontrolled—U
Controlled—C

raw—Raw
mild roasting—R

over-roasting—OR
Georgia—GE

Anakliuri—AN Georgia—GE

2.3. Primary Metabolites Extraction and Derivatization
2.3.1. Primary Metabolites Micro-Scale Extraction

An aliquot of 0.020 g of hazelnuts was placed in a 2 mL glass vial and extracted by
750 µL of CH3OH with the addition of 20 µL of an internal standards mixture contain-
ing hexylamine (5 mM), 1-O-methyl-2-desoxy-D-ribose (5 mM), 2-chlorophenylacetic acid
(3 mM), p-chloro-L-phenylalanine (2.5 mM), D–pinitol (5 mM), 3-O-methyl-D–glucopyranose
(1 mM), 5-bromo-2,4-dihydroxybenzoic acid (1 mM), and phenyl-β-D-glucopyranoside
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(1 mM) in ethanol/water (1:1 v/v). Then, the sample was incubated for 10 min at 25 ◦C,
shaken (1400 rpm), and centrifugated for 5 min at 4 ◦C at 16,100× g. After that, 700 µL of the
supernatant were transferred into new 2 mL reaction tubes with the addition of 700 µL of
n-hexane and 50 µL of water, for effective phase separation and fat removal. All described
steps, after methanol extraction, were repeated twice. Finally, 40 µL of the collected extracts
were dried in a rotary vacuum concentrator under a validated protocol [33]:

• 1 h at 40 ◦C and p < 1 mbar;
• addition of 15 µL of methanol for re-dissolving samples;
• 30 min at 40 ◦C and p < 1 mbar.

2.3.2. Derivatization

Methoximation was performed by adding 20 µL of methoxylamine-hydrochloride in
pyridine (20 mg/mL) to the dried extracts and then incubated for 1 h at 40 ◦C and 1400 rpm
in a shaker. Silylation occurred by adding 70 µL of MSTFA with 1% TMCS followed by
incubation for 1 h at 65 ◦C in static conditions.

For identity confirmation of primary metabolites, 1.00 mL of primary metabolites
standards mixture (listed in Section 2.1) was submitted to the derivatization procedure and
analyzed under conditions described in Sections 2.4 and 2.5.

2.4. Comprehensive Two-Dimensional Gas Chromatography-Quadrupole Mass Spectrometry
Instrument Set-Up and Experimental Conditions

Primary metabolome analyses were carried out on a GC×GC-qMS system, consisting
of a GC coupled with a fast-scanning quadrupole Mass Spectrometer (QP2010 Ultra,
Shimadzu Corp, Kyoto, Japan) and an AOC-20i/s autosampler (Shimadzu Corp, Kyoto,
Japan). Cold split injection (split 1:3) used an OPTIC4 system (GL Sciences, Eindhoven,
The Netherlands).

The modulation system was a loop-type cryogenic modulator, ZX2 (Zoex Corporation,
Houston, TX, USA), cooled by a closed-cycle refrigerator/heat exchanger.

The MS acquisition (Scan mode, EI 70 eV) parameters were set as follows: mass range
60–550 m/z, data rate 33.3 Hz, and solvent delay 12.1 min. The detector voltage was
time-programmed to ensure a sufficient signal intensity of low-abundance metabolites
and, at the same time, avoid spectral distortion of major metabolites; for example, C18
fatty acids and sucrose. For this purpose, the following schedule was used: 0 min: 1.35 kV;
24.7 min: 1.15 kV; 25.19 min: 1.35 kV; 63.67 min: 1.15 kV; 65.30 min: 1.30 kV; 75.20 min:
1.15 kV; 75.77 min: 1.30 kV; 82.52–90.0 min: 1.15 kV. The ion source was set at 200 ◦C and
the transfer line at 280 ◦C.

2.5. GC×GC Columns and Settings for Primary Metabolites Profiling

The column set was configured as follows: first dimension (1D) Rxi-5SilMS (95% poly-
dimethylsiloxane, 5% phenyl), 60 m × 0.25 mm dc, 0.25 µm df (Restek Corporation, Belle-
fonte, PA, USA); and second dimension (2D) BPX50 column (50% phenyl methylpolysilox-
ane), 2.2 m × 0.15 mm × 0.15 µm (Trajan Scientific and Medical, Ringwood Victoria,
Australia). The length of the effective 2D (after the loop) was 1.0 m. Columns were
connected by a SilTite™ MiniUnion (Trajan Scientific and Medical, Ringwood Victoria,
Australia).

The carrier gas was helium at a constant linear velocity with an initial column
head pressure of 214.0 kPa. The oven temperature program was from 75 ◦C to 160 ◦C
@2.5 ◦C/min, then @3.0 ◦C/min to 290 ◦C, @10 ◦C/min to 330 ◦C (hold 8.67 min). The injec-
tion volume was 1 µL. Injector temperature was ramped from 90 ◦C to 280 ◦C immediately
after injection at 60 ◦C/min.

Modulation parameters were as follows: modulation period (PM) 2.7 s, cold-jet tem-
perature −90 ◦C with a hot-jet pulse duration of 200 ms. The hot-jet temperature was
programmed in a step-wise fashion: 0–20 min: 200 ◦C; 20–50 min: 250 ◦C; 50–65 min:
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300 ◦C; 65–70 min: 350 ◦C; 70–89 min: 380 ◦C; at 89 min: cooldown to initial temperature
(200 ◦C).

Each sample was injected once, without replicates. Extraction and derivatization effi-
ciency were verified by monitoring internal standards’ (Section 2.3.1) responses. The mea-
surement was organized in four day-wise batches. Injection repeatability and instrumental
response stability were checked by QC analyses [18]. Six QC samples were freshly pre-
pared/derivatized and injected at the beginning and the end of the daily batch (two con-
secutive QCs) as well as after each block of three study samples (single QCs). Within these
blocks, study samples were measured in randomized order. At the beginning of each
day, after the first QC twin injection, a reagent blank spiked with retention index markers
(C7–C30 saturated Fatty Acids Methyl Esters—FAMES) to determine background levels of
known reagent artifacts and contaminants and to define retention indices was injected [18].

2.6. Chromatographic Fingerprinting by Peak Features Alignment across Chromatograms

To comprehensively map the detectable metabolites signatures of hazelnut, data pro-
cessing was based on a workflow developed to track untargeted and targeted components
across multiple chromatograms. The process is termed UT fingerprinting [38] and was vali-
dated for complex fractions of volatiles [29,39–41] in biological fluids metabolomics [42–44]
and food metabolomics [30,37]. It performs untargeted and targeted pattern recognition of
individual 2D peaks by template matching algorithms [45].

The UT fingerprinting work-flow included four major steps:

• Step-1: Individual chromatograms were imported by the data processing software
(GC Image, GC Image LLC, Lincoln, NE, USA), rasterized according to the PM, and
pre-processed for baseline subtraction and peak detection. The detection threshold
was set at 150 S/N, as previously validated [23].

• Step-2: The untargeted feature template was created by a dedicated program of the
GC Image suite (i.e., Image Investigator™) by cross-matching peak templates from
all analyzed chromatograms (24 QCs + 36 samples). After re-alignment of 2D-peak
patterns, peaks that consistently matched across all-but-one chromatograms were
annotated as reliable peaks and included in the feature template. For peak matching a
spectral similarity direct and reverse match factors (DMF and RMF) constraint was
applied with the NIST (National Institute of Standards and Technology) similarity
algorithm [46] using threshold values ≥ 750 [23].

• Step 3: After feature template generation, the template was pruned by removing sol-
vent peaks, column(s) bleed, and interferents, before proceeding with peaks targeting.
Compounds targeting was a supervised process that made putative identifications
from an MS library based on spectral similarity [46] using threshold values DMF ≥ 900,
RMF ≥ 930, and 1D retention-index (IT) coherence (IT ± 15 units).

At this point, the feature template combined untargeted and targeted features—i.e.,
a UT template. Untargeted peaks correspond to reliable peaks defined at Step-2 but that
remained unidentified applying the criteria of Step-3. Targeted peaks are those reliable
peaks putatively identified at Step-3.

• Step 4: The UT feature template was then matched to each sample chromatogram
thereby recognizing re-aligned peak features, which were exported for further data
elaboration. The output was a data matrix of UT peaks together with 1D and 2D
retention times (1tR, 2tR), compound names for target analytes, fragmentation spectra,
selected ions responses, total ions response, etc.

2.7. Method Performance Parameters

Method performance parameters were evaluated on replicated injections of QC sam-
ples. Intermediate precision on retention times and targeted peaks’ % response were
estimated by calculating % relative standard deviation (% RSD). Results are reported in the
Supplementary Table S1. Analytes’ % response was calculated on the total ion current (TIC)
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signal by the processing software on the basis of peak volumes normalized to the total
response from all UT peaks excluding interfering compounds and column bleeding [47].

Retention times in both chromatographic dimensions (1tR and 2tR) were collected
from targeted peaks on 24 QC analytical runs across all working days. Results are listed
in Supplementary Table S1. A quite good retention time stability was achieved with an
average % RSD of 0.05 for 1tR and 1.56 for 2tR. Response repeatability was 20.6% on average,
with a median of 18.4%.

2.8. Data Acquisition, 2D Data Processing, and Statistical Analysis

GC×GC data were acquired by GCMS Solution version 4.11 (Shimadzu Deutschland
GmbH, Duisburg, Germany) and processed by GC Image GC×GC Edition, ver 2.9 (GC
Image, LLC, Lincoln, NE, USA). Data elaboration and results visualization were conducted
by using XL-Stat (Addinsoft Inc., New York, NY, USA) and Gene-E (Broadinstitute.org).

3. Results and Discussion
3.1. Mapping Hazelnut Metabolome by Chromatographic Fingerprinting

The term “fingerprinting” has been described for metabolomics [48,49] and refers
to analytical processes capable of unraveling compositional differences between samples.
Although spectroscopic techniques, e.g., mass spectrometry (MS), nuclear magnetic res-
onance (NMR), and Fourier transform infrared spectroscopy (FTIR), have been used for
years in metabolomic fingerprinting, modern MDA platforms offer further possibilities to
exploit the concept of fingerprinting [20].

In fact, 2D peak patterns generated by comprehensive two-dimensional gas chro-
matography (GC×GC) can be considered as a sample’s distinctive fingerprint, and the
detected compounds as minutiae features to be annotated and tracked across multiple
samples. The term “minutiae” derives from biometric fingerprinting used in forensic
science [50], therein indicating ridge endings and bifurcations on fingertips whose relative
position is unique in each individual. Just as for automatic biometric fingerprinting, the
localization and extraction of analytical (meta)data from 2D peak pattern features of single
chromatograms enable effective cross-comparisons with an intrinsic potential of deepening
the knowledge on chemical composition and components distribution. The adoption of
MS detection adds orthogonal information about analytes’ identities, through distinctive
spectral signatures, and amounts (relative or absolute).

In this study, chromatographic fingerprinting was applied by comprehensively extract-
ing peak features information (i.e., summed data for each component peak with associated
metadata) including for untargeted and targeted components. To enable effective cross-
comparative analysis, peak features pattern matching across multiple chromatograms was
guided by mass spectral similarity with DMF ≥ 800 [23,51] and a second-order-polynomial
retention-times transformation [52,53]. For targeted components, the approach explicitly
matches corresponding peak-features across chromatograms by the target name. For un-
targeted components, the software matches unidentified peaks across chromatograms by
peak tracking and assigns unique identifiers (#n) based on reliable re-alignment of the data.

Figure 1A shows the pseudocolor image corresponding to a QC sample with targeted
peak features highlighted by green circles. Of the 1000, on average, detectable 2D peaks
above a response threshold of 50 signal-to-noise ratio (SNR), 80 components were identified
by an electron ionization (EI) fragmentation pattern DMF above 900 and IT within a
tolerance of ±15. Where possible, putative identifications were confirmed by authentic
standards available in authors’ laboratories.

Figure 1B highlights both the untargeted (red circles) and targeted (green circles)
peak features. Untargeted peak features were consistently extracted after template-based
alignment and cross-matching. The process is detailed in the Materials and Methods
Section 2.6 and supported by pertinent literature for those interested in its application.
Untargeted components (red circles) accounted for 334 2D peaks.
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Table 2 lists targeted (T) components together with their average retention times (1tR
min, 2tR sec), experimentally determined 1D IT values, and tabulated retention indices
(NIST database [54]). Supplementary Figure S1 illustrates the UT peaks % response dis-
tribution across all samples by heat-map and Hierarchical Clustering based on Pearson
correlation. Data was log-normalized before computation.

The primary metabolome coverage was extensive and very informative, especially in
that it was possible to target 80 compounds, and in particular, 15 amino acids/derivates,
16 sugars including mono- and di-saccharides, four sugar acids, seven polyols, and 24 or-
ganic acids involved in cell metabolism.
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Table 2. List of 80 targeted analytes with 1D and 2D retention times (1tR, 2tR) and IT (experimental and reference NIST values).

Chemical Class Compound Name 1tR (min) 2tR (sec) Experimental IT Refeference IT

Amino acids

Alanine 2TMS a,b 17.9 0.6 1098 1110
Leucine TMS a,b 20.6 0.8 1151 1155

Isoleucine TMS a,b 21.6 1.1 1173 1178
Valine 2TMS a,b 23.5 0.7 1210 1208
Threonine 2TMS 27.4 0.7 1286 1292
Proline 2TMS a,b 27.6 0.8 1289 1282
Glycine 3TMS a,b 28.3 0.7 1302 1310
Threonine 3TMS 32.3 0.8 1380 1367

Aspartic acid 2TMS b 34.2 1.1 1419 1413
5-Oxoproline 2TMS 38.9 1.3 1516 1520

Aspartic acid 3TMS b 39.4 0.8 1527 1522
Pyroglutamic acid 2TMS a 39.4 1.1 1527 1521

Phenylalanine TMS a,b 40.7 0.8 1555 1559
Ornithine 3TMS a 42.6 1.1 1607 1610

Glutamic acid 3TMS a 43.2 1.0 1612 1626

Organic acids

Lactic Acid 2TMS a,c 15.9 0.6 1051 1057
Glycolic acid 2TMS a 16.6 0.7 1068 1072
Oxalic acid 2TMS a,c 19.2 0.9 1123 1125
Malonic acid 2TMS 22.9 0.9 1197 1205
Benzoic Acid TMS a 25.3 1.2 1244 1248
Succinic acid 2TMS a 28.6 1.0 1308 1313
Fumaric acid 2TMS a 30.5 0.9 1345 1348
Decanoic acid TMS a 36.0 0.9 1455 1450
Malic acid 3TMS a,c 37.4 0.9 1483 1480

Hexanedioic acid 2TMS 38.2 1.0 1500 1498
Dodecanoic acid TMS 44.5 0.8 1648 1650

Azelaic acid 2TMS 50.3 1.1 1789 1793
Citric acid 4TMS a,c 51.1 0.9 1811 1816
Myristic acid TMS 52.2 1.0 1844 1840

3-Deoxyhexonic acid 4TMS 52.6 0.8 1854 1855
Pentadecanoic acid TMS 55.7 1.0 1943 1943

Gluconic acid 6TMS a 57.4 0.8 1995 1997
Palmitic acid TMS 58.9 1.1 2041 2041

3-Deoxyarabino-hexaric acid 5TMS 60.8 0.9 2100 2092
(Z,Z)-9,12-Octadecadienoic acid TMS 64.0 1.2 2206 2208

(Z)-9-Octadecenoic acid TMS 64.2 1.2 2212 2215
(E)-9-Octadecenoic acid TMS 64.3 1.2 2218 2217

Stearic acid TMS 64.9 1.1 2238 2239
Arachidic acid 3TMS 70.2 1.0 2428 2432

Polyols

Glycerol 3TMS a 26.5 0.6 1268 1266
Erythritol 4TMS a 38.0 0.7 1496 1505

Xylitol 5TMS a 47.4 0.7 1715 1710
Pinitol 5TMS 51.6 0.7 1827 1826

Scyllo-inositol 6TMS a 56.0 0.7 1952 1972
Myo-inositol 6TMS a,c 60.4 0.8 2087 2096

1-Monooleoylglycerol 2TMS 78.3 1.2 2752 2759
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Table 2. Cont.

Chemical Class Compound Name 1tR (min) 2tR (sec) Experimental IT Refeference IT

Sugars

2-Deoxyribose 3TMS 33.2 0.9 1397 1404
Erythrose 3TMS 34.6 0.8 1426 1431

Deoxyribopyranose 3TMS 38.4 0.7 1504 1502
Ribofuranose 4TMS 43.0 0.8 1610 1625

anti-Fructose 5TMS a,c 53.0 0.8 1866 1867
syn-Fructose 5TMS a,c 53.4 0.8 1876 1878

Galactose 5TMS 53.7 0.8 1889 1896
Glucose 5TMS a,c 53.9 0.8 1891 1897
Mannitol 6TMS a 55.3 0.7 1932 1928

Trehalose TMS 66.8 1.1 2302 2304
Sucrose 8TMS a,c 75.4 1.0 2627 2623

2-α-Mannobiose 8TMS 77.0 1.0 2693 2700
3-α-Mannobiose 8TMS 77.5 1.0 2715 2722

Galactinol 9TMS 81.3 0.9 2924 2926
Maltose 8TMS a 84.0 1.1 3062 2748
β-Lactose 8TMS 88.7 2.1 3269 3260

Sugar acids

α-Hydroxyglutaric acid 3TMS 41.4 0.9 1569 1576
β-Hydroxy-β-methylglutaric acid 3TMS 42.4 0.8 1596 1606

Galactaric acid 6TMS a 58.8 0.8 2037 2050
Galacturonic acid 5TMS a 68.4 1.0 2363 2370

Others

3-Pyridinol TMS 15.1 0.8 1032 1034
Diacetone alcohol TMS 15.3 0.7 1036 1040
Hydroxylamine 2TMS 15.5 0.5 1042 1044
Hydroxylamine 3TMS 18.7 0.6 1114 1111

2-Methyl-1,3-butanediol 2TMS 21.7 0.6 1175 1174
Diethylene glycol 2TMS 24.9 0.8 1237 1233
N-Butylacetamide 3TMS 48.9 0.9 1753 1755

Tryptamine 2TMS 49.3 1.1 1764 1770
Glucono-1,4-lactone 4TMS 56.7 0.8 1972 1980
Pentaethylene glycol 2TMS 61.6 1.4 2127 2107
Bis-2-ethylhexyl phthalate 69.1 1.4 2387 2381

Bis-(2-ethylhexyl) decanedioate 79.2 1.4 2796 2792
Catechin 5TMS 80.5 1.1 2871 2861
β-Sitosterol TMS 88.2 2.1 3246 3249

Superscript letters following chemical names indicate previous studies where these compounds were described in relation to the roasting
process: a indicates Cialiè Rosso et al. [37], b Ozdemir et al. [9], and c Alasalvar et al. [10].

In addition, although it was not the focus of this study, some specialized metabolites
were detected, identified, and monitored, including alkaloids (i.e., tryptamine), flavan-3-ols
(i.e., catechin), and phytosterols (i.e., β-sitosterol).

The high information level encrypted in this hazelnuts data, explored through a
process of combined UT fingerprinting and profiling, allows a deeper understanding of
the influence of both phenotypes and degree of roasting on primary metabolites patterns,
as described next.

3.2. Chemical Patterns Characterizing Hazelnut Phenotype

The goal of the first pattern recognition was to evaluate the role of cultivar and pe-
doclimatic conditions on the metabolome expression (phenotype). In a previous study on
primary metabolites signatures of high-quality hazelnuts [37], it was found that, based on
this fraction, analyzed samples were independently clustered according to cultivar/origin.
In particular, Piedmont (Tonda Gentile Trilobata) and Roman (Tonda Romana) hazelnuts
were connoted by the greater relative abundance of several amino acids and sugars, delin-
eating distinctive yet discriminant signatures. On the other hand, Turkish hazelnuts, from
the Ordu region, were connoted by a generalized lesser amount of primary metabolites
with the exception of Gly and tartaric acid. Moreover, the discrimination between Piedmont
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and Roman was mainly driven by glucose, galactose, maltose, and fructose, all present
in higher amount in Tonda Gentile Trilobata as well as by Trp, Orn, and Tyr. In contrast,
Tonda Romana hazelnuts were richer in Leu, Ile, Met, Val, Phe, Pro, and pyroglutamic acid
and organic acids (lactic acid, glutaric acid, galacturonic acid, fumaric acid, tartaric acid,
and oxalic acid).

In the current study, the metabolites coverage was similar; therefore, the UT data
matrix, with 2D peaks % response, was submitted to hierarchical clustering (HC) and
supervised exploration by partial least squares discriminant analysis (PLS-DA) to iden-
tify distinctive patterns for Tonda Gentile Trilobata vs. Anakliuri hazelnuts. Due to the
concurrent presence of several confounding variables, (e.g., post-harvest drying E1 vs. E2
and storage U vs. C) observations were pre-filtered by Fisher-ratio score (F) to exclude UT
features with a negligible role in discriminating the cultivar influence on the metabolome.
Supplementary Figure S2 shows: (SF2A) HC based on Euclidean distances (Z-score nor-
malization of the data) for % response with 56 UT peaks (F ≥ 4), and (SF2B) PLS-DA scores
plot on targeted analytes with meaningful variations between Tonda Gentile Trilobata
and Anakliuri. Results indicate that cultivar has a predominant role in the distinctive
metabolites’ signatures and that the harvest region has a secondary role. Tonda Gentile
Trilobata harvested in Italy form an independent cluster (cluster “a” in SF2A) while the
geographical origin, although relevant in the discrimination, has a secondary role (cluster
“b” in SF2A).

Within the most discriminant components, obtained by ranking the variable impor-
tance for the projections (VIPs), there were some amino acids (Val, Ala, Gly, and Pro);
organic acids (citric, aspartic, malic, gluconic, threonic, and 4-aminobutanoic acids) and
several sugars and polyols (maltose, xylulose, xylitol, turanose, mannitol, scyllo-inositol,
and pinitol). Of them, Ala, Gly, and Pro have a high informational role since they may react
with sugar degradation products (i.e., deoxyosones) within the Maillard reaction frame-
work to form 2-acetyl and 2-propionylpyrroline, key-aroma compounds of hazelnuts [2].

Figure 2 shows univariate statistics, by box-plot visualization, for informative targets
and their relative distribution in different samples. Pro and Ala, whose meaningful vari-
ations were discriminant between the two cultivars, also have coherent trends between
the two pedoclimatic regions (Italy vs. Georgia), suggesting a predominant role of the
genome on phenotypic expression. Scyllo-inositol, an inositol isomer, was close to the limit
of detection for Anakliuri samples, citric acid, out of the discriminant analytes, has a higher
amount in Georgian hazelnuts.

Also of note, non-optimal storage conditions, conducted without relative humidity
stabilization (U vs. C samples), resulted in higher amounts of several metabolites. Fructose
derivatives, galactose, glucose, mannitol, erythritol, gluconic acid, succinic acid, fumaric
acid, Ala, Val, and Leu showed meaningful variations (p < 0.05) between U vs. C samples.
These data suggest that enzymatic (endogenous and exogenous enzymes) activation most
probably occurred by inducing the release of amino acids and sugars from storage deposits
and cell metabolism activation. Evidence of kernel viability was confirmed in a previous
study aimed at comprehensively mapping hazelnuts volatilome along 12 months of shelf-
life [55].

Concerning the impact of drying conditions (E1 and E2), it was not possible to isolate,
at this stage (i.e., at time 0 on fresh hazelnuts), a clear impact of drying although it is known
to be decisive for long-term storage. In this case, and up to 18 months, low-temperature
drying accompanied by low-temperature storage in an inert atmosphere, enables effective
inactivation of enzymes and mold/bacteria development while reducing autoxidation of
fats [55].
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Figure 2. Univariate box-plots illustrate the % response for some primary metabolites and aroma
precursors (Pro and Ala) in the analyzed hazelnut samples. For Pro and Ala, a further description of
their distribution according to the geographical origin is shown (T—GE and T—IT).

3.3. The Impact of Roasting on Primary Metabolites Patterns

Roasting, conducted in a lab-scale ventilated oven under previously optimized time/
temperature conditions [55] (180 ◦C—0 min), enabled the development of an optimal flavor,
color, and crunchy texture. Under these conditions, key-odorants showed strong negative
correlations (Pearson correlation) with precursors distribution [37]. The Strecker aldehyde 3-
methylbutanal was linearly correlated to Ile (R2 0.9284); 2,3-butanedione/2,3-pentanedione
with fructose/glucose derivatives (R2 0.8543 and 0.8860); 2,5-dimethylpyrazine with Ala
(R2 0.8822); and 1H-pyrrole, 3-methyl-1H-pyrrole, and 1H-pyrrole-2-carboxaldehyde with
Orn and Ala derivatives (R2 0.8604).

In the current study, the focus was on the total detectable metabolome and not only
on aroma precursors and/or on nutrients; therefore, to add a further tracking point on the
roasting profile, the process was extended to reach a higher roasting temperature (200 ◦C—
10 min), which is still acceptable for industrial applications. This “over-roasted” stage was
similar to that applied in industrial transformation for “granella” (hazelnut grains) used in
confectionery toppings.

The results are visualized in Figure 3A by principal component analysis (PCA) scores-
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plot based on % responses from all 430 UT peak features. The explained variance of the first
two principal components (F1 and F2) was 25% of the total variance. However, samples
appear clearly clustered according to the extent of thermal treatment.
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Figure 3. Principal component analysis (PCA) including all analyzed samples (36 runs) and based on % response (TIC 2D
volumes) of re-aligned 2D peaks the feature template. (A) corresponds to 430 UT peaks while in (B) the computation is
based on aroma precursors (see Table 2).

The impact of roasting tracks along F1 (Figure 3A) and, from right to left, metabo-
lites signatures of raw hazelnuts, green indicators, evolve to the over-roasted stage (blue
indicators) with a concurrent slight decrease of the group’s internal variability as shown
by confidence ellipses (95% confidence level). By tracking known metabolites along the
roasting profile, those with meaningful variations across the three steps (raw, roasted,
over-roasted) were reactive amino acids: Ala, Pro, Leu and Val, Asp, and pyroglutamic acid
(a derivatization product of glutamic acid (Glu)). All amino acids followed a decreasing
trend along roasting time with variations on % response ranging from −83% for Leu
and Val to −96% for Glu. Sugars such as saccharose and galactose showed less marked
decreases with −56% and −46%, respectively. Histograms in Figure 4 illustrate the %
response variation for a selection of targeted analytes, with error bars corresponding to
± SD for the class.

Results are consistent with those of Ozdemir et al. [9], who reported a generalized
decrease in absolute concentrations of all amino acids. Since our roasting protocol was by
higher temperatures (i.e., 180–200 ◦C vs. 104–126 ◦C) the decrease of most reactive species
was more marked.

When the roasting impact is examined in light of aroma precursors distribution
(Table 2), the clustering of samples by PCA is even clearer. Figure 3B shows the PCA scores-
plot based on % responses from 15 precursors. The intra-class variability for the roasted
samples is lower (as shown by confidence ellipses) while the total explained variance is
68%. Aroma precursors (fructose, glucose, maltose, saccharose, Ala, Pro, Ile, Leu, Orn,
5-oxoproline above all) are all reactive species within the Maillard reaction and sugar degra-
dation pathways and, during roasting, form potent odorants. In particular, carbohydrates
dehydration and isomerization cause the formation of α-dicarbonyls (2,3-butanedione and
2,3-pentanedione) and furanones (5-hydroxymethyfurfural and 4-hydroxy-2,5-dimethyl-
3(2H)-furanone). Strecker degradation of amino acids in the presence of α-dicarbonyls
form 2-/3-Methylbutanal and phenylacetaldehyde from Ile, Leu, and Phe, respectively [56].
The intermediates from Strecker reaction, α-amino carbonyl compounds, can dimerize to
dihydropyrazines which can either oxidize into pyrazines or further react with aldehydes
to form substituted pyrazines [57]. Reactions between Ala, Arg, Lys, Pro and Orn, and de-
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oxyosones (i.e., sugar degradation products) form 2-acetyl and 2-propionylpyrroline that
can be further oxidized to pyrrole derivatives [2].
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As detailed in Section 3.2, aroma precursors have characteristic signatures in raw
hazelnuts (Figure 3A green indicators, larger intra-class variability) with strong correlations
to cultivar and origin, but when lab-scale roasting is applied, they start to react and the
resulting distribution patterns in roasted and over-roasted samples are more homogeneous.
Roasting is a variable that dominates phenotype variations of key-aroma precursors.

Finally, within roasted samples, the impact of post-harvest drying, i.e., E1 vs. E2
conditions, was analyzed. The variable importance in projection (VIP) selection, conducted
on roasted samples (23 runs) and considering all targeted analytes (n = 80), highlighted
the presence of glucose (glucose 5TMS), fructose (fructose 5TMS syn- and anti-), 3-α-
mannobiose 8 TMS, and threonic and malonic acid within the first 10 variables with the
highest ranking (high VIP value and low standard deviation-SD). In particular, sugars were
present in higher relative amounts for E1 drying, conducted in-field at higher temperatures,
while acids were present in higher amounts for low-temperature drying (E2 conditions).
These data should be interpreted in the light of previous results on volatiles signatures from
raw and roasted hazelnuts (Tonda Romana and Ordu) submitted to post-harvest drying
in similar conditions [55]. Low-temperature drying (E2) enabled effective stabilization
of kernels along 12 months of storage and higher relative amounts of key odorants were
developed during roasting. In contrast, E1 drying was correlated with an early incidence
of autoxidation on raw hazelnuts that, from one side, developed higher amounts of linear
saturated and unsaturated aldehydes from fatty acids hydroperoxides decomposition,
while, on the other side, when roasted along shelf-life checkpoints, resulted in weaker
flavor profiles with lower amounts of key odorants.
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4. Conclusions

UT fingerprinting with GC×GC-MS data was shown to be an effective strategy for
exploring the complex hazelnut metabolome and its variations due to variable inputs
(e.g., cultivar, geographical origin, post-harvest treatments, and roasting). MDA platforms
enabled consistent annotation and tracking of component features, offering the opportunity
to explore available analytical metadata to target known analytes and have access to a
deeper knowledge of the chemical code behind complex phenomena [58].

This proof-of-concept study, for the first time accurately captured the complex metabolome
of raw hazelnuts and tracked its changes along roasting. Although many different variables
concur to increase the chemical dimensionality of samples, their influence can be examined
by applying various statistics. Untargeted features—being tracked together with all metadata
—can be disambiguated/identified in the ex-post analysis. This study comprehensively tracked
430 peak features with 80 targeted components. However, encrypted information of those
features that have been left untargeted also can be mined to extend even further our knowledge
in light of new variables related to the sample set.

These results add new insights to the existing knowledge about hazelnut primary
metabolites and constituents and provide a clearer picture of the interrelation between
hazelnut varieties and their processing technologies, offering useful support for future
investigations on breeding programs or harvesting procedures aimed at optimizing the
overall compositional quality of hazelnuts.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/2/525/s1 as non-published materials. Table S1. Method performance on retention times (1tR
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across all samples by heat-map visualization and hierarchical clustering based on Pearson correlation.
Data were log-normalized before computation; Supplementary Figure S2. (A) Hierarchical clustering
based on Euclidean distances (Z-score normalization of the data) estimated on % response for 56 UT
peaks (F ≥ 4); (B) partial least squares discriminant analysis (PLS-DA) scores plot based on targeted
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