
applied  
sciences

Article

InstaDam: Open-Source Platform for Rapid Semantic
Segmentation of Structural Damage

Vedhus Hoskere 1,* , Fouad Amer 2, Doug Friedel 3,4, Wanxian Yang 5, Yu Tang 5, Yasutaka Narazaki 2 ,
Matthew D. Smith 6, Mani Golparvar-Fard 2,5 and Billie F. Spencer, Jr. 2

����������
�������

Citation: Hoskere, V.; Amer, F.;

Friedel, D.; Yang, W.; Tang, Y.;

Narazaki, Y.; Smith, M.D.;

Golparvar-Fard, M.; Spencer, B.F., Jr.

InstaDam: Open-Source Platform for

Rapid Semantic Segmentation of

Structural Damage. Appl. Sci. 2021,

11, 520. https://doi.org/10.3390/

app11020520

Received: 9 November 2020

Accepted: 23 December 2020

Published: 7 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204, USA
2 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA; famer2@illinois.edu (F.A.); narazak2@illinois.edu (Y.N.);
mgolpar@illinois.edu (M.G.-F.); bfs@illinois.edu (B.F.S.J.)

3 National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA; friedel@illinois.edu

4 Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
5 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;

wyang52@illinois.edu (W.Y.); yutang2@illinois.edu (Y.T.)
6 US Army Corps of Engineers, Engineering Research and Development Center, Vicksburg, MS 39180, USA;

Matthew.D.Smith@erdc.dren.mil
* Correspondence: vhoskere@uh.edu

Abstract: The tremendous success of automated methods for the detection of damage in images
of civil infrastructure has been fueled by exponential advances in deep learning over the past
decade. In particular, many efforts have taken place in academia and more recently in industry
that demonstrate the success of supervised deep learning methods for semantic segmentation of
damage (i.e., the pixel-wise identification of damage in images). However, in graduating from the
detection of damage to applications such as inspection automation, efforts have been limited by
the lack of large open datasets of real-world images with annotations for multiple types of damage,
and other related information such as material and component types. Such datasets for structural
inspections are difficult to develop because annotating the complex and amorphous shapes taken by
damage patterns remains a tedious task (requiring too many clicks and careful selection of points),
even with state-of-the art annotation software. In this work, InstaDam—an open source software
platform for fast pixel-wise annotation of damage—is presented. By utilizing binary masks to aid
user input, InstaDam greatly speeds up the annotation process and improves the consistency of
annotations. The masks are generated by applying established image processing techniques (IPTs)
to the images being annotated. Several different tunable IPTs are implemented to allow for rapid
annotation of a wide variety of damage types. The paper first describes details of InstaDam’s software
architecture and presents some of its key features. Then, the benefits of InstaDam are explored by
comparing it to the Image Labeler app in Matlab. Experiments are conducted where two employed
student annotators are given the task of annotating damage in a small dataset of images using Matlab,
InstaDam without IPTs, and InstaDam. Comparisons are made, quantifying the improvements in
annotation speed and annotation consistency across annotators. A description of the statistics of the
different IPTs used for different annotated classes is presented. The gains in annotation consistency
and efficiency from using InstaDam will facilitate the development of datasets that can help to
advance research into automation of visual inspections.

Keywords: supervised learning; deep learning; image processing; structural inspections; damage identi-
fication; computer vision; software engineering; user interface design; usability testing; software analysis

1. Introduction

Visual inspections to assess the condition of civil infrastructure are time-consuming,
repetitive, and put inspectors at high levels of risk. The automation of visual inspection tasks

Appl. Sci. 2021, 11, 520. https://doi.org/10.3390/app11020520 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2118-5975
https://orcid.org/0000-0002-1680-5079
https://doi.org/10.3390/app11020520
https://doi.org/10.3390/app11020520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020520
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/520?type=check_update&version=1


Appl. Sci. 2021, 11, 520 2 of 16

can greatly enhance the overall efficacy and efficiency of condition assessment by allowing
inspectors to focus on higher level decisions rather than repetitive tasks. Supervised deep
learning methods have proven successful in a key step towards this goal of automation,
namely the automated identification of multiple types of damage [1–4]. To realize a fully
automated system for inspections, however, higher fidelity information needs to be extracted
from images, including, for example, the material type, as well as other damage-like features
such as cables, shadows, etc. Different approaches have been examined for these inspection
tasks, including (i) object detection, where a bounding-box is drawn around the damaged
region [5–9], and (ii) semantic segmentation [1,10–13], where each pixel is classified as a
certain damage type. While these methods have shown tremendous success, researchers often
develop their own private datasets for each new study, making rigorous benchmarking and
comparisons of advances in deep learning architectures difficult. For other applications of
semantic segmentation, such as self-driving, the availability of large and open datasets such
as Cityscapes [14], SYNTHIA [15], KiTTy [16], BDD100K [17], etc. for scene understanding
has helped advance research into deep learning methods to a point where they are now being
directly applied in the self-driving industry at scale. The availability of similar large open
datasets for semantic segmentation of damage in civil infrastructure will facilitate advances
towards automation of civil infrastructure inspection.

To annotate datasets for image segmentation, researchers [18–20] often use software
such as LabelMe [21], Matlab [22], and Photoshop [23]. More recently, many commercially
available and web-based annotation packages for image segmentation have sprung up,
such as Labelbox [24], Prodigy [25], Hasty [26], and Kili Technologies [27], among others.
These solutions offer a variety of general labeling tools such as dots, lines, polygons,
bounding boxes, pen (lasso), and superpixels. Additionally, the available applications
support different degrees of user and project management, ranging from locally hosted
applications with no notion of user or project management to full-fledged web-based
applications that support full team collaboration. Most of these general-purpose annotation
software packages have been designed for use in applications such as scene segmentation,
where buildings, roads, pedestrians, signs, etc. are the main items of interest. For the
annotation of amorphous shapes like cracks or spalling, the methods available in state-
of-the-art software require too many clicks from the user, all of which must be extremely
precise, making the annotation process very difficult, prone to inaccuracies, and time
consuming. A more efficient software platform is thus needed that will enable rapid
development of large and complex annotated datasets for damage.

In this paper, we present an open source software platform, termed InstaDam, for rapid
annotation of damage for automation of visual inspections. By incorporating binary
masks to aid user input for annotation of different damage types, InstaDam helps to
increase the efficiency and consistency of annotations. These binary masks are generated by
applying image processing techniques (IPT) to the image being annotated. Several IPTs that
researchers have identified for automated detection of damage are implemented for use
in InstaDam, allowing for annotation of a wide variety of damage types. The parameters
of IPTs can be quickly modified to fine tune the mask edges. InstaDam includes a suite of
standard annotation tools found in most annotation software. Once the mask is generated,
the user can use different input tools such as the brush or the lasso tool to make sub-
selections that correspond to the required segments. InstaDam’s front end is developed
using Qt C++ which provides cross-platform compatibility. The software also incorporates
a modular cloud-based data management framework developed using Flask. The novelty
of the research is in the integration of the components into a seamless framework that
is open source and is available to the research community for continued development.
No other software frameworks are available that address this need.

The paper is organized as follows. Section 2 first describes the problems with current
software that slow the annotation process down. Following a brief assessment of the
impediments to rapid labeling of images of structural damage, the paper describes details
of InstaDam’s software architecture and presents some of its key features that help enable



Appl. Sci. 2021, 11, 520 3 of 16

rapid annotation. Section 3 explores the benefits of InstaDam in a quantitative manner by
comparing it to the Image Labeler app in Matlab. Improvements are quantified through
experiments where two employed student annotators are given the task of annotating
damage in a small dataset of 30 images using Matlab, InstaDam without IPTs, and InstaDam.
Comparisons are made, quantifying the improvements in annotation speed and annotation
consistency across annotators. Finally, a larger dataset of 300 images is annotated for
damage and materials by the student annotators using InstaDam and the user actions
are recorded. The dataset has been made available for use by researchers. A description
of the statistics of the different IPTs used for different annotated classes are presented
based on data recorded during the annotation of the large dataset. The gains in annotation
consistency and efficiency from using InstaDam will facilitate development of datasets that
can help advance research into automation of visual inspections. Section 4 presents the
main conclusions, followed by the references.

2. InstaDam: Design and Features

This section presents an overview of the design and features of the software developed.
First, damage annotation for semantic segmentation is discussed to motivate the design of
InstaDam. Then, details about the choice of frameworks for the front end architecture are
presented followed by a section on the user interface design. Finally, the cloud-based data
management capabilities of the software are discussed.

2.1. Damage Annotation for Semantic Segmentation

Damage patterns occurring on civil infrastructure often take amorphous, non-regular
shapes. This property makes annotating these patterns using existing tools exceedingly
difficult, as very careful attention is required during the annotation process. While an-
notating these patterns, researchers often use annotation software such as LabelMe [21],
Matlab [22], Labelbox [24], Prodigy [25], Hasty [26], and Kili Technologies [27], to name a
few. These software packages have primarily been designed for scene annotation and do
not lend themselves well to annotating complex the amorphous shapes taken by damage,
some examples of which are presented in Figure 1. For example, some commonly avail-
able tools on most of these platforms are the polygonal select tool—where vertices of a
polygon are manually selected on the image to define a polygonal region, and the brush
tool—where pixels that fall inside the brush are selected. Selecting the boundary pixels
for damage shapes with a polygonal tool is not feasible and highly inefficient. While the
brush tool is more convenient for selecting damage, for large area damage such as cor-
rosion, the selection of boundaries becomes tedious. For defects such as cracks, varying
thickness and shape of cracks create similar problems. For other patterns such as cables,
which need to be annotated as they otherwise result in false positive detection, annotating
a large number of cables with these tools can make the annotation process time-consuming
and inefficient.

2.2. Choice of Software Frameworks

The selection of frameworks and libraries for development of the InstaDam was a
critical design decision. An overview of the front end frameworks and libraries used is
shown in Figure 2. Qt [28] is an open-source C++ framework for creating applications
and was chosen to build the front end layer for InstaDam. Applications developed with
Qt are cross-platform and can be built for different operating systems with little or no
changes to the main code base. Qt also supports WebAssembly [24], using which native
C++ applications can be compiled with emscripten [29] to run directly on a browser.
Our approach was to build a desktop application that could be used as a standalone
tool, and then to use WebAssembly to transform that desktop application into a web
application. In addition, Qt provides extensive support in terms of documentation and has
a widespread, active developer community. The performance of the application is also key
consideration to ensure a high-quality user experience that can aid the rapid generation of



Appl. Sci. 2021, 11, 520 4 of 16

annotations. For image display and on-screen annotation management, the Graphics View
(GV) [30] framework was employed. GV provides an extremely efficient view querying
mechanism for smooth zooming. Furthermore, GV uses a binary space partitioning tree to
provide very fast item discovery, and it can visualize large numbers of items in real-time.
In addition, OpenCV was used as the image processing library to enable fast and efficient
filtering operations on images.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 19 
 

 

Image Ground Truth Image Ground Truth 

    

    

Corrosion Cracks Spalling Cables 

Figure 1. Examples of annotations for semantic segmentation of damage in civil infrastructure. It can be seen how the 
damage patterns are amorphous, complex, and hard to capture using regular annotation tools. 

2.2. Choice of Software Frameworks 
The selection of frameworks and libraries for development of the InstaDam was a 

critical design decision. An overview of the front end frameworks and libraries used is 
shown in Figure 2. Qt [28] is an open-source C++ framework for creating applications and 
was chosen to build the front end layer for InstaDam. Applications developed with Qt are 
cross-platform and can be built for different operating systems with little or no changes 
to the main code base. Qt also supports WebAssembly [24], using which native C++ ap-
plications can be compiled with emscripten [29] to run directly on a browser. Our ap-
proach was to build a desktop application that could be used as a standalone tool, and 
then to use WebAssembly to transform that desktop application into a web application. 
In addition, Qt provides extensive support in terms of documentation and has a wide-
spread, active developer community. The performance of the application is also key con-
sideration to ensure a high-quality user experience that can aid the rapid generation of 
annotations. For image display and on-screen annotation management, the Graphics View 
(GV) [30] framework was employed. GV provides an extremely efficient view querying 
mechanism for smooth zooming. Furthermore, GV uses a binary space partitioning tree 
to provide very fast item discovery, and it can visualize large numbers of items in real-
time. In addition, OpenCV was used as the image processing library to enable fast and 
efficient filtering operations on images. 

Figure 1. Examples of annotations for semantic segmentation of damage in civil infrastructure. It can be seen how the
damage patterns are amorphous, complex, and hard to capture using regular annotation tools.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 19 
 

 
Figure 2. InstaDam front end frameworks and libraries. 

2.3. User Interface Design 
The InstaDam user interface was designed to address the described challenges for 

damage annotation. The front end user interface consists of five main parts as shown in 
Figure 3, namely the photo viewer, mask viewer, image processing bar, tool bar, and label 
bar. The photo viewer is where the user can view the original image with overlays of any 
annotations made by the user. The label bar lists the different classes of annotations, i.e., 
labels, that the user has created. The mask viewer provides a view of the selected image 
processing filter from the image processing bar at the bottom. The tool bar allows the user 
to pick from one of several pixel annotation tools implemented and provides access to 
commands such as opening and saving new projects or annotations, changing the label 
class, changing user permissions, and undoing/redoing actions. 

 

Figure 2. InstaDam front end frameworks and libraries.



Appl. Sci. 2021, 11, 520 5 of 16

2.3. User Interface Design

The InstaDam user interface was designed to address the described challenges for damage
annotation. The front end user interface consists of five main parts as shown in Figure 3,
namely the photo viewer, mask viewer, image processing bar, tool bar, and label bar. The photo
viewer is where the user can view the original image with overlays of any annotations made
by the user. The label bar lists the different classes of annotations, i.e., labels, that the user
has created. The mask viewer provides a view of the selected image processing filter from
the image processing bar at the bottom. The tool bar allows the user to pick from one of
several pixel annotation tools implemented and provides access to commands such as opening
and saving new projects or annotations, changing the label class, changing user permissions,
and undoing/redoing actions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 19 
 

 
Figure 3. InstaDam user interface. 

Annotations can be made through actions using one of the annotation tools either 
directly on the photo or on the mask. When annotations are made on the mask, the inter-
section between the user selected area and the mask appears as an annotation on the photo 
viewer. To better visualize the user interface, readers may refer to this short 30 s video 
[31]. The mask viewer and the photo viewer were designed such that any changes in the 
viewport due to zooming or panning are instantaneously reflected in the adjacent view as 
well. The final annotation is the intersection of the annotations on the photo viewer and 
the mask viewer and is always visible on the photo viewer. This allows for seamless an-
notation of detailed shapes with high precision using the masks. The split view also helps 
with instantaneous feedback as the user modifies the tunable parameters of the image 
processing techniques to modify the mask. 

2.3.1. Annotation Tools 
Common annotation tools are implemented to use directly or in conjunction with the 

generated masks. These include the Shape Selection tools (Box Select, for selecting rectan-
gular regions, Ellipse Select for ellipsoid regions), Polygon Select for irregular regions that 

Figure 3. InstaDam user interface.

Annotations can be made through actions using one of the annotation tools either
directly on the photo or on the mask. When annotations are made on the mask, the in-
tersection between the user selected area and the mask appears as an annotation on the
photo viewer. To better visualize the user interface, readers may refer to this short 30 s
video [31]. The mask viewer and the photo viewer were designed such that any changes
in the viewport due to zooming or panning are instantaneously reflected in the adjacent
view as well. The final annotation is the intersection of the annotations on the photo viewer



Appl. Sci. 2021, 11, 520 6 of 16

and the mask viewer and is always visible on the photo viewer. This allows for seamless
annotation of detailed shapes with high precision using the masks. The split view also
helps with instantaneous feedback as the user modifies the tunable parameters of the image
processing techniques to modify the mask.

2.3.1. Annotation Tools

Common annotation tools are implemented to use directly or in conjunction with
the generated masks. These include the Shape Selection tools (Box Select, for selecting
rectangular regions, Ellipse Select for ellipsoid regions), Polygon Select for irregular regions
that can be constrained by vertices, and the Free Select for selecting irregular regions on a
pixel by pixel basis. Once made, annotations can be edited to fine tune any issues during
the initial pass. Figure 4 shows examples of images annotated using the annotation tools
directly on the photo viewer. The annotation tools can also be used in combination with
the mask viewer to greatly reduce the number of user actions required per annotation,
as shown in Figure 5.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19 
 

can be constrained by vertices, and the Free Select for selecting irregular regions on a pixel 
by pixel basis. Once made, annotations can be edited to fine tune any issues during the 
initial pass. Figure 4 shows examples of images annotated using the annotation tools di-
rectly on the photo viewer. The annotation tools can also be used in combination with the 
mask viewer to greatly reduce the number of user actions required per annotation, as 
shown in Figure 5. 

 
Figure 4. Examples of annotated images where the tools are used directly on the photo using (i) 
ellipse tool, (ii) rectangle tool, (iii) polygonal tool. 

 
 

 

   

   
Image User action Annotation 

Figure 5. Examples of annotated images where the tools are used on the mask. The first column 
shows the image, the second shows the mask and the user action, and the final column shows the 
resulting annotation. 

2.3.2. Image Processing Techniques Implemented 

Figure 4. Examples of annotated images where the tools are used directly on the photo using
(i) ellipse tool, (ii) rectangle tool, (iii) polygonal tool (from left to right).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19 
 

can be constrained by vertices, and the Free Select for selecting irregular regions on a pixel 
by pixel basis. Once made, annotations can be edited to fine tune any issues during the 
initial pass. Figure 4 shows examples of images annotated using the annotation tools di-
rectly on the photo viewer. The annotation tools can also be used in combination with the 
mask viewer to greatly reduce the number of user actions required per annotation, as 
shown in Figure 5. 

 
Figure 4. Examples of annotated images where the tools are used directly on the photo using (i) 
ellipse tool, (ii) rectangle tool, (iii) polygonal tool. 

 
 

 

   

   
Image User action Annotation 

Figure 5. Examples of annotated images where the tools are used on the mask. The first column 
shows the image, the second shows the mask and the user action, and the final column shows the 
resulting annotation. 

2.3.2. Image Processing Techniques Implemented 

Figure 5. Examples of annotated images where the tools are used on the mask. The first column
shows the image, the second shows the mask and the user action, and the final column shows the
resulting annotation.



Appl. Sci. 2021, 11, 520 7 of 16

2.3.2. Image Processing Techniques Implemented

Several different image processing techniques (IPTs) were implemented in InstaDam
for mask generation. The IPTs were selected from the literature based on their relevance
for automated detection of damage and the processing time. Two simple operations of
direct thresholding and thresholding following a Gaussian blur [32] were implemented
for cases where the contrast between the damage pattern and the background is high.
Otsu thresholding [33], which is also commonly used in various image processing appli-
cations, and morphology operations [34] that allow the users to dilate and erode selected
regions, were incorporated as well. The canny edge detection method [32], proposed
for use in damage identification by Abdel-Qader et al. [35], was implemented for fine
edges. Distance filtering in the hue-saturation-intensity color space was implemented for
corrosion detection based on the method proposed by Medeiros et al. [36]. The ridge filter
is often used in the medical field for segmentation of veins and blood vessels [37], and is
incorporated for detecting fine lines such as cracks. Additionally, the guided filter [38]
and local adaptive thresholding [39] available in opencv were incorporated. The time taken
by each of the implementations to process one image of size 1MP on a Windows PC with
an i7 processor is provided in Table 1. From the standpoint of usability, the processing time
is very important, as delays in generation of the mask will likely result in the user avoiding
use of the particular IPT. Table 1 also provides details about the tunable parameters for
each of the IPTs that have been implemented in InstaDam. In addition to the IPTs men-
tioned, another option available is to create a mask out of existing annotations. This mask
option is called the label mask and is useful when annotations are to be made by excluding
other annotations.

Table 1. Computation time for different image processing techniques.

IPT Processing Time for 1 MP Image (ms) IPT Parameters

Common parameters 0.65 invert
Threshold 1.24 threshold

Otsu 1.85 NA
Morphology 2.77 erode, dilate, open close

Local Adaptive Threshold 3.06 strength, detail
Gaussian blur 5.25 kernel size, threshold,
Canny edge 21.32 threshold min, threshold max, kernel size

Color distance 25.26 R, G, B, fuzziness
Ridge filter 50.02 scale

Guided filter 50.44 threshold, diameter, sigma

2.4. Data Management

InstaDam can be used with two modes of operation for data management: local and
server modes. In the former, the application is run completely locally (illustrated in Figure 6),
where data and annotations are stored on the user’s local machine, whereas in the latter
(illustrated in Figure 7), the front end communicates directly with the back end to store the
data and annotations on the server-side database. To accommodate the divergence of these
modes of operation while maximizing code reuse, the read and write operations are abstracted
away in the front end code base. This flexibility allows the user to decide how they would like
to store their data, given the size of their project and availability of servers.

The back end of InstaDam consists of a set of Web APIs that provides accessibility to
the database for end-users. The back end can be seen as the middleware that hosts commu-
nication between multiple annotator-clients and the server database. Flask [40] is used as
the backbone of the InstaDam back end. Flask is a micro web framework written in Python,
which provides great usability and extensibility, along with a thriving community. It sup-
ports fast templates, strong WSGI features and thorough unit testability. On top of the Flask
backbone, we implement our APIs, which adhere to the REST architectural constraints.
SQLAlchemy is used as the object-relational mapper (ORM) for IntaDam’s underlying



Appl. Sci. 2021, 11, 520 8 of 16

relational database. SQLAlchemy considers the database to be a relational algebra engine,
providing abstractions from relational tables and entries to python objects. The usage of
SQLAlchemy in the development of InstaDam creates the decoupling between the object
model and database schema and helps to enable further modifications and development to
the codebase.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 18 
 

these modes of operation while maximizing code reuse, the read and write operations are 
abstracted away in the front end code base. This flexibility allows the user to decide how 
they would like to store their data, given the size of their project and availability of servers. 

 
Figure 6. Local operation of InstaDam. 

The back end of InstaDam consists of a set of Web APIs that provides accessibility to 
the database for end-users. The back end can be seen as the middleware that hosts com-
munication between multiple annotator-clients and the server database. Flask [40] is used 
as the backbone of the InstaDam back end. Flask is a micro web framework written in 
Python, which provides great usability and extensibility, along with a thriving commu-
nity. It supports fast templates, strong WSGI features and thorough unit testability. On 
top of the Flask backbone, we implement our APIs, which adhere to the REST architectural 
constraints. SQLAlchemy is used as the object-relational mapper (ORM) for IntaDam’s 
underlying relational database. SQLAlchemy considers the database to be a relational al-
gebra engine, providing abstractions from relational tables and entries to python objects. 
The usage of SQLAlchemy in the development of InstaDam creates the decoupling be-
tween the object model and database schema and helps to enable further modifications 
and development to the codebase. 

 
Figure 7. Server operation of InstaDam. 

3. Experiments and Software Analysis 
A data logging framework was incorporated in InstaDam, where user actions could 

be captured by (i) measuring the time the user spent at different parts of the UI, and (ii) 
recording the software state at every user click. The software state includes information 
such as the location of the cursor, the button clicked, the tools selected, the IPT properties, 

Figure 6. Local operation of InstaDam.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 18 
 

these modes of operation while maximizing code reuse, the read and write operations are 
abstracted away in the front end code base. This flexibility allows the user to decide how 
they would like to store their data, given the size of their project and availability of servers. 

 
Figure 6. Local operation of InstaDam. 

The back end of InstaDam consists of a set of Web APIs that provides accessibility to 
the database for end-users. The back end can be seen as the middleware that hosts com-
munication between multiple annotator-clients and the server database. Flask [40] is used 
as the backbone of the InstaDam back end. Flask is a micro web framework written in 
Python, which provides great usability and extensibility, along with a thriving commu-
nity. It supports fast templates, strong WSGI features and thorough unit testability. On 
top of the Flask backbone, we implement our APIs, which adhere to the REST architectural 
constraints. SQLAlchemy is used as the object-relational mapper (ORM) for IntaDam’s 
underlying relational database. SQLAlchemy considers the database to be a relational al-
gebra engine, providing abstractions from relational tables and entries to python objects. 
The usage of SQLAlchemy in the development of InstaDam creates the decoupling be-
tween the object model and database schema and helps to enable further modifications 
and development to the codebase. 

 
Figure 7. Server operation of InstaDam. 

3. Experiments and Software Analysis 
A data logging framework was incorporated in InstaDam, where user actions could 

be captured by (i) measuring the time the user spent at different parts of the UI, and (ii) 
recording the software state at every user click. The software state includes information 
such as the location of the cursor, the button clicked, the tools selected, the IPT properties, 

Figure 7. Server operation of InstaDam.

3. Experiments and Software Analysis

A data logging framework was incorporated in InstaDam, where user actions could
be captured by (i) measuring the time the user spent at different parts of the UI, and (ii)
recording the software state at every user click. The software state includes information
such as the location of the cursor, the button clicked, the tools selected, the IPT properties,
etc. To quantitatively evaluate the benefits of InstaDam, two experiments were conducted
and discussed in this section.

3.1. User Testing with InstaDam

During the experiments, the users were given some nominal introduction about the
software use but were not briefed with the details about these IPTs. The users were still
able to effectively utilize the software, as there is instant feedback between changing of the
IPT parameters and the corresponding mask generation. As a result, the users were directly
able to see the effect of changing the parameters and develop an intuition for the role of
different parameters in a short span of time. Additionally, dynamic thumbnails for each of
the filters is available at the bottom. These thumbnails reflect the chosen parameters and
allow users to quickly understand the type of mask that would be generated by different



Appl. Sci. 2021, 11, 520 9 of 16

IPTs. Thus, while the authors cannot make guarantees about optimal selection by the users,
the instant feedback and dynamic thumbnails make good IPT selection straightforward.

3.2. Comparison with Existing Annotation Software

The first experiment aimed to compare InstaDam with existing annotation software.
The image labeler app available in Matlab was chosen for comparison, as it is often used
by researchers to create computer vision datasets and is easily accessible. Two student
annotators were employed to annotate a dataset of 25 images. Each student was given
the same set of instructions where they were introduced to the different classes to be
annotated (cracks, spalling, corrosion, cables). The students were first allowed to become
familiar with both software and then were asked to annotate the images using (i) Matlab,
(ii) InstaDam but without using IPTs, and (iii) InstaDam. The time taken for each annotation
was recorded by the data logger in InstaDam and recorded manually for the annotations
created in Matlab using a stopwatch. The time comparison is presented in Figure 8.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19 
 

3.1. User Testing with InstaDam 
During the experiments, the users were given some nominal introduction about the 

software use but were not briefed with the details about these IPTs. The users were still 
able to effectively utilize the software, as there is instant feedback between changing of 
the IPT parameters and the corresponding mask generation. As a result, the users were 
directly able to see the effect of changing the parameters and develop an intuition for the 
role of different parameters in a short span of time. Additionally, dynamic thumbnails for 
each of the filters is available at the bottom. These thumbnails reflect the chosen parame-
ters and allow users to quickly understand the type of mask that would be generated by 
different IPTs. Thus, while the authors cannot make guarantees about optimal selection 
by the users, the instant feedback and dynamic thumbnails make good IPT selection 
straightforward. 

3.2. Comparison with Existing Annotation Software 
The first experiment aimed to compare InstaDam with existing annotation software. 

The image labeler app available in Matlab was chosen for comparison, as it is often used 
by researchers to create computer vision datasets and is easily accessible. Two student 
annotators were employed to annotate a dataset of 25 images. Each student was given the 
same set of instructions where they were introduced to the different classes to be anno-
tated (cracks, spalling, corrosion, cables). The students were first allowed to become fa-
miliar with both software and then were asked to annotate the images using (i) Matlab, 
(ii) InstaDam but without using IPTs, and (iii) InstaDam. The time taken for each annota-
tion was recorded by the data logger in InstaDam and recorded manually for the annota-
tions created in Matlab using a stopwatch. The time comparison is presented in Figure 8. 

 
Figure 8. Annotation time comparison for different software. 

The generated data were also used to objectively evaluate the quality of annotations 
and the consistency across image annotators. Different masks can be used for different 
portions of the image; for example, a user may utilize an IPT such as the ridge filter for 
fine cracks and utilize the guided filter for thicker cracks. The final annotation will be a 
combination of different masks at different portions, and manual input, directly on the 
photo. As the final goal is to have good quality annotations, an objective evaluation of the 
masks themselves is a challenging problem. The authors resolve this issue by evaluating 
the consistency of final annotations across the users instead of directly evaluating masks. 
The users will mostly likely take different paths to get their final annotated result. The 
selection of masks at different stages will be influenced by user judgement of the damage 
shape and border. Thus, if the annotations are consistent across users, a reasonable con-
clusion would be that the software facilitates accurate annotating. The annotation con-

Figure 8. Annotation time comparison for different software.

The generated data were also used to objectively evaluate the quality of annotations
and the consistency across image annotators. Different masks can be used for different
portions of the image; for example, a user may utilize an IPT such as the ridge filter for
fine cracks and utilize the guided filter for thicker cracks. The final annotation will be a
combination of different masks at different portions, and manual input, directly on the
photo. As the final goal is to have good quality annotations, an objective evaluation of
the masks themselves is a challenging problem. The authors resolve this issue by evalu-
ating the consistency of final annotations across the users instead of directly evaluating
masks. The users will mostly likely take different paths to get their final annotated result.
The selection of masks at different stages will be influenced by user judgement of the
damage shape and border. Thus, if the annotations are consistent across users, a reasonable
conclusion would be that the software facilitates accurate annotating. The annotation
consistency is measured using the intersection-over-union (IoU) between annotations by
different annotators. The IoU between two annotations is given by the number of pixels of
intersection of the two annotations divided by number of pixels in the union of the two
annotations. The comparison of inter-annotator IoU for the three annotation software are
provided in Figure 9.

3.3. Annotating Damage and Materials

As a second experiment, the annotators were given two sets of images from the
Madnet dataset [4] and were a sked to annotate five classes of damage (cracks, spalling,
corrosion, cables and rebar) and five classes of materials (steel, concrete, asphalt, masonry,
other). The data from the annotation process for every image were recorded and a summary
of the data is presented here. Figure 10 shows the time users spend on different parts of the



Appl. Sci. 2021, 11, 520 10 of 16

user interface while annotating different classes. Figures 11 and 12 show the distribution of
time spent using each of the filters and tools, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19 
 

sistency is measured using the intersection-over-union (IoU) between annotations by dif-
ferent annotators. The IoU between two annotations is given by the number of pixels of 
intersection of the two annotations divided by number of pixels in the union of the two 
annotations. The comparison of inter-annotator IoU for the three annotation software are 
provided in Figure 9. 

 
Figure 9. Intersection-over-union comparison for different software. 

 

3.3. Annotating Damage and Materials 
As a second experiment, the annotators were given two sets of images from the Mad-

net dataset [4] and were a sked to annotate five classes of damage (cracks, spalling, corro-
sion, cables and rebar) and five classes of materials (steel, concrete, asphalt, masonry, 
other). The data from the annotation process for every image were recorded and a sum-
mary of the data is presented here. Figure 10 shows the time users spend on different parts 
of the user interface while annotating different classes. Figures 11 and 12 show the distri-
bution of time spent using each of the filters and tools, respectively. 

 
Figure 10. Annotation time spent using different parts of the user interface. 

Figure 9. Intersection-over-union comparison for different software.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19 
 

sistency is measured using the intersection-over-union (IoU) between annotations by dif-
ferent annotators. The IoU between two annotations is given by the number of pixels of 
intersection of the two annotations divided by number of pixels in the union of the two 
annotations. The comparison of inter-annotator IoU for the three annotation software are 
provided in Figure 9. 

 
Figure 9. Intersection-over-union comparison for different software. 

 

3.3. Annotating Damage and Materials 
As a second experiment, the annotators were given two sets of images from the Mad-

net dataset [4] and were a sked to annotate five classes of damage (cracks, spalling, corro-
sion, cables and rebar) and five classes of materials (steel, concrete, asphalt, masonry, 
other). The data from the annotation process for every image were recorded and a sum-
mary of the data is presented here. Figure 10 shows the time users spend on different parts 
of the user interface while annotating different classes. Figures 11 and 12 show the distri-
bution of time spent using each of the filters and tools, respectively. 

 
Figure 10. Annotation time spent using different parts of the user interface. Figure 10. Annotation time spent using different parts of the user interface.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 
Figure 11. Annotation time per filter. 

 
Figure 12. Annotation time spent using different tools. 

4. Discussion of Results 
The data generated from the conducted experiments is analyzed in this section and 

additional qualitative improvements of the use of InstaDam are presented. 

4.1. Improvements in Efficiency 
A key advantage of InstaDam is the significant time savings afforded by using the 

software. The data summary reported in Figure 8 shows that compared with Matlab, the 
annotation time using InstaDam reduces from an average of 486.6 s per image to 180.3 s 
per image which is a 62.9% reduction in annotation time. When InstaDam is used without 
IPTs, the annotation speed is slightly faster than Matlab, suggesting that the software 
functionality is on par with existing annotation software. The availability of IPT masks 
drastically reduces the annotation time as expected. These savings are significant, and 
they will not only help produce annotations faster, but they will also play a major role in 
developing higher quality annotations. 

4.2. Improvements in Consistency 
Having a high consistency across annotations for different images is an important 

necessity for high quality datasets. When producing large datasets, multiple annotators 
are often employed and thus consistency across annotators is important to improve anno-
tation quality. The inter-annotator IoUs shown in Figure 9 demonstrate that using In-
staDam with IPTs improves the IoUs for all the annotation classes as compared to In-
staDam without IPTs or Matlab. The improvements are most pronounced for annotations 

Figure 11. Annotation time per filter.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19 
 

 
Figure 11. Annotation time per filter. 

 
Figure 12. Annotation time spent using different tools. 

4. Discussion of Results 
The data generated from the conducted experiments is analyzed in this section and 

additional qualitative improvements of the use of InstaDam are presented. 

4.1. Improvements in Efficiency 
A key advantage of InstaDam is the significant time savings afforded by using the 

software. The data summary reported in Figure 8 shows that compared with Matlab, the 
annotation time using InstaDam reduces from an average of 486.6 s per image to 180.3 s 
per image which is a 62.9% reduction in annotation time. When InstaDam is used without 
IPTs, the annotation speed is slightly faster than Matlab, suggesting that the software 
functionality is on par with existing annotation software. The availability of IPT masks 
drastically reduces the annotation time as expected. These savings are significant, and 
they will not only help produce annotations faster, but they will also play a major role in 
developing higher quality annotations. 

4.2. Improvements in Consistency 
Having a high consistency across annotations for different images is an important 

necessity for high quality datasets. When producing large datasets, multiple annotators 
are often employed and thus consistency across annotators is important to improve anno-
tation quality. The inter-annotator IoUs shown in Figure 9 demonstrate that using In-
staDam with IPTs improves the IoUs for all the annotation classes as compared to In-
staDam without IPTs or Matlab. The improvements are most pronounced for annotations 

Figure 12. Annotation time spent using different tools.



Appl. Sci. 2021, 11, 520 11 of 16

4. Discussion of Results

The data generated from the conducted experiments is analyzed in this section and
additional qualitative improvements of the use of InstaDam are presented.

4.1. Improvements in Efficiency

A key advantage of InstaDam is the significant time savings afforded by using the
software. The data summary reported in Figure 8 shows that compared with Matlab,
the annotation time using InstaDam reduces from an average of 486.6 s per image to 180.3 s
per image which is a 62.9% reduction in annotation time. When InstaDam is used without
IPTs, the annotation speed is slightly faster than Matlab, suggesting that the software
functionality is on par with existing annotation software. The availability of IPT masks
drastically reduces the annotation time as expected. These savings are significant, and they
will not only help produce annotations faster, but they will also play a major role in
developing higher quality annotations.

4.2. Improvements in Consistency

Having a high consistency across annotations for different images is an important
necessity for high quality datasets. When producing large datasets, multiple annotators are
often employed and thus consistency across annotators is important to improve annotation
quality. The inter-annotator IoUs shown in Figure 9 demonstrate that using InstaDam with
IPTs improves the IoUs for all the annotation classes as compared to InstaDam without IPTs
or Matlab. The improvements are most pronounced for annotations of cracks and cables.
This is easily explained by the high contrast between these features and the background,
making the use of IPTs ideal. Figure 13 provides two examples of images where this
difference is illustrated. In the first image, crack annotations are shown. Annotator 1 misses
the fine crack on the right when using Matlab. However, with InstaDam, the IPTs make
the presence of the fine crack very obvious and make the annotation a lot easier. The crack
widths are also more consistent with InstaDam. Similarly, for the cables shown in the next
figure, the thickness of cables is more consistent with the use of InstaDam. The IPTs guide
different users to have more consistent decisions regarding the location of the pixels that
need annotation especially around the edges of the investigated damages.

4.3. Analysis of Feature Use

Figure 10 shows the use of different parts of the software by the user. For damage
annotation, a significant amount of the annotation time is spent by users on the mask
viewer, further indicating that the IPTs are used extensively. As damage usually takes
amorphous and complex shapes the IPTs are tremendously useful in delineating boundaries
and speeding up damage annotation. On the other hand, for material annotation, the users
prefer to use the photo viewer the most. The IPTs do not provide the same increase in
efficiency for material annotations as they do for damage annotations due to the different
nature of boundaries between materials. Figure 11 shows the filters used most often for
different classes. The guided filter is most frequently used for both cracks and spalling
and is especially effective in filtering out edge features. The morphology operations allow
users to control the thickness of the crack annotated and is also used extensively for crack
annotation. The color filter is clearly the most used for corrosion annotation. As the color
of corrosion is usually distinctly reddish hues, color-based filtering is highly effective.
The local adaptive threshold and simple threshold are most effective for annotating cables.
There is no clear choice by the annotators for the annotation of rebar. The mask type
used most often for material annotation is the label mask. This is because materials are
mutually exclusive and material annotations fill up the entire image. Thus, the option
to create annotations excluding previously created annotations avoids duplicating work
describing the edges of materials. Finally, Figure 12 shows the distribution of different
tools used. The brush tool is almost exclusively used for annotating damage types, and the
most commonly used tool even for material annotation. The polygonal tool is also used



Appl. Sci. 2021, 11, 520 12 of 16

heavily for material annotations. The analysis of the user data indicates that the features
incorporated into InstaDam are used extensively and that the mask viewer is a valuable
addition to improve the efficiency of annotation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 19 
 

Image  Annotator 1 Annotator 2 

 

Matlab 

  

InstaDam 

  

 

Matlab 

  
 

InstaDam 

  

Figure 13. Annotation consistency for different software. 

5. Future Research 
InstaDam offers decoupled front and back ends, providing great extensibility. Each 

part can be tailored easily to fit different usage scenarios. Further components, such as a 
cloud-native front end, can also be easily developed without modification to the user 
APIs. This section discusses extensions to the InstaDam codebase for future research. 

5.1. Machine Learning Enhanced Annotations 
Two methods to enhance the annotation methods for structural inspection using ma-

chine learning will be considered. The first involves automated tuning of the image pro-
cessing techniques (IPTs). The feature analysis of InstaDam showed that 10-15% of user 
time is spent on tuning IPTs depending on the particular class being annotated. Based on 
the user data recorded, a smart suggestion filter will be implemented whereby the prop-
erties of the IPTs can be automatically suggested. A mechanism will need to be developed 
where the user can easily accept or reject the suggestion. The second approach is a more 
straightforward approach where the annotations are directly suggested by a deep net-
work based on the chosen class. Similar options are available in other software such as 

Figure 13. Annotation consistency for different software.

4.4. Open Source Data Development Platform

Several commercial software applications have recently become available for creating
semantic segmentation datasets [24–27]. While research on using deep learning for the
identification of damage constitutes a large and growing community, the number of users
is not yet significant enough for these companies to modify their offerings for the use of
researchers in this field. An open source alternative such as InstaDam offers researchers the
option to tailor the annotation platform to their own needs and requirements. InstaDam
provides documentation and developer guides for quick modification and addition to the
source code.

5. Future Research

InstaDam offers decoupled front and back ends, providing great extensibility. Each part
can be tailored easily to fit different usage scenarios. Further components, such as a cloud-
native front end, can also be easily developed without modification to the user APIs.
This section discusses extensions to the InstaDam codebase for future research.



Appl. Sci. 2021, 11, 520 13 of 16

5.1. Machine Learning Enhanced Annotations

Two methods to enhance the annotation methods for structural inspection using
machine learning will be considered. The first involves automated tuning of the image
processing techniques (IPTs). The feature analysis of InstaDam showed that 10–15% of
user time is spent on tuning IPTs depending on the particular class being annotated.
Based on the user data recorded, a smart suggestion filter will be implemented whereby
the properties of the IPTs can be automatically suggested. A mechanism will need to be
developed where the user can easily accept or reject the suggestion. The second approach
is a more straightforward approach where the annotations are directly suggested by a deep
network based on the chosen class. Similar options are available in other software such as
Amazon Sagemaker and Labelbox at a premium. However, even on those platforms, a large
number of annotated images are required before the suggestions are effective, as there are
no pretrained models available for damage features. Incorporating models pretrained on
the developed datasets as well as the generated synthetic data for typical damage features
into InstaDam will help to speed up the annotation process even further.

5.2. Web-Based Platform

Using WebAssembly (WASM) for Qt, a front end version that could be run remotely
via a web page can be generated from the existing InstaDam codebase. WebAssembly for
Qt is a very new technology and has some notable restrictions. Many of these have to do
with security restrictions applied by browsers to apps running in the JavaScript sandbox.
Several of these restrictions were known ahead of time and workarounds have been
incorporated into the InstaDam software architecture. Other restrictions were discovered
after the start of development and require further design and analysis. The primary
restriction accounted for is that WASM apps do not have direct access to the local file
system. The default Qt deployment creates a temporary file system in memory, but that
is not permanent. A workaround for this was to use the browser’s native JavaScript
open file dialog to open projects and images, and use the browser’s download feature
to save outputs, but only as a single zip file. Another restriction is that due to WASM
running in a JavaScript sandbox, security restrictions prevent it from having a DNS lookup,
or contacting the back end on any other machine that the one hosting the WASM web page.
Both of these can be worked around using static IP addresses and hosting the browser
front end on the same server as the back end. Future development of this code can take
advantage of cutting-edge Qt 5.14 and the necessary patches.

5.3. Extension to Crowdsourced Annotation Platform

In this study, InstaDam has been used as an annotation tool by trained annotators that
were selected after careful review. The experiments conducted demonstrated the benefits
of InstaDam for the efficiency and consistency of annotations. The developed framework
for InstaDam however allows for further scaling for use as a crowdsourced annotation
tool. Crowdsourcing platforms such as Amazon Mechanical Turk [41] have millions of
users, many of whom will likely produce low-quality annotations due to poor or malicious
judgment. While crowdsourcing annotations in such a scenario, two important steps
that can contribute to quality assurance and quality control include (i) identifying which
annotators produce reliable annotations through automated protocols, and (ii) subdividing
large tasks into microtasks to reduce annotator fatigue. Lu et al. [42] proposed methods
for quality control and quality assurance for construction video annotations involving
preassessment and postassessment filtering of annotators. The same approach can be
adapted for use in InstaDam. In the preassessment stage, the performance of annotators
is tested against a gold standard annotated dataset and then used for filtering. In the
postassessment stage, filtering is done using repeated labeling by different annotators
combined with a vote-based metric. For the second point of creating microtasks, regions of
interest can first be selected, and the segmentation can then be done on the selected region
of interest. Splitting these two tasks will enable annotators to focus on damage search and



Appl. Sci. 2021, 11, 520 14 of 16

careful annotations separately, rather than at the same time. When pre-existing training
data are available, the selection of regions of interest can be done more intelligently using
trained deep learning models. The extension of InstaDam to a crowdsource annotation tool
will help in the development of more comprehensive datasets for inspection applications.

5.4. User Interface Testing

To the authors’ knowledge, software platforms comparable to InstaDam for annotating
civil infrastructure damage are not currently available. The objective of the paper is to
present a new software framework for this purpose. The developed software and code are
released as an open source offering that can be utilized by the research community at large.
While some initial investment of time may be required, the returns allow for much faster
labeling as the number of annotated images increases. Future work will involve a detailed
study on the time for users to understand the filters. Additionally, the authors have done
their best with the available resources to make a fair comparison with existing software.
While the experiments illustrate the advantages of using InstaDam, future research will
involve testing alternate designs with a larger number of participants.

6. Conclusions

In this paper, InstaDam—an open source software platform for fast pixel-wise an-
notation of damage—was presented. InstaDam allows the user to choose from a variety
of image processing techniques (IPTs) to generate masks that greatly speed up the an-
notation process. The software includes annotation tools developed in Qt C++ and a
cloud-based data management framework developed in python using Flask. Experiments
were conducted to analyze the advantages of InstaDam over existing annotation software
and validate the user interface design. The experiments showed the InstaDam provides
a 63% reduction in the annotation time while also enhancing the annotator consistency
for several commonly annotated defects such as cracks and cables. The analysis of the
user data captured showed that the implemented IPTs are employed extensively by the
users indicating the need for such tools. A discussion of the different IPTs used most often
for different classes was presented as well as a discussion of use of the different tools and
features implemented. The combination of these features enables efficient and consistent
annotations using InstaDam and will help enable the development of large datasets for
structural inspections.

Author Contributions: Conceptualization, V.H., F.A., Y.N. and B.F.S.J.; methodology, V.H., D.F., F.A.,
and M.G.-F.; software, V.H., F.A., D.F., W.Y. and Y.T.; validation, V.H. and F.A.; resources, M.D.S., M.G.-F.
and B.F.S.J.; writing—original draft preparation, V.H., F.A., D.F., W.Y. and Y.T.; writing—review and
editing, M.G.-F., Y.N., B.F.S.J., M.D.S., and V.H. All authors have read and agreed to the published version
of the manuscript.

Funding: Funding for this work was provided by the United States Army Corps of Engineers
through the U.S. Army Engineer Research and Development Center Research Cooperative Agreement
W912HZ-17-2-0024.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Acknowledgments: The authors would like to acknowledge the help of Shengyi Wang and Shannon
Chen for help with the image annotations.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 520 15 of 16

References
1. Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F., Jr. Vision-based Structural Inspection using Multiscale Deep Convolutional

Neural Networks. In Proceedings of the 3rd Huixian International Forum on Earthquake Engineering for Young Researchers,
Champaign, IL, USA, 12 August 2017.

2. Spencer, B.F., Jr.; Hoskere, V.; Narazaki, Y. Advances in Computer Vision–based Civil Infrastructure Inspection and Monitoring.
Engineering 2019. [CrossRef]

3. Kim, B.; Cho, S. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique. Sensors
2018, 18, 3452. [CrossRef] [PubMed]

4. Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F., Jr. MaDnet: Multi-task Semantic Segmentation of Multiple types of Structural
Materials and Damage in Images of Civil Infrastructure. J. Civ. Struct. Health Monit. 2020, 10, 757–773. [CrossRef]

5. Chen, F.-C.; Jahanshahi, R.M.R. NB-CNN: Deep Learning-based Crack Detection Using Convolutional Neural Network and
Naïve Bayes Data Fusion. IEEE Trans. Ind. Electron. 2017, 65, 1. [CrossRef]

6. Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based
Deep Learning for Detecting Multiple Damage Types. Comput. Civ. Infrastruct. Eng. 2018, 33, 731–747. [CrossRef]

7. Carr, T.A.; Jenkins, M.D.; Iglesias, M.I.; Buggy, T.; Morison, D.G. Road crack detection using a single stage detector based deep
neural network. In Proceedings of the 2018 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems
(EESMS), Salerno, Italy, 21–22 June 2018; pp. 1–5. [CrossRef]

8. Yeum, C.M. Computer Vision-Based Structural Assessment Exploiting Large Volumes of Images. Ph.D. Thesis, Purdue University,
West Lafayette, IN, USA, 2016. Available online: https://docs.lib.purdue.edu/open_access_dissertations/1036 (accessed on
20 March 2020).

9. Kim, B.; Cho, S. Automated crack detection from large volume of concrete images using deep learning. In Proceedings of the 7th
World Conference on Structural Control and Monitoring, Qingdao, China, 22–25 July 2018.

10. Narazaki, Y.; Hoskere, V.; Hoang, T.A.; Fujino, Y.; Sakurai, A.; Spencer, B.F. Vision-based automated bridge component recognition
with high-level scene consistency. Comput. Civ. Infrastruct. Eng. 2019, 12505. [CrossRef]

11. Alipour, M.; Harris, D.K.; Miller, G.R. Robust Pixel-Level Crack Detection Using Deep Fully Convolutional Neural Networks.
J. Comput. Civ. Eng. 2019, 33, 04019040. [CrossRef]

12. Dung, C.V.; Anh, L.D. Autonomous concrete crack detection using deep fully convolutional neural network. Autom. Constr. 2019,
99, 52–58. [CrossRef]

13. Liang, X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian
optimization. Comput. Civ. Infrastruct. Eng. 2018. [CrossRef]

14. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes
Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223.

15. Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images
for Semantic Segmentation of Urban Scenes. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3234–3243.

16. Menze, M.; Geiger, A. Object Scene Flow for Autonomous Vehicles. In Proceedings of the 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3061–3070. [CrossRef]

17. Yu, F.; Chen, H.; Wang, X.; Xian, W.; Chen, Y.; Liu, F.; Madhavan, V.; Darrell, T. BDD100K: A Diverse Driving Dataset
for Heterogeneous Multitask Learning. Available online: https://bair.berkeley.edu/blog/2018/05/30/bdd/ (accessed on
12 March 2020).

18. Li, Y.; Li, H.; Wang, H. Pixel-Wise Crack Detection Using Deep Local Pattern Predictor for Robot Application. Sensors 2018, 18,
3042. [CrossRef] [PubMed]

19. Xu, Y.; Li, S.; Zhang, D.; Jin, Y.; Zhang, F.; Li, N.; Li, H. Identification framework for cracks on a steel structure surface by
a restricted Boltzmann machines algorithm based on consumer-grade camera images. Struct. Control Health Monit. 2018,
25, e2075. [CrossRef]

20. Hoskere, V.; Narazaki, Y.; Spencer, B.F.; Smith, M.D. Deep learning-based damage detection of miter gates using synthetic imagery
from computer graphics. In Proceedings of the 12th International Workshop on Structural Health Monitoring, Stanford, CA, USA,
10–12 September 2019; Volume 2, pp. 3073–3080. [CrossRef]

21. LabelMe: The Open Annotation Tool. Available online: http://labelme.csail.mit.edu/Release3.0/ (accessed on 1 August 2018).
22. MATLAB-MathWorks, Natick, MA, USA. Available online: https://www.mathworks.com/products/matlab.html (accessed on

19 March 2020).
23. Adobe, San Jose, California, United States|Adobe Photoshop|Photo, Image, and Design Editing Software. Available online:

https://www.adobe.com/products/photoshop.htm (accessed on 19 March 2020).
24. Labelbox, San Francisco, CA, USA. Available online: https://labelbox.com/ (accessed on 12 March 2020).
25. Computer Vision Prodigy. An Annotation Tool for AI, Machine Learning & NLP. Available online: https://prodi.gy/features/

computer-vision (accessed on 12 March 2020).
26. Instance Segmentation Assistant–Hasty.ai Documentation. Available online: https://hasty.gitbook.io/documentation/

annotating-environment/instance-segmentation-tool (accessed on 12 March 2020).

http://doi.org/10.1016/j.eng.2018.11.030
http://doi.org/10.3390/s18103452
http://www.ncbi.nlm.nih.gov/pubmed/30322206
http://doi.org/10.1007/s13349-020-00409-0
http://doi.org/10.1109/TIE.2017.2764844
http://doi.org/10.1111/mice.12334
http://doi.org/10.1109/EESMS.2018.8405819
https://docs.lib.purdue.edu/open_access_dissertations/1036
http://doi.org/10.1111/mice.12505
http://doi.org/10.1061/(ASCE)CP.1943-5487.0000854
http://doi.org/10.1016/j.autcon.2018.11.028
http://doi.org/10.1111/mice.12425
http://doi.org/10.1109/CVPR.2015.7298925
https://bair.berkeley.edu/blog/2018/05/30/bdd/
http://doi.org/10.3390/s18093042
http://www.ncbi.nlm.nih.gov/pubmed/30208665
http://doi.org/10.1002/stc.2075
http://doi.org/10.12783/shm2019/32463
http://labelme.csail.mit.edu/Release3.0/
https://www.mathworks.com/products/matlab.html
https://www.adobe.com/products/photoshop.htm
https://labelbox.com/
https://prodi.gy/features/computer-vision
https://prodi.gy/features/computer-vision
https://hasty.gitbook.io/documentation/annotating-environment/instance-segmentation-tool
https://hasty.gitbook.io/documentation/annotating-environment/instance-segmentation-tool


Appl. Sci. 2021, 11, 520 16 of 16

27. Radically Efficient Annotation Platform to Speed up AI Projects–Kili Technology. Available online: https://kili-technology.com/
(accessed on 12 March 2020).

28. Qt|Cross-Platform Software Development for Embedded & Desktop. Available online: https://www.qt.io/ (accessed on
12 March 2020).

29. Main—Emscripten 1.39.8 Documentation. Available online: https://emscripten.org/ (accessed on 12 March 2020).
30. Graphics View Framework|Qt Widgets 5.14.1. Available online: https://doc.qt.io/qt-5/graphicsview.html (accessed on

13 March 2020).
31. InstaDam. Available online: https://youtu.be/N3z1YUMr-ME (accessed on 23 December 2020).
32. Szeliski, R. Computer Vision. In Texts in Computer Science; Springer: London, UK, 2011; ISBN 978-1-84882-934-3.
33. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
34. Jahanshahi, M.R.; Masri, S.F.; Padgett, C.W.; Sukhatme, G.S. An innovative methodology for detection and quantification of

cracks through incorporation of depth perception. Mach. Vis. Appl. 2013, 24, 227–241. [CrossRef]
35. Abdel-Qader, I.; Abudayyeh, O.; Kelly, M.E. Analysis of Edge-Detection Techniques for Crack Identification in Bridges. J. Comput.

Civ. Eng. 2003, 17, 255–263. [CrossRef]
36. Medeiros, F.N.S.; Ramalho, G.L.B.; Bento, M.P.; Medeiros, L.C.L. On the evaluation of texture and color features for nondestructive

corrosion detection. EURASIP J. Adv. Signal Process. 2010, 2010, 817473. [CrossRef]
37. Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-Based Vessel Segmentation in Color Images of

the Retina. IEEE Trans. Med. Imaging 2004, 23, 501. [CrossRef] [PubMed]
38. The Robotics Institute Carnegie Mellon University. Robust Crack Detection in Concrete Structures Images Using Multi-Scale

Enhancement and Visual Features. Available online: https://www.ri.cmu.edu/publications/robust-crack-detection-in-concrete-
structures-images-using-multi-scale-enhancement-and-visual-features/ (accessed on 31 July 2020).

39. OpenCV. Available online: https://opencv.org/ (accessed on 12 March 2020).
40. Flask (1.1.x). Available online: https://flask.palletsprojects.com/en/1.1.x/ (accessed on 19 March 2020).
41. Amazon Mechanical Turk. Available online: https://www.mturk.com/ (accessed on 2 August 2020).
42. Liu, K.; Golparvar-Fard, M. Crowdsourcing Construction Activity Analysis from Jobsite Video Streams. J. Constr. Eng. Manag.

2015, 141, 04015035. [CrossRef]

https://kili-technology.com/
https://www.qt.io/
https://emscripten.org/
https://doc.qt.io/qt-5/graphicsview.html
https://youtu.be/N3z1YUMr-ME
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1007/s00138-011-0394-0
http://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(255)
http://doi.org/10.1155/2010/817473
http://doi.org/10.1109/TMI.2004.825627
http://www.ncbi.nlm.nih.gov/pubmed/15084075
https://www.ri.cmu.edu/publications/robust-crack-detection-in-concrete-structures-images-using-multi-scale-enhancement-and-visual-features/
https://www.ri.cmu.edu/publications/robust-crack-detection-in-concrete-structures-images-using-multi-scale-enhancement-and-visual-features/
https://opencv.org/
https://flask.palletsprojects.com/en/1.1.x/
https://www.mturk.com/
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001010

	Introduction 
	InstaDam: Design and Features 
	Damage Annotation for Semantic Segmentation 
	Choice of Software Frameworks 
	User Interface Design 
	Annotation Tools 
	Image Processing Techniques Implemented 

	Data Management 

	Experiments and Software Analysis 
	User Testing with InstaDam 
	Comparison with Existing Annotation Software 
	Annotating Damage and Materials 

	Discussion of Results 
	Improvements in Efficiency 
	Improvements in Consistency 
	Analysis of Feature Use 
	Open Source Data Development Platform 

	Future Research 
	Machine Learning Enhanced Annotations 
	Web-Based Platform 
	Extension to Crowdsourced Annotation Platform 
	User Interface Testing 

	Conclusions 
	References

