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Abstract: This paper mainly examines the fixation performances of the cephalomedullary nail for the
incidence of intertrochanteric (IT) fracture to guide the appropriate fixations with respect to the bone
density in terms of a biomechanical perspective. It is substantially important to guide which types
of fixation are applied during the operation since it tends to induce the backout or migration of the
helical blade and screw according to weight and bone density. Biomedical polyurethane (PUR) foam
blocks for simulating human bone are adopted with two grades of densities to simulate a normal
person and an elderly person who has osteoporosis. Tensile and compression tests are conducted
to analyze the tensile-compression anisotropy of PUR foams. Pull-out performances of screw and
helical blades are evaluated from experimental perspectives, which are supported by comparison
with the results of finite element method analysis. The clamping force of the screw is higher than
the helical blade, about 177% in normal foam density and 198% in low foam density. After physical
evaluation of the critical pull-out fixation force of screw and helical blade, we have suggested that
stable fixation is guaranteed when the pull-out force is larger than projected force.

Keywords: cephalomedullary; pull-out force; femur bone; helical blade; screw; polyurethane (PUR) foam

1. Introduction

The incidence of intertrochanteric (IT) fracture has been issued continuously with an
increase of the elderly population [1–4], which tends to have a close relation to the mortality
rate since it increases up to 30% within one year after IT fractures [5–7]. Extramedullary
implant and cephalomedullary nail are commonly used for operative treatment against
IT fracture [8]. Especially, cephalomedullary nail is a representative method that has been
frequently utilized by surgeons in terms of biomechanical advantages [9–11].

Although both clinical and biomechanical studies suggested that cephalomedullary
nail has a mechanical advantage over extramedullary implants, a high rate of complications
or implant failure remains in elderly patients with osteoporosis [12–14].

There are two types of main implants, such as screw and helical blade [15,16] for
adopting the cephalomedullary nail system, designed to allow sliding of a proximal frag-
ment so that contact surface and stability of fracture site can be increased after fixation.
However, it is possible for instability to occur in the cephalomedullary nail system due to
excessive sliding when the gap between several fragmentations along the fracture surface is
relatively large after fixation [17–19]. To minimize the gap at the fracture surface during the
operation, intraoperative compression is additionally applied to the cephalomedullary nail
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by utilizing devices in the designed nail set [20]. In some clinical cases, however, a proxi-
mal fixation implant escapes out from the proximal fragment during the intraoperative
compression procedure before the proper compression is achieved due to the osteoporotic
bone quality.

Furthermore, even though the fixation is successfully conducted by utilizing the
cephalomedullary nail system, there are several issues in nail migration with different
types of loading conditions, such as walking and dynamic exercise, etc. S.Y. Lee et al. [21]
reported traumatic complete back out of the helical blade of the PFNA-II in a healed IT
fracture. L. Karapinar et al. [22] examined the blade migration over time, which resulted in
fracture site collapse. N. Lasanianos et al. [23] emphasized that sufficient screw fixation to
resist migration under dynamic loading is substantially important since it can be considered
to be an evolutionary complication. Under these circumstances, it is essential to examine
the pull-out performances of cephalomedullary nails with screw and helical blade types in
terms of bone density.

To make a comparison of the pull-out performance of screw and helical blade in the
cephalomedullary nail system, biomedical polyurethane (PUR) foam blocks to simulate the
human bone with two grades of densities to represent the normal person (0.35 g/cm3) and
elderly person who has osteoporosis (0.14 g/cm3) were prepared to carry out the tension,
compression, and pull-out tests. Based on the biomechanical tests, material properties have
been obtained to conduct FEM analysis, which demonstrates the failure mode as well as
reaction force during the pull-out test, in detail.

2. Experimental Procedure

To represent human bone for comparative pull-out performances of cephalomedullary
nail, biomedical PUR foam blocks produced by Synbone [24] with two grades of densities
such as low density (0.14 g/cm3) and normal density (0.35 g/cm3) were prepared based on
American Society for Testing and Materials (ASTM) F1938-08 [25], as shown in Figure 1,
which consists of cancellous bone exhibiting closed-cell structure and cortical bone at the
top of the block.
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Figure 1. Foam blocks (Synbone, Zizers) with different density of: (a) 0.14 g/cm3; (b) 0.35 g/cm3.

To obtain the tensile and compressive stress-strain curves of the PUR foams, the tensile
and compression tests have been carried out three times, since they tend to show totally
different material behavior in the tensile and compressive deformation modes with respect
to the density of the porous material [26]. Figure 2 demonstrates the detailed dimension of
test specimens for tensile, compressive, and pull-out tests based on the ASTM D 1623 and
ASTM D 1621 standards, respectively. In the case of the tensile specimen, a pre-machined
part from the PUR block as depicted in Figure 2a is attached to a cylindrical grip with
a diameter of 34 mm by applying with the metal adhesive, which is set in the universal
testing machine as shown in Figure 3a. The tensile tests are carried out with a head speed
of 1mm/min to guarantee the quasi-static strain rate.
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For the compressive test, a cylindrical specimen with a diameter of 60 mm and height
of 50 mm is compressed by a flat punch with a speed of 5 mm/min, and a Teflon sheet is
applied to minimize the frictional effects between the die-set and specimen.

In the pull-out test, a screw and helical blade are inserted, first, into a pre-machined
parallelepiped block with dimensions of 40 × 40 × 53 (mm3), which is set in the specially
designed fixture to conduct the pull-out test as shown in Figure 3c. The pre-installed
screw or helical blade is pulled upward with the speed of 5 mm/min until the final failure
occurs, and the pull-out load is measured to examine their pull-out performance. To
visually evaluate the strain distribution of the specimen during the tensile and compression
tests, the digital image correlation (DIC) technique is applied by utilizing the ARAMIS
system [27].

3. Pull-Out Performance of Cephalomedullary Nail
3.1. Experimental Results

Figure 4 represents the experimental results of the tensile and compressive tests with
respect to the densities of PUR foam. The compressive strength of the lower density
specimen exhibits about 17% of the normal density specimen, as depicted in Figure 4b,
while the tensile strength of the lower density specimen exhibits about 30%, as shown in
Figure 4a.



Appl. Sci. 2021, 11, 496 4 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 12 
 

experimental reaction forces from the pull-out tests in which screw-type shows substan-
tially higher reaction force than helical blade independent of the foam density. After the 
first peak occurs, the pull-out force rapidly decreases since the contact area between the 
screw or helical blade and the PUR foam decrease. Since there is a lot of debris observed 
in the screw thread after pull-out tests as depicted in Figure 6a,c, it is evaluated that the 
screw-type tends to induce severe damage to the PUR foam during the pull-out process 
even though it is able to guarantee sufficient clamping force. In terms of the peak loads in 
the pull-out test, the screw-type demonstrates higher clamping forces of 177 ± 7% in the 
normal-density foam and 198 ± 13% in the low-density foam, as seen in Figure 7. 

0.00 0.02 0.04 0.06 0.08 0.10
0

2

4

6

En
gi

ne
er

in
g 

st
re

ss
[M

Pa
]

Engineering strain

 Normal density (0.35g/cm3)
 Low density (0.14g/cm3)

 
0.0 0.2 0.4 0.6

0

3

6

9

12

En
gi

ne
er

in
g 

st
re

ss
[M

Pa
]

Engineering strain

 Normal density (0.35g/cm3)
 Low density (0.14g/cm3)

 
(a) (b) 

Figure 4. Experimental stress-strain curves in: (a) tensile test; (b) compressive test. 
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Figure 5. Experimental results of pull-out test with screw and helical blade with respect to differ-
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Figure 4. Experimental stress-strain curves in: (a) tensile test; (b) compressive test.

Pull-out tests with helical blade and screw were conducted with respect to the PUR
foam density for three repeated tests to guarantee reproducibility. Figure 5 compares the
experimental reaction forces from the pull-out tests in which screw-type shows substantially
higher reaction force than helical blade independent of the foam density. After the first
peak occurs, the pull-out force rapidly decreases since the contact area between the screw or
helical blade and the PUR foam decrease. Since there is a lot of debris observed in the screw
thread after pull-out tests as depicted in Figure 6a,c, it is evaluated that the screw-type
tends to induce severe damage to the PUR foam during the pull-out process even though it
is able to guarantee sufficient clamping force. In terms of the peak loads in the pull-out test,
the screw-type demonstrates higher clamping forces of 177 ± 7% in the normal-density
foam and 198 ± 13% in the low-density foam, as seen in Figure 7.
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3.2. Finite Element Analysis with Damage Model

In order to precisely evaluate the pull-out behavior of the synthetic bone material,
commercial FEM software, ABAQUS/Explicit, has been utilized. The screw and helical
blade are pre-installed in the synthetic bone material as demonstrated in Figure 8. Since
the porous materials show substantially different material behaviors in tension and com-
pression test as represented in Figure 4, it is highly required to adopt the special material
model which can express tension–compression anisotropy characteristics. In this paper,
the concrete damaged plasticity model [26,28,29] has been applied to numerical simula-
tion for the pull-out test, which does not only represent tensile and compressive material
behaviors, simultaneously, but also describes the degradation of material hardening for
failure, successfully. The concrete damaged plasticity model assumes the non-associated
potential plastic flow where the flow potential, G, used for this model is the Drucker–Prager
hyperbolic function as expressed in Equation (1).

G =

√
(εσt0tanψ)2 + q2 − ptanψ (1)
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ψ(θ, fi) is the dilation angle measured in the p-q plane at high confining pressure,
σt0(θ, fi) = σt|

ε
pl
t =0,

.
ε

pl
t =0

is the uniaxial tensile stress at failure, ε(θ, fi) is a parameter, re-

ferred to as the eccentricity, which defines the rate at which the function approaches
the asymptote, p = − 1

3 σI is the effective hydrostatic pressure, σ is the effective stress,

q =
√

3
2 (S : S) is the von Mises equivalent stress, where S = σ + pI is the deviator of

the Cauchy stress tensor, σ, [30–32]. In terms of effective stresses, the yield function, F,
takes into consideration the yield strength of tension and compression with the form as
follows [31,33],

F =
1

1− α

(
q− 3αp + β

(
ε̃pl
)
< σ̂max >− γ< σ̂max >

)
− σc

(
ε̃pl
)
= 0 (2)

α =

(
σb0
σc0

)
− 1

2
(

σb0
σc0

)
− 1

; 0 ≤ α ≤ 0.5, β =
σc

(
ε̃

pl
t

)
σt

(
ε̃

pl
t

) (1− α)− (1 + α), γ =
3(1− KC)

2Kc − 1
(3)

where ε̃pl is the equivalent plastic strain tensor, σ̂max is the maximum principal effective
stress, σb0

σc0
is the ratio of initial equibiaxial compressive yield stress to initial uniaxial

compressive yield stress, and KC is the ratio of the second stress invariant on the tensile
meridian, σt and σC are the effective tensile and compressive cohesion stress, respectively.
In addition, α and γ both are dimensionless material constants.

To represent the degradation of the material, the concrete damaged plasticity model
adopts the constitutive curves for uniaxial damage in tension and compression, separately,
as shown in Figure 9. The evolution of the compressive damage parameter, dc, is linked
to the corresponding plastic strain ε̃

pl
c which is determined proportionally to the inelastic

strain ε̃in
c = εc − σc/E0 using a constant factor bc with 0 < bc ≤ 1 [34].

ε̃
pl
c = ε̃in

c −
dc

(1− dc)

σc

E0
(4)

dc =
(1− bc)ε̃in

c E0

σc + (1− bc)ε̃in
c E0

(5)
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Similar to Equation (5), the tension damage, dt, depends on ε̃
pl
t , which is expressed in

Equation (6) [34].

dt =
(1− bt)ε̃in

t E0

σt + (1− bt)ε̃in
t E0

(6)

Based on these calibrated damage parameters from the tensile and compressive ex-
perimental results, it is possible to numerically simulate the material behaviors in tension
and compression as shown in Figure 10. Figure 11 compares the pull-out forces between
experiment and FEM analysis with the screw and helical blade, which tends to predict the
peak pull-out forces, precisely, compared with experimental results. To investigate the fail-
ure mechanism during the pull-out test, sectional views at the pull-out stroke of 4 mm and
6 mm have been presented as shown in Figure 12, in which von Mises stress distribution
around the screw is substantially larger than that of the helical blade. Furthermore, von
Mises stress on the thread of the screw is concentrated severely, which results in material
failure to induce pull-out behavior.
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3.3. Discussion

From the experimental results of the tension and compression test as represented in
Figure 4, the strengths of tension and compression dramatically increase more than three
and six times when the density of the PUR foam increases twice, which indicates that the
bone density can be the main standard to decide the type of fixation. For these reasons,
pull-out performances of the lower density of PUR foam representing osteoporosis are
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significantly aggravated regardless of types of fixation, as shown in Figure 7. From the
results of numerical simulation, the thread of the screw makes it possible to increase the
resistance of the pull-out by biting the threads and pre-machined bone, but their resistance
dramatically reduced when bone near the thread reaches the onset of fracture during
fracture. In the case of the helical blade type, it withstands the pull-out by inducing local
plastic deformation near the blade, and the resistance load gradually decreases with the
inducing of local plastic deformation without failure when it reaches the peak force as
shown in Figure 5. This is why the screw-type exhibits lots of debris near the thread, but it
is clean in the helical blade type after the pull-out test, as shown in Figure 6a.

Bergmann et al. [35] have directly measured the contact force on the femoral head
according to various types of activity such as walking, stance, and jogging, etc., which were
expressed in terms of x, y, z coordinates. To evaluate the critical pull-out force physically,
it is necessary to project the contact force (Fres) along the insertion direction as shown
in Figure 13. Using Equation (7), projected force, Fproj, is calculated along the insertion
direction. Then, stable fixation against screw or helical blade migration is guaranteed when
the pull-out force, Fpull-out, from Figure 5 is larger than Fproj.

Fproj = Fzcosα+ Fxsinα (7)Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 12 
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When assuming the walking activity for a person weighing 100 kg, Fproj ranges from
1323.8 N to 629.36 N, when α is 45◦ and 60◦ based on the HIGH100 data [36]. By applying
the conversion factor, fAH = 1.55 [35], to the previous data for a 100 kg person, Fproj for
a person weighing 75 kg is calculated from 406.2 N to 854.1 N. Figure 14 represents the
comparison of projected force and pull-out force from the experiment where the orange
and blue band highlights the range of Fproj for a 100 kg and 75 kg person, respectively.
For a 100 kg person having a normal bone density, both types of fixation are available
since the projected force during the walking activity is lower than the pull-out force from
the fixations. To minimize the loss of a bone during the surgery, a helical blade type is
recommended, because its insertion method could achieve retention and compaction of
cancellous bone compared with that of a screw-type implant [16]. However, for a 100 kg
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person with low bone density, a screw type is recommended to guarantee high clamping
force against migration or loosening during the walking activity, as depicted in Figure 14.
For an ordinary person (≈75 kg) with normal bone density, both types of fixations are
available, since the projected force during the walking activity is lower than the pull-out
force from fixation. However, for an ordinary person (≈75 kg) who has low bone density,
a screw type is recommended, since the helical blade type shows a lower pull-out force than
the projected force induced by walking activity, as represented in Figure 14. Concerning
the weight and bone density of an elderly woman who is prone to having osteoporosis,
a screw type is also recommended rather than blade types, but it should be considered in
terms of the aggravation effect of pre-drilling on the neighbor bone, since the drill bit of
pre-drilling for the screw type is larger than the helical blade type.
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4. Conclusions

This paper mainly compares the fixation performances of cephalomedullary nail in
terms of the pull-out force when applying screw and helical blade types with respect to
femur bone densities. It is substantially important to guide which types of fixation are
applied during the operation, since it tends to induce the backout or migration of helical
blade and screw depending on the weight and bone density under the fully tightened
condition. To compare the pull-out forces between the normal person and an elderly person
who has osteoporosis, two different densities of biomedical PUR foam blocks are utilized.
The pre-installed screw or helical blade is pulled out while tracking the pull-out load until
the final failure occurs. To make a physical comparison of the critical fixation force of
screw and helical blade, we have suggested that stable fixation is guaranteed when the
pull-out force, Fpull-out, is larger than Fproj. Based on these close examinations, the following
conclusions can be drawn:

(1) The clamping force of the screw is about 177% higher than the helical blade in the
normal foam density (0.35 g/cm3) and 198% in the low foam density (0.14 g/cm3).

(2) Based on the previous experimental data [35], for a 100 kg person with normal bone
density, both types of fixation such as screw and helical blade are available considering
walking activity, since the pull-out force, Fpull-out, is greater than the projected force,
Fproj. However, the helical blade type is evaluated as more favorable, since the screw-
type tends to require predrilling for lateral cortex opening, inducing inevitable loss of
cancellous bone.
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(3) For a 100 kg person with low bone density, the screw type is recommended to
guarantee high clamping force against migration or loosening during walking activity.
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