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Abstract: Polyethylene (PE) and its variations are among the most traditional materials used for
cushioning in packaging systems. The role of these materials is to prevent damages during handling
and distribution processes from physical events such as vibration stress. This study presents new
results on the characterization of properties of PE and XPE (cross-linked polyethylene) packaging
materials, which have significant relevance as a protective mechanism due to their vibration trans-
missibility and frequency curve properties. The main goal of this study is the evaluation of vibration
transmissibility of PE and XPE cushion material at varied real temperature and static load conditions
through a series of experiments using a vibration tester and climate chamber to determine the peak
frequencies, vibration transmissibility, and damping ratios. The results can be used by engineers in
the package-design process, and can be useful in different distribution conditions. Three different
kinds of static loads and a 0.5 oct/min sine sweep of vibration test were used to find the peak
frequencies and vibration transmissibility at −20 ◦C, 0 ◦C, 20 ◦C and 40 ◦C to estimate the damping
ratios. The results provided a better understanding of the materials and can assist in the design of
suitable protective packaging systems.

Keywords: XPE (cross-linked polyethylene); PE (polyethylene); packaging; vibration transmissibility

1. Introduction

Physical events such as vibration are generated by vehicles and handling equipment
during distribution in different kinds of temperature conditions. Therefore, packaging has
a particular importance in avoiding or dampening those vibration stresses, which can affect
the integrity of packaging and its protective mechanism, as well as product properties.
Furthermore, sensitive products like electrical or medical devices, or porcelain and glass
products, require a thorough and professional implementation of the packaging material
used in package-design processes. One of the most important aims of this process is to find
cost-effective materials that offer enough protection of the product against the hazards of
supply chains. Cushioning materials account for the balance between product ruggedness
and distribution hazards. The role of the materials is to absorb the energy of impact shock
or the dynamic oscillation of vibration.

Generally, the appropriate material and placement of cushioning material used in
a packaging system within a container or parcel requires a necessary isolation between
the packaged item (Figure 1). M1 is the critical element of the product (M2) that can be
damaged easily under impact loading. This component should be an important focus
during the package-design process. The primary goal of the container (M3) is to store and
hold together the product and inner packaging during the distribution. The secondary
goal of the container is to absorb the kinetic energy of impacts during transportation,
but this is neglected in the package-design process [1]. The protection element in the
packaging system, which is known as a package cushion, usually is constructed using
plastic foams [2,3]. The packaging material usually used for cushioning is a lightweight,
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inexpensive material that has high strength-to-weight and stiffness-to-weight ratios, and
has favorable cushioning characteristics and vibration transmissibility. These materials,
usually plastic foam or paper packaging, have been widely applied in secondary (master)
and tertiary (transportation) packaging to protect products such as medical or electronic
devices and instruments, or fragile products [4–6].
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In the design of protective cushions for packaged-product systems, the most widely
accepted method for the development of optimized systems is the Six-Step method, which
includes the following steps [7]:

1. Define the shipping environment

The damage potential must be evaluated and quantified based on recording the real
shipping environment during the transportation of a test package, or on an estimation.

2. Define product fragility

During this step, the natural ability of the product to withstand shocks and vibrations
from the transportation environment should be quantified.

3. Improve the robustness of the product

In some cases, the packaged-product system can be made more economical through a
redesign to increase the robustness of the product, which can reduce packaging costs.

4. Evaluate the performance of cushioning material

For optimal packaging design, the vibration transmissibility and shock attenuation of
the cushion material must be considered. Transmissibility amplification/attenuation plots
and cushion curves can be developed and applied to acquire this information.

5. Packaging design

In this step, all previously collected information about the shipping environment,
product, and cushioning material are used to create a packaging design.

6. Test and validate the packaged-product system

The prototype packaged-product system is tested to ensure that all design goals were
achieved.

This technique takes into the consideration the requirements of cushioning material
for protection from shocks and vibration resonance. During this process, different aspects
are considered by packaging professionals. The thickness of cushioning materials and the
load-bearing area should offer enough protection against the different dynamic inputs to
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minimize the cost of product damage. However, these factors should be also minimized to
keep the package costs and volumes down.

The cushion characteristics of a polymer foam are affected by their mechanical prop-
erties. Based on a study by Gibson and Ashby [8], these are related to the properties of
the polymer’s cell wall and cell geometry and can be understood in terms of bending,
elastic buckling, and plastic collapse. New simple formulas and description of a large
data for mechanical properties of polymeric foams were developed. Maiti et al. [9] con-
structed mechanism-mode maps and used them to create energy-absorption diagrams for
foams. The energy of the impact that must be absorbed by the foam can be determined by
Equation (1):

W =
∫ ε0

0
σ dε +

∫ ε∗

ε0

σ(ε) dε, (1)

where W is the energy absorbed per unit volume (J/m3), ε0 is the strain at the linear-elastic
limit, ε is the nominal compressive strain, ε∗ is the strain, and σ is the stress. Figure 2 shows
a general stress–strain curve for a foam [9]. The optimum foam material and density can
be determined using energy-absorption diagrams. Two examples of the application of this
method can be seen in the study by Gibson [10].
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Figure 2. A stress–strain curve for a foam.

The modelization of stress–strain relation and the calculation of energy absorption and
its efficiency for different cushion materials have been studied [11–17]. Another method
used in cushion design is the Janssen factor, which is the ratio of the actual peak acceleration
of the actual foam divided by the acceleration of an ideal foam [18].

Zhang and Ashby [19] developed packaging-selection diagrams with greater gener-
ality and simplicity than those developed using the Janssen factor or energy-absorption
diagrams. Their diagrams can be used to narrow down the range of densities and choices
of foams to be tested during the determining process for the cushion curves.

Cushion curves are mainly applied during the design of protective packaging both in
the packaging industry and in the Six-Step method [7,19–22]. The performance properties
of cushioning materials against shock or vibration inputs are represented in these curves.
A large amount of experimental data is required to determine these, as new curves must be
developed for each drop height, and every curve contains values for different thicknesses
and static stresses of the loading [19].

Many researchers have developed methods for designing cushion curves that are less
time-consuming and more cost-effective [23]. These studies were mostly based on the use
of static compressive stress–strain data [24–26], dynamic stress vs. energy curves [27–33]
and strain and strain rate (DF, or dynamic factor) [34,35]. Gilbert and Batt developed
an impact oscillator model that is able to predict a shock pulse’s shape, duration, and
amplitude at various static stresses and drop heights [36]. FEA (finite element analysis)
also can be applied to evaluate the performance of cushioning materials [37,38].
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Kuang et al. [39] and Ji et al. [40] studied the dropping shock response of a tangent
nonlinear packaging system and developed the homotopy perturbation method using an
auxiliary term and Li–He’s modified homotopy perturbation method coupled with the
energy method.

Ge and Rice [41] and Ge et al. [42] investigated the damping characteristics of foams,
which are relatively unfamiliar to the packaging industry compared to the cushion curve.
Ref. [41] proposed a contact force law based on a nonlinear viscoelastic model for modeling
impacts of a cushion foam. In [42], the authors studied the damping properties of a
3D-printed photopolymer with Kelvin model due to impact loading.

The standardized method to obtain the cushioning characteristics of a specific material
was described in the American Society for Testing and Materials [43,44].

In addition to shock events, vibration inputs to items also can be critical if their
frequencies are the same or similar to the natural frequencies of the product or packaging.
Cushioning must be offered protection from these inputs as well. Therefore, the cushioning
material must attenuate vibration inputs at those frequencies or similar ones.

However, cushion curves cannot be applied in the prediction of the characterization
of the frequency response of a given material, because they represent only static loading
vs. shock experienced as the cushioning is impacted [45]. The packaging industry does
not have a standard method for testing the designed frequency response of a cushioning
material [45]. Developing a transmissibility curve is one of the possible ways to determine
the frequency response of a given material [45]. Such a curve can be generated by using a
sine sweep or random vibration inputs. The curve is limited to the sample parameter [46].
Several researchers have determined vibration transmissibility curves for different materi-
als, but only in normal temperatures [4,47–52]. An application of a vibration-attenuation
plot during the package-design process was shown by Kim et al. [52].

Sek et al. [53], White et al. [54], and Batt [45] developed different techniques to study
and model the nonlinear effect of cushioning on the estimation of vibration transmissibility,
but without investigating temperature changes. The lack of knowledge about the effect of
temperature changes on dynamic packaging properties, including vibration transmissibility,
limits these applications in designing protective packaging for products.

Despite the fact that mechanical properties of PE are affected by temperature, and
packaged products encounter different temperature conditions (in extreme cases from
−20 ◦C to 50 ◦C, according to McGee et al. [33]) in the distribution environment, limited
published studies are available on the effect of temperature on cushioning designs.

Marcondes et al. [55], Szymanski [56], and McGee et al. [33] studied the effect of
temperature on the shock properties. Marcondes et al. [55] also observed the effect of
temperature on vibration transmissibility, but it was only applied during a preconditioning
period, and was not used during testing. Furthermore, the study used random vibration
signals, which are not a clear harmonic-generated motion, and it was only applied to
normal PE foam and EPS (extruded polystyrene).

However, we could not find any published laboratory cushioning research that mea-
sured and analyzed the vibration transmissibility and damping ratios of XPE for package
cushioning using different temperature and static-load conditions, or for PE material that
applied temperature conditions during the entire measurement. Our study presents new
measured and analyzed data that can help packaging engineers gain a better understanding
of the characteristics of these materials, and to design appropriate protective packaging for
sensitive goods.

The main goal of our study is to present the critical frequency bands and possible
damping ratios of PE and XPE cushion material for cushioning. This paper also discusses
the effect of temperature changes during vibration circumstances and gives relevant infor-
mation for varied static loads. The data from this research can be compared to previous
research that was performed for shock properties of PE materials. This new data can be a
useful technical support for engineers in packaging design.
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Our study provides more accurate details about the vibration transmissibility of plastic
foams at different temperatures, and clearly shows the effect of temperature. A better
understanding of the resonant frequencies of cushioning materials at different temperatures
helps engineers to select an optimal design with regard to the natural frequency of product.

2. Materials and Method
2.1. Experimental Materials

Various materials can be used as cushioning, but generally the base classes can be
defined as closed-cell and open-cell. The samples used for this study (PE and XPE) are
closed-cell materials (Figure 3). The closed-cell foam structure was constructed by blowing
an agent that decomposes at the fusion point of the plastic material, releasing gas bubbles
during the process. All samples were supplied by Green Packaging Ltd. (Budapest,
Hungary). The experimental materials used were XPE and PE foams with three different
kinds of density. Two kinds of PE foam with densities of 25.25 kg/m3 (PE25 in this study)
and 30.12 kg/m3 (PE30 in this study) were selected as experimental materials, and one
more XPE foam with a density of 29.55 kg/m3 (XPE in this study). The only difference
between the PE foams was the density. The samples used for measurements were cut into
blocks with dimensions of 150 mm × 150 mm × 20 mm (length × width × thickness).
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2.2. Method for Conditioning

Before each test, the test samples were preconditioned and maintained for 24 h at
−20 ◦C, 0 ◦C, 20 ◦C, and 40 ◦C to ensure that they reached their equilibrium temperature. This
temperature condition was maintained during the entire measurement process. An ANYVIB
600 C 10 climate chamber was used to combine the vibration test with the environmental
conditions. The relevant specification of the equipment can be seen in Table 1.
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Table 1. Specifications of measurement instruments used in this study.

Equipment Manufacturer Parameter

Vibration Test
System TV

59355/AIT-440

TIRA GmbH
(Germany)

Rated peak force
Sinepk

max. 55,000 N

Frequency max. 2500 Hz
Max. velocity Sine 2.0 m/s
Max. acceleration

Sine 100 g

AV600 C 10 Angelantoni
Industrie Srl (Italy)

Useful capacity (L) max. 610
Temperature range

(◦C) −75 to +180

VR9500 Vibration
Research(USA)

Frequency range DC to 50,000 Hz
Sample frequency 10,000 Hz to 200,000 Hz

Sweep rate

Linear from zero to
100,000 Hz/min or

logarithmic from zero to
100,000 octaves/min

2.3. Method for Static Load

Three static loads were selected for each material and temperature, since vibration
transmissibility is influenced by static load [57]. Weighted concrete mass blocks were used
as the static loads, which were placed on top of the test samples and then clamped. The
three static loads were 3.488 kPa, 4.651 kPa, and 6.976 kPa.

2.4. Method for Vibration Transmissibility

The vibration transmissibility of materials for the cushioning of packages is gener-
ally described as the relationship between the vibration transmissibility and the peak
frequency [57]. Transmissibility is a nondimensional ratio of the response acceleration
amplitude of the packaged product in a steady-state forced vibration to the excitation
acceleration amplitude [58]. Both magnification and transmissibility compare the output
response to the forced vibration input, as shown in Equation (2):

M =
1

1 −
( f f

fn

)2 =
output
input

, (2)

where M is the magnification factor, f f is the forcing frequency [Hz], and fn is the natural
frequency [Hz]. Magnification of an undamped spring system is shown in Figure 4. When
f f / fn equals 1, the value of M is the maximum (∞), revealing the resonance point.

The test system (Figure 5) consisted of an electrodynamic vibration tester (TIRA
TV59355/AIT-440; Figure 5b), a vibration testing controller and acquisition system (VR
9500), and VibrationView software. The relevant specifications of the equipment are shown
in Table 1. The fixtures for the test are also shown in Figure 5. During the measurement
process, each sample was placed in this test fixture, and the mass block was placed on top
of the test specimen.
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The vibration setup for each measurement was as follows: sine sweep 0.5 oct/min;
amplitude 0.5 g (zero-to-peak); frequency band 3–300 Hz; sampling frequency 10,000 Hz.
The reason for using this frequency band is that the most common and relative high
amplitude vibration during distribution can be found between 3–300 Hz. This is also the
band that is used in many vibration test standards for simulation circumstances [3]. The
static load was adjusted by changing the blocks. One acceleration sensor was attached
to the platform of the vibration head expander (inside the climate chamber) to control
the excitation input, and another was placed on the mass block to measure the response
acceleration. The measured acceleration records were analyzed and presented in the form
of a vibration transmissibility and frequency curves. Following the series of tests, the
vibration transmissibility and frequency curves at different static loads were evaluated.
The numerical results for resonance frequency bands were naturally reported for this study.
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2.5. Method for Estimation of Damping Ratio

The damping ratio was estimated by applying linear vibration theory with a single
degree-of-freedom system with viscous damping by using Equations (5) and (6). The
equation of motion is given by [47]:

m
..
x + c

.
x + kx = c

.
u + ku, (3)

where m is the mass of the moving object, c is the linear viscous damping coefficient, k is
the linear elastic stiffness coefficient, and x and u are the response displacement and the
excitation displacement, respectively. The transmissibility value (Tr) for a linear spring-
mass system with a single degree-of-freedom system with viscous damping was calculated
using the following equation, a Fourier transformation of Equation (3) [46]:

Tr =

√√√√√√√
1 +

[
2 ξ
( f f

fn

)]2

[
1 −

( f f
fn

)2
]2

+
[
2 ξ
( f f

fn

)]2
, (4)

where f f is the forcing frequency [Hz], fn is the natural frequency [Hz], and ξ is the
damping ratio. When f f

∼= fn, the damping ratio can be estimated using Equation (4) [47]:

ξ =
1
2

×

√
1

Tr2 − 1
, (5)

When Tr � 1, the damping ratio can be estimated using Equation (5) [47]:

ξ ≈ 1
2Tr

, (6)

Transmissibility curves of damped systems are shown in Figure 6.
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The evaluation of the effects of temperature on vibration transmission are arranged in
sequence below:

1. Preparation of the samples and mass blocks (size, weight)
2. Conditioning of the elements (temperature, time)
3. Assembly of the measurement system (fixture, static stress)
4. Parameter setting and setup of the vibration measurement (frequency band, sweep

rate, amplitude, frequency range)
5. Expression of the measured and calculated results (applied equations, units).
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3. Results and Discussion
3.1. Experimental Results

The vibration tests were performed at different temperatures with different cushioning
materials, according to the test method described in Section 2. Frequency ranges, vibration
transmissibility, and damping ratios were determined. Frequency ranges and vibration
transmissibility were measured using vibration tests directly. Three frequency values
were stated at each temperature and static load. The first value was Tr ∼= 1.1. The
transmissibility plot left the direct coupling zone and reached the amplification zone stable,
according to our observation. The strict border between direct coupling and amplification
zone occurs when Tr > 1, but the observed measured value showed that the transmissibility
was not 1 strictly in the direct coupling zone, but varied between 0.9 and 1.1. However,
once the transmissibility reached 1.1, the plot did not return to the direct coupling zone.
The second frequency value was the maximum value of the transmissibility, and the third
frequency value showed the interface between the amplification and attenuation. Vibration
transmissibility and frequency curves of the tested materials at different temperatures at
different static loads are shown in Figures 7–9. Figure 7 shows the curves for PE25 at static
loads 3.488 kPa, 4.651 kPa, and 6.976 kPa; Figure 8 shows the curves for PE30; and Figure 9
shows the curves for XPE at the same static loads.
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The damping ratios were estimated by applying linear vibration theory with single
degree-of-freedom system with viscous damping based on Equations (5) and (6). Equation
(5) was used when f f

∼= fn, and Equation (6) was used when Tr � 1 (Tables 2–4). Each
table separately provides the experimental results of PE25, PE30, and XPE cushioning
materials at different temperatures and at different static loads.

Table 2. Vibration transmissibility and damping ratio of PE25 cushion material.

Static Load
[kPa]

Zone Interface
Temperature [◦C]

−20 0 +20 +40

3.488

Direct coupling/amplification
Frequency [Hz] 15.9398 13.9783 12.2300 12.0621
Transmissibility 1.1004 1.1016 1.1003 1.1007
Damping ratio 1.0890 1.0821 1.0894 1.0869

Peak transmissibility
Frequency [Hz] 44.4331 40.1499 34.0133 32.5566
Transmissibility 8.8497 7.2479 6.7084 6.1717
Damping ratio 0.0565 0.0690 0.0745 0.0810

Amplification/attenuation
Frequency [Hz] 69.9528 63.9419 54.4190 52.4496
Transmissibility 0.9900 0.9876 0.9948 0.9989
Damping ratio

4.651

Direct coupling/amplification
Frequency [Hz] 13.9783 12.4862 11.4133 10.6266
Transmissibility 1.1003 1.1012 1.1004 1.1026
Damping ratio 1.0894 1.0845 1.0886 1.0767

Peak transmissibility
Frequency [Hz] 42.6283 35.2904 31.0191 29.2830
Transmissibility 9.2423 6.9581 7.0325 7.3457
Damping ratio 0.0541 0.0719 0.0711 0.0681

Amplification/attenuation
Frequency [Hz] 67.4213 57.1164 47.6126 45.8895
Transmissibility 0.9940 0.9933 0.9979 0.9985
Damping ratio

6.976

Direct coupling/amplification
Frequency [Hz] 11.9790 11.5455 10.9497 10.1481
Transmissibility 1.1011 1.1006 1.1001 1.1007
Damping ratio 1.0851 1.0879 1.0908 1.0870

Peak transmissibility
Frequency [Hz] 35.9468 32.8580 29.3506 28.1584
Transmissibility 9.2440 9.0860 9.6113 9.3520
Damping ratio 0.0541 0.0550 0.0520 0.0535

Amplification/attenuation
Frequency [Hz] 55.9444 51.1372 45.1554 43.9242
Transmissibility 0.9976 0.9984 0.9903 0.9931
Damping ratio

Table 3. Vibration transmissibility and damping ratio of PE30 cushion material.

Static Load
[kPa]

Zone Interface
Temperature [◦C]

−20 0 +20 +40

3.488

Direct coupling/amplification
Frequency [Hz] 28.1584 21.2592 17.0411 15.0825
Transmissibility 1.1003 1.1014 1.1012 1.1011
Damping ratio 1.0894 1.0834 1.0845 1.0849

Peak transmissibility
Frequency [Hz] 84.3035 62.4857 48.1642 42.7266
Transmissibility 7.8330 7.4628 6.4579 6.2995
Damping ratio 0.0638 0.0670 0.0774 0.0794

Amplification/attenuation
Frequency [Hz] 137.706 99.7429 75.3045 67.8889
Transmissibility 0.9956 0.9960 0.9950 0.9935
Damping ratio
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Table 3. Cont.

Static Load
[kPa]

Zone Interface
Temperature [◦C]

−20 0 +20 +40

4.651

Direct coupling/amplification
Frequency [Hz] 21.9055 17.7626 12.8658 12.1458
Transmissibility 1.1073 1.1010 1.1020 1.1013
Damping ratio 1.0517 1.0855 1.0797 1.0837

Peak transmissibility
Frequency [Hz] 68.8338 53.0573 37.9029 35.8641
Transmissibility 8.0947 6.7340 6.1872 6.3288
Damping ratio 0.0618 0.0743 0.0808 0.0790

Amplification/attenuation
Frequency [Hz] 106.389 81.4401 56.5925 55.9444
Transmissibility 0.9883 0.9977 0.9930 0.9937
Damping ratio

6.976

Direct coupling/amplification
Frequency [Hz] 17.2386 14.2383 11.9515 11.0511
Transmissibility 1.1006 1.1009 1.1050 1.1022
Damping ratio 1.0875 1.0860 1.0635 1.0789

Peak transmissibility
Frequency [Hz] 54.6703 41.5616 33.3922 31.8152
Transmissibility 7.7215 7.4278 7.7390 8.2612
Damping ratio 0.0648 0.0673 0.0646 0.0605

Amplification/attenuation
Frequency [Hz] 82.3836 61.7701 51.4919 49.1732
Transmissibility 0.9997 0.9937 0.9927 0.9938
Damping ratio

Table 4. Vibration transmissibility and damping ratio of XPE cushion material.

Static Load
[kPa]

Zone Interface
Temperature [◦C]

−20 0 +20 +40

3.488

Direct coupling/amplification
Frequency [Hz] 39.326 36.0297 30.9477 18.9899
Transmissibility 1.1002 1.1033 1.1028 1.1012
Damping ratio 1.0897 1.0729 1.0753 1.0846

Peak transmissibility
Frequency [Hz] 133.3350 114.5280 94.8137 62.6298
Transmissibility 7.9639 8.0985 7.3446 3.7688
Damping ratio 0.0628 0.0617 0.0681 0.1327

Amplification/attenuation
Frequency [Hz] 222.36 188.808 148.241 130.9
Transmissibility 0.9948 0.9824 0.9992 0.9939
Damping ratio

4.651

Direct coupling/amplification
Frequency [Hz] 36.7846 30.2429 25.9771 17.4785
Transmissibility 1.1030 1.1010 1.1025 1.1028
Damping ratio 1.0741 1.0852 1.0771 1.0754

Peak transmissibility
Frequency [Hz] 124.7180 99.5134 75.1312 50.6682
Transmissibility 9.4144 8.7795 7.1330 4.1833
Damping ratio 0.0531 0.0570 0.0701 0.1195

Amplification/attenuation
Frequency [Hz] 184.934 152.396 119.928 102.303
Transmissibility 0.9980 0.9945 0.9999 0.9959
Damping ratio

6.976

Direct coupling/amplification
Frequency [Hz] 29.1484 24.1309 16.3866 14.9786
Transmissibility 1.1043 1.1011 1.1002 1.1006
Damping ratio 1.0671 1.0849 1.0900 1.0878

Peak transmissibility
Frequency [Hz] 97.0233 78.3122 48.8345 39.8734
Transmissibility 8.5342 6.2941 4.9942 7.0873
Damping ratio 0.0586 0.0794 0.1001 0.0705

Amplification/attenuation
Frequency [Hz] 158.849 128.806 82.0049 64.0894
Transmissibility 0.9968 0.9919 0.9977 0.9971
Damping ratio
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3.2. Findings from the Experimental Results

After comparing and analyzing the experimental results of vibration transmissibility
and frequency curves of PE25, PE30, and XPE cushioning materials at different static loads
and temperatures, the following observations were obtained.

The results showed an influence of temperature on the performance of all tested
materials. At all static loads, as the temperature decreased from 40 ◦C to −20 ◦C, the
frequency of maximum vibration amplification, or resonant frequency, increased. These
results also showed a stronger influence of temperature on the resonant frequency of XPE
and PE30 compared to PE25. For instance, when a static stress of 3.488 kPa was exerted
on XPE or PE30, the resonant frequency at −20 ◦C was about two times as much as that
at 40 ◦C. However, for the same static stress level, the difference in resonant frequency of
PE25 at −20 ◦C and 40 ◦C was only about 27%.

When the frequency was over 70 Hz, the frequency range reached the attenuation
zone of PE25. This point was approximately 138 Hz for PE30 and approximately 222 Hz
for XPE.

Generally, XPE has the lowest, second-lowest, and third-lowest vibration transmissi-
bility values when considering all materials, temperatures, and static loads. The resonant
frequencies were 48.8345 Hz (+20 ◦C, 6.976 kPa), 50.6682 Hz (+40 ◦C, 4.651 kPa), and
62.6298 Hz (+40 ◦C, 3.488 kPa); while their vibration transmissibilities were 4.9942, 4.1833,
and 3.7688.

The lowest peak vibration transmissibility value was 7.7215 at −20 ◦C (PE30, 6.976 kPa).
At 0 ◦C, it was 6.2941 (XPE, 6.976 kPa). The lowest vibration transmissibility values for the
other two temperatures were 4.9942 and 3.7688.

Vibration transmissibility is influenced by the static load of the cushioning system.
Similarly, regarding the effect of temperature, the results also showed a stronger influence
of static load on the resonant frequency of XPE and PE30 compared to PE25. For example,
the average increase of resonance frequencies when the static load was decreased from
6.976 kPa to 3.488 kPa was 59% and 46% for XPE and PE 30, respectively, but only 19%
for PE25.

For the XPE material at loads of 3.488 kPa and 4.651 kPa and at 40 ◦C, a second peak
frequency was observed around 100 Hz. This phenomenon was attributed to the softer
XPE material at 40 ◦C and its shorter compression distance, which resulted in a higher
amplitude in the cross section of the specimen.

3.3. Analysis of the Experimental Results

As shown in Figures 10–12, all resonant frequencies decreased when the temperature
increased. These curves show how the resonant frequency varied as the temperature varied
for each material.
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The results of the vibration tests showed a more emphasized influence of temperature
on the performance of XPE compared to PE30 and PE25. Generally, PE25 showed the lowest
influence due to temperature changes. When the temperature was increased from −20 ◦C
to +40 ◦C, the smallest change was also measured in this material (7.7884 Hz, 6.976 kPa
static load, −20 ◦C to +40 ◦C). The resonant frequency was moved on the transmissibility
plot by at least 22 Hz for PE30 and 57 Hz for XPE, depending on the static load. The
maximum changes were more than 70 Hz for XPE, 40 Hz for PE30, and 13 Hz for PE25,
depending on the static load. Therefore, packaging engineers must take into consideration
the effects of temperature on the resonant frequency of the applied cushioning material,
especially for XPE, which showed the highest influence of varying the temperature, based
on the experimental results.

Packaged products can experience different climate conditions when shipped between
continents. However, it is rare, even in modern supply chains, that packaged products can
be exposed to all values in the wide temperature range used in our study. The temperature
usually only ranges between 20 ◦C and 40 ◦C. Furthermore, most of the available data on
the resonance frequency of cushioning materials was obtained at normal temperatures. For
this reason, packaging professionals need to know the changes in the resonant frequencies
under different temperature conditions. The resonant frequencies of PE25 and PE30 were
less influenced than XPE by all changes in temperature. As the temperature moved
from 20 ◦C to 40 ◦C, the change in resonant frequency was minimal for PE30 and PE25.
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These materials were mostly affected by a decrease in temperature. XPE was significantly
influenced by both decreasing and increasing the temperature.

The effect of the static loads on the function of temperature was not clear. At the
same temperature, the resonant frequency decreased when the static load was increased.
However, when the temperature was increased from −20 ◦C to +40 ◦C, the highest changes
in the resonant frequency were at 4.651 kPa for XPE and PE25, but at 3.488 kPa for PE30.

3.4. Comparison to Expanded Polyethylene (EPE)

The direct comparison of the results of this study to previous published results is
relatively difficult. Studies on the topic of transmissibility and damping ratio are limited.
As stated in the introduction, the effect of temperature on resonant frequencies of plastic
foams were investigated only by Marcondes et al. [55]. However, strict values are mostly
not available from that study; they can be only estimated based on two figures: resonant fre-
quencies of expanded polyethylene as a function of temperature, and resonant frequencies
of expanded polystyrene as a function of temperature. Furthermore, the transmissibility
values and damping ratios were not published directly. The results for EPE (expanded
polyethylene, ~35.24 kg/m3) showed an effect of temperature similar to what was found in
our study. When the temperature decreased, the resonant frequency mostly increased. The
only exception was the observed resonant frequency at 0.5 psi (3.447 kPa), where it was
approximately 70 Hz at 3 ◦C and 68 Hz at −17 ◦C. In contrast, in our study, the resonant
frequencies of PE25, PE30, and XPE at 3.488 kPa (~0.506 psi) were 44.4331 Hz, 84.3035 Hz,
and 133.3350 Hz at −20 ◦C; and 40.1499 Hz, 62.4857 Hz, and 114.5280 Hz at 0 ◦C. All
resonant frequencies decreased when the temperature was increased. In [55], the vibration
tests were performed at normal room temperature after preconditioning.

Furthermore, as [55] showed, the resonant frequencies at 3 ◦C and 23 ◦C at 0.75 psi
(5.17 kPa) and 1.0 psi (6.89 KPa) were quite equal. The differences were also minimal at
23◦ C and 43◦ C with 1.5 psi (10.34 kPa). In our study, the resonant frequency of PE25
decreased at 6.976 kPa (~1.012 psi) from 40.1499 Hz to 34.0133 Hz when the temperature
was increased from 0 ◦C to +20 ◦C. These values were 62.4857 Hz and 48.1642 Hz for
PE30, and 114.5280 Hz and 94.8137 Hz for XPE. The resonant frequency of XPE and PE30
at −20 ◦C was about two times as much as that at 40 ◦C. In [55], the resonant frequency
decreased from 68 Hz to 52 Hz at 0.5 psi (~3.447 kPa) when the temperature increased from
−17 ◦C to 43 ◦C. In our study, these values were 44.4331 Hz and 32.5566 Hz for PE25 at
3.488 kPa when the temperature increased from −20 ◦C to 40 ◦C. Generally, PE25 was the
least influenced by temperature changes in our study. PE25 at 1.1922 Hz (PE25, 6.976 kPa
static load, +20 ◦C to +40 ◦C) also showed the smallest changes. Generally, the changes in
PE25 were similar to the results for EPE35 in [55].

3.5. Comparison to Paper-Based Packaging

In [4,47], the authors determined the resonant frequency, transmissibility and damping
ratio for honeycomb paperboard and X-PLY corrugated paperboard at different static
loads, but without changes in temperature. The temperature during the tests was 21 ◦C
for honeycomb and 23 ◦C for X-PLY. The studies showed that in general, the vibration
transmissibility of X-PLY was low when the peak frequency was higher than 212 Hz. The
value for honeycomb was 350 Hz.

A similar study was performed in [51] for single-layer, two-layer, and three-layer
corrugated paperboard pads. The critical frequencies found were 191 Hz for the single-
layer pad, 208 Hz for the two-layer pad, and 185 Hz for the three-layer pad.

At these frequency levels, PE25, PE30, and XPE attenuated the vibration intensity at
all static loads and investigated temperature levels. Furthermore, when using honeycomb
paperboard and X-PLY corrugated paperboard as cushioning in a package, it must be
considered that the mechanical properties of these materials are highly influenced by
changes in temperature and humidity.
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4. Conclusions

Our study showed the important properties of cross-linked and non-cross-linked
polyethylene foam. The resonant frequencies and vibration transmissibility were measured,
and the damping ratios were calculated. The results showed that when the frequency is
over 138 Hz for non-cross-linked PE and over 222 Hz for cross-linked PE, the vibration
transmissibility was under 1 at all investigated temperatures and static loads.

The results of this paper provide new information for packaging engineers on cush-
ioning elements that use PE and XPE materials that can assist in finding optimal packaging
solutions that provide suitable protection to products and reduce the weight of packaging
used in practice. The results provide a better and more professional determination of the
optimal plastic foam cushioning to be used for product protection in variable-temperature
supply chains. When protective packaging materials are characterized, the effect of tem-
perature must be considered, especially in the application of XPE, and for PE25 and PE30
in cold temperatures.

We plan to engage in further research on this subject, with the aim of combining the
rheological properties of cushioning materials with the results of the effect of temperature
changes found in this study.
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