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Abstract: Direction finding has been extensively studied over the past decades and a number
of algorithms have been developed. In direction finding, theoretic performance prediction is a
fundamental problem. This paper addresses the performance analysis issue of interferometer-based
2D angle of arrival estimation using uniform circular array (UCA). We propose an analytic method
for performance analysis of interferometer in the presence of Gaussian or uniform error in phase
measurement of incident signal on each sensor. The analytic mean square error (MSE), which is
approximately equal to the MSE of actual interferometer-based DOA estimation, is derived via Taylor
expansion and approximation. The derived analytic MSE is useful for predicting how the MSE of the
interferometer-based DOA estimation algorithm is dependent on the phase measurement error.

Keywords: analytic MSE; interferometer; performance analysis; angle-of-arrival (AOA) estimation

1. Introduction

An analytic MSE (mean square error) due to phase measurement error for inter-
ferometer direction-of-arrival (DOA) estimation algorithm is derived in this paper. An
advantage of analytic derivation is the dramatic reduction in the computational complexity
in comparison with Monte-Carlo simulation-based approach.

In recent previous studies [1–3], we have proposed how the closed-form expressions
of the MSE of various DOA estimation algorithms can be analytically obtained.

In [1–3], closed-form expressions of the MSEs of the estimation errors for the maximum
likelihood DOA estimation, the MUSIC algorithm and amplitude comparison monopulse
algorithm, respectively, have been derived.

Various cost functions could be defined such as least-squares, cosine function and a
correlative method [4–6].

In [7], algorithm for removing phase ambiguity in the interferometer DOA estimation
has been proposed and validated for three antenna system and four antenna system.
Experimental measurements have also been conducted to validate the proposed scheme.

In [8], circular array phase interferometer with three antennas is considered. It has
been proposed how to solve the problem of phase ambiguity. The scheme is validated via
Matlab-based simulation.

In [9], computationally efficient implementation scheme for a two-dimensional corre-
lation interferometer algorithm is proposed. Two one-dimensional search processes are
performed to replace two-dimensional search.

In [10], the authors adopted machine learning to compensate for disturbances in
the direction-finding system for use with interferometer algorithm. More specifically,
multioutput least squares vector regression (MLSSVR) model is applied, which results in
much improvement in direction-finding accuracy when deviations in the system is large.

In [11], the authors developed the fast correlative interferometer direction finding.
Direct conversion scheme is applied in the implementation. In addition, the authors
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compared the performance of the interferometer algorithm with that of the CRLB (Cramer-
Rao Lower Bound). Validation using measurement data has been presented.

In [12], DeSoMP (direction estimation via spectral orthogonal matching pursuit) has
been proposed, and the scheme is validated via numerical results. The paper deals with
the case where baseline is far greater than the wavelength of an incident signal.

To the best of our knowledge, no previous studies on analytic derivation of MSEs
for simultaneous estimation of azimuth and elevation have been conducted. Explicit
expressions of the azimuth MSE and the elevation MSE have been derived and validated
using the numerical results. It is shown that the MSE obtained by Monte-Carlo simulations
of the interferometer using a cosine function is approximately equal to the analytically
derived MSE. In Section 2, we show how to derive the analytic MSE, and in Section 3,
agreements between the analytically derived MSEs and the MSEs from the Monte-Carlo
simulation are illustrated.

Various random variables can be adopted to model phase errors. Gaussian random
variables are adequate for nonuniform phase error. On the other hand, uniform random
variables can be used for modeling random error uniform distributed. Depending on
the physical phenomenon of the source of phase error, specific random variables can be
adopted.

For example, uniform random variables are used to model random thermal noise
which is distributed uniformly. In addition, phase error due to the discrepancy between
actual cable length and nominal cable length can be more adequately modeled as Gaussian
random variables since small discrepancies in cable length occurs more frequently than
large discrepanccies in cable length.

2. Novelty and Contribution

Many previous studies [7–12] focused on how the performance of the interferometer
algorithm can be improved by proposing new algorithms or by modifying conventional
interferometer algorithm. Note that many studied on ambiguity resolving have been
conducted, especially for long-baseline interferometer.

Our contribution in this manuscript does not lie in how the performance of the
interferometer algorithm can be improved by proposing a new algorithm. Our contribution
in this paper lies in a reduction in computational cost in getting the MSE of an existing
interferometer algorithm by adopting analytic approach, rather than the Monte Carlo
simulation-based MSE under measurement uncertainty due to an additive Gaussian-
distributed noise or uniformly-distributed noise. That is, the scheme described how
analytic MSE can be obtained much less computational complexity than the Monte Carlo
simulation-based MSE.

Contribution of the scheme presented in this paper mainly lies in the computational
reduction in getting the MSE analytically in comparison with the Monte Carlo simulation-
based MSE. Estimation accuracy, in terms of the MSEs of the direction-of-arrival (DOA)
estimation algorithm, is usually obtained from the Monte Carlo simulation, which can be
computationally intensive especially for large number of repetitions in the Monte Carlo
simulation. For reliable MSE in the Monte Carlo simulation, the number of repetitions
should be very large, implying a trade-off between reliability of the MSE and computational
cost in the Monte Carlo simulation. The performance of interferometer is quantitatively
obtained via the MSEs, and the derived expression is validated by comparing the analytic
MSEs with the simulation based MSEs.

In this paper, Gaussian noise and uniform noise are employed to model measure-
ment uncertainty in the implementation of interferometer algorithm. The effect of these
noises on the accuracy of the azimuth estimate and the elevation estimate is rigorously
derived. Subsequently, explicit expressions of the azimuth MSE and the elevation MSEs
are also derived.

The proposed scheme can be employed for the performance analysis in predicting how
accurate the estimate of the interferometer algorithm is without resorting computationally
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intensive Monte–Carlo simulation. The performance of the interferometer algorithm is
dependent on many parameters, such as the number snapshots, the number antenna
elements in the array, inter-element spacing between adjacent antenna elements and the
SNR. Therefore, performing Monte Carlo simulations for different values of the various
parameters is computationally intensive, which is why the analytic performance analysis
proposed can be employed to predict how well the interferometer algorithm works, given
the specific values of the various parameters. In this paper, rigorous derivation of how
the MSE of the interferometer algorithm for direction-of-arrival can be expressed in terms
of various parameters, which include the number of sensor elements and the variance of
additive noises on the antenna elements. Two cases of Gaussian-distributed additive noise
uniform-distributed additive noise are considered.

3. Uniform Circular Array (UCA)

Consider the case of a uniform circular array (UCA) with M antenna elements. A
signal is incident on the array and we are to estimate the azimuth angle and the elevation
angle of the incident signal. Note that, for simultaneous estimation of the azimuth and
elevation, the uniform linear array (ULA) cannot be adopted since ULA-based algorithm
cannot uniquely estimate the azimuth and elevation due to the ambiguity pertinent to ULA
structure.

Our interest in this paper is to get an closed-form expression of the MSEs of the
azimuth and the elevation for the UCA geometry. In the interferometer algorithm for AOA
estimation, the cost function in (2) is evaluated as the azimuth and the elevation vary, and
the maximum value of the cost function can be evaluated. The azimuth and the elevation
at which the maximum of the cost function occurs are chosen to be the azimuth estimate
and the elevation estimate.

The UCA structure is adopted to simultaneously estimate the azimuth and the eleva-
tion of an incident signal, since the ULA structure is not able to simultaneously estimate
the azimuth and the elevation of an incident signal due to an ambiguity problem.

If the array has identical responses to two different sets of DOA’s, then the ambiguity
problem is said to arise. For the ULA, actually, there are infinitely many different sets of
DOA’s resulting in identical responses, which makes the ULA inappropriate for simultane-
ous estimation of azimuth and elevation. On the other hand, for the UCA, no two different
sets of DOA’s results in identical responses. Therefore, ambiguity problem does not occur
for the UCA, which makes the UCA appropriate for simultaneous estimation of azimuth
and elevation.

4. Performance Analysis of Phase Comparison Interferometer

In this paper, the analytic performance analysis of an interferometer algorithm for the
UCA is considered. The UCA geometry is illustrated in Figure 1. The number of sensors in
the UCA is equal to M.

The theoretical phase value of incident signal on the m-th sensor is expressed as

φm =
2πr

λ
cos
(

θ(0) − 2πm
M

)
cos
(

ψ(0)
)

(1)

In (1), θ(0) and ψ(0) are true azimuth and true elevation, respectively. r is radius of circular
array, λ is wavelength, and M is the number of sensors.

For the UCA with r = λ
2 , (1) reduces to

φm = π cos
(

θ(0) − 2πm
M

)
cos
(

ψ(0)
)

(2)

Since the product of two cosine functions varies from −1 to 1, the value in (2) varies
from −π to π, implying that there is no phase ambiguity for r = λ

2 . If r is greater than
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λ
2 , the value in (2) can be greater than π or smaller than −π, implying that there is phase
ambiguity for r > λ

2 .

Figure 1. This figure shows Uniform Circular Array (UCA). The two-dimensional array can simulta-
neously estimate azimuth and elevation of signal source.

Phase measurement error is assumed to be a Gaussian random variables or uniform
random variables with zero mean, and cosine cost function is used to derive correlation
value between theoretical phase values and the estimated phase of the incident signal.
Cosine cost function of interferometer algorithm is expressed as

J(θ, ψ) =
M−1

∑
m=0

cos
[

2πr
λ

cos(θ − 2πm
M

) cos(ψ)− φ̂m

]
(3)

where φ̂m is the measured phase of m-th sensor. In (3), θ and ψ can be expressed as θ(0) +
∆θ and ψ(0) + ∆ψ, respectively. Partial differentiations and linear approximation are used
for optimization with respect to θ and ψ:

∂J(θ, ψ)

∂θ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ̂ = ψ(0) + ∆ψ

=
M−1

∑
m=0

sin
[

2πr
λ

cos(θ − 2πm
M

) cos(ψ)− φ̂m

]
sin(θ − 2πm

M
) cos(ψ) = 0. (4)

∂J(θ, ψ)

∂ψ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ = ψ(0) + ∆ψ

=
M−1

∑
m=0

sin
[

2πr
λ

cos(θ − 2πm
M

) cos(ψ)− φ̂m

]
cos(θ − 2πm

M
) sin(ψ) = 0. (5)

Analytic MSE values of azimuth and elevation are derived by solving the simultaneous
equations with respect to θ and ψ. Due to sin θ ≈ θ for small θ, (4) can be rewritten as

∂J(θ, ψ)

∂θ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ̂ = ψ(0) + ∆ψ

=
M−1

∑
m=0

[
2πr

λ
cos(θ(0) + ∆θ − 2πm

M
) cos(ψ(0) + ∆ψ)− φ̂m

]
sin(θ(0) + ∆θ − 2πm

M
) cos(ψ(0) + ∆ψ) = 0 (6)

In (6), θ(0) − 2πm
M is replaced with am and trigonometric identitiy is used:
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∂J(θ, ψ)

∂θ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ̂ = ψ(0) + ∆ψ

=
M−1

∑
m=0

[
2πr

λ
cos(am + ∆θ) cos(ψ(0) + ∆ψ)− φ̂m

]
sin(am + ∆θ) cos(ψ(0) + ∆ψ) = 0. (7)

By distributive law, (7) can be rewritten as

∂J(θ, ψ)

∂θ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ̂ = ψ(0) + ∆ψ

=
M−1

∑
m=0

[
2πr

λ
sin(2am + 2∆θ) cos2

(
ψ(0) + ∆ψ

)
− φ̂m sin(am + ∆θ) cos(ψ(0) + ∆ψ)

]
= 0. (8)

In Appendix B, it is shown why
M−1
∑

m=0
sin(2am + 2∆θ) is zero:

∂J(θ, ψ)

∂θ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ̂ = ψ(0) + ∆ψ

=
M−1

∑
m=0

[
(φm + ∆φm) sin(am + ∆θ) cos(ψ(0) + ∆ψ)

]
= 0. (9)

Using cos(∆θ) ≈ 1, sin(∆θ) ≈ θ, (9) can be rewritten as

∂J(θ,ψ)
∂θ

∣∣∣
θ = θ̂ = θ(0) + ∆θ

ψ = ψ̂ = ψ(0) + ∆ψ

=
M−1
∑

m=0

[
(φm + ∆φm) sin(am + ∆θ) cos(ψ(0) + ∆ψ)

]

=
M−1
∑

m=0

[
(φm + ∆φm)(sin(am) + cos(am)∆θ)

(
cos
(

ψ(0)
)
− sin

(
ψ(0)

)
∆ψ
)]

=
M−1
∑

m=0

 2πr
λ cos(am) cos

(
ψ(0)

)
cos(am)∆θ cos

(
ψ(0)

)
+ ∆φm sin(am) cos

(
ψ(0)

)
−∆φm sin(am) sin

(
ψ(0)

)
∆ψ + ∆φm cos(am)∆θ cos

(
ψ(0)

)  = 0.

(10)

By using
M−1
∑

m=0
cos2(am) =

M−1
∑

m=0
sin2(am) =

M
2 which is derived in Appendix B, the

right side of (10) is expressed as

∆θ

[
− 2πr

λ
M
2

{
cos(ψ(0))

}2
− cos(ψ(0))

M−1
∑

m=0
∆φm cos(am)

]
+ ∆ψ

[
sin(ψ(0))

M−1
∑

m=0
∆φm sin(am)

]
= cos(ψ(0))

M−1
∑

m=0
∆φm sin(am)

(11)

In Appendix A, the partial derivative of cost function with respect to the elevation is
derived. Applying a few trigonometric identities to (A3) yields

∆θ

[
M−1
∑

m=0
∆φm sin(am) sin(ψ(0))

]
+ ∆ψ

[
− 2πr

λ
M
2

{
sin(ψ(0))

}2
− cos(ψ(0))

M−1
∑

m=0
∆φm cos(am))

]
= sin(ψ(0))

M−1
∑

m=0
∆φm cos(am)

(12)

From (11) and (12), ∆θ and ∆ψ can be rewritten as
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∆θ =


− 2πr

λ
M
2

{
sin(ψ(0))

}2
cos(ψ(0))

M−1
∑

m=0
∆φm sin(am)

−
[{

cos(ψ(0))
}2

+ cos(ψ(0)) sin(ψ(0))

]
·
{

M−1
∑

m=0
∆φm cos(am)

}{
M−1
∑

m=0
∆φm sin(am)

}




{
2πr

λ
M
2

}2{
sin(ψ(0))

}2{
cos(ψ(0))

}2
+ 2πr

λ
M
2

{
cos(ψ(0))

}3 M−1
∑

m=0
∆φm cos(am)

+ 2πr
λ

M
2

{
cos(ψ(0))

}2
sin(ψ(0))

M−1
∑

m=0
∆φm cos(am) +

{
cos(ψ(0))

M−1
∑

m=0
∆φm cos(am)

}2

− sin(ψ(0)) cos(ψ(0)) + ·
M−1
∑

m=0
∆φm sin(am)

M−1
∑

m=0
∆φm cos(am)



(13)

∆ψ =


− 2πr

λ
M
2 sin(ψ(0))

{
cos(ψ(0))

}2 M−1
∑

m=0
∆φm cos(am)−

[
sin(ψ(0)) cos(ψ(0))

]
[{

M−1
∑

m=0
∆φm cos(am)

}2

+

{
M−1
∑

m=0
∆φm sin(am)

}2
]




{
2πr

λ
M
2

}2{
sin(ψ(0))

}2{
cos(ψ(0))

}2
+ 2πr

λ
M
2

{
cos(ψ(0))

}3 M−1
∑

m=0
∆φm cos(am)

+ 2πr
λ

M
2

{
cos(ψ(0))

}2
sin(ψ(0))

M−1
∑

m=0
∆φm cos(am) +

{
cos(ψ(0))

M−1
∑

m=0
∆φm cos(am)

}2

− sin(ψ(0)) cos(ψ(0)) ·
M−1
∑

m=0
∆φm sin(am)

M−1
∑

m=0
∆φm cos(am)



(14)

Since − 2πr
λ

M
2

{
sin(ψ(0))

}2
cos(ψ(0))

M−1
∑

m=0
∆φm sin(am) in the numerator of (13) and{

2πr
λ

M
2

}2{
sin(ψ(0))

}2{
cos(ψ(0))

}2
in the denominator of (13) is larger than other terms,

(13) and (14) can be approximated as

∆θ =

− 2πr
λ

M
2

{
sin(ψ(0))

}2
cos(ψ(0))

M−1
∑

m=0
∆φm sin(am){

2πr
λ

M
2

}2{
sin(ψ(0))

}2{cos(ψ(0))
}2

(15)

∆ψ =

− 2πr
λ

M
2 sin(ψ(0))

{
cos(ψ(0))

}2 M−1
∑

m=0
∆φm cos(am){

2πr
λ

M
2

}2{
sin(ψ(0))

}2{cos(ψ(0))
}2

. (16)

Since the phase errors in the different sensors are uncorrelated, we have

E

[{
M−1
∑

m=0
∆ϕm sin(am)

}2
]
= σ2

φ
M
2

E

[{
M−1
∑

m=0
∆ϕm cos(am)

}2
]
= σ2

φ
M
2 .

(17)

(17) is derived in Appendix C.
Applying the first equation of (17) to (15), the azimuth MSE can be written as
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E
[
(∆θ)2

]
=

 − 2πr
λ

M
2

{
sin(ψ(0))

}2
cos(ψ(0)){

2πr
λ

M
2

}2{
sin(ψ(0))

}2{cos(ψ(0))
}2


2

E

(M−1

∑
m=0

∆φm sin(am)

)2
 =

σ2
ϕ

M
2
{ 2πr

λ

}2{
cos(ψ(0))

}2 . (18)

Similarly, applyting the second equation of (17) to (16), the elevation MSE can be
expressed as

E
[
(∆ψ)2

]
=

 − 2πr
λ

M
2

{
sin(ψ(0))

}2
cos(ψ(0)){

2πr
λ

M
2

}2{
sin(ψ(0))

}2{cos(ψ(0))
}2


2

E

(M−1

∑
m=0

∆φm cos(am)

)2
 =

σ2
ϕ

M
2
{ 2πr

λ

}2{
sin(ψ(0))

}2 . (19)

From (18) and (19), for small ψ, E[(∆ψ)2] is much greater than E[(∆θ)2]. That is, for a
signal with small incident elevation, elevation error is much larger than the azimuth error.
This could be confirmed by simulation in [13].

We are concerned with how the azimuth MSE is dependent on the true azimuth or the
true elevation. In addition, the dependence of the elevation MSE on the true azimuth or
the true elevation should be addressed.

From (18), the azimuth MSE only depends on the true elevation, not on the true
azimuth. From (19), the elevation MSE is also dependent on the true elevation, not on the
true azimuth.

Although both the azimuth MSE and the elevation MSE are dependent on the true
elevation, not on the true azimuth, how the azimuth MSE varies with the increase of the
true elevation is different from how the elevation MSE varies with the increase of the true
elevation. The azimuth MSE increases with the increase of the true elevation. On the other
hand, the elevation MSE decreases with the increase of the true elevation.

5. Equivalent Derivation of the MSE of Azimuth and the MSE of Elevation

In this section, another way to obtain (18) and (19) is described. The theoretical phase
value on the m-th sensor for an incident signal from azimuth, θ, and elevation, ψ, can be
written as

φm =
2πr

λ
cos
(

θ − 2πm
M

)
cos(ψ) (20)

Explicit expressions of ∂φm
∂θ and ∂φm

∂ψ can be obtained from partial differentiations
of (20) with respect to θ and ψ :

∂φm

∂θ
= −2πr

λ
sin
(

θ − 2πm
M

)
cos(ψ) (21)

∂φm

∂ψ
= −2πr

λ
cos
(

θ − 2πm
M

)
sin(ψ) (22)

Perturbation in φm due to small change in θ and ψ can be formulated as

∆φm =
∂φm

∂θ
∆θ +

∂φm

∂ψ
∆ψ (23)

Note that (23) is equivalent to the first-order Taylor series expansion. (23) can be
written in matrix form as follows :
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∆φ1
∆φ2

...
∆φM

 =


∂φ1
∂θ

∂φ2
∂θ
...

∂φM
∂θ

∂φ1
∂ψ
∂φ2
∂ψ
...

∂φM
∂ψ


[

∆θ
∆ψ

]
(24)

Let A and b defined as

A ≡


∂φ0
∂θ

∂φ1
∂θ
...

∂φM−1
∂θ

∂φ0
∂ψ
∂φ1
∂ψ
...

∂φM−1
∂ψ

 (25)

b =


∆φ0
∆φ1

...
∆φM−1

 (26)

By substituting (21) and (22) in (25), A can be explicitly written as

A ≡ −2πr
λ


sin(θ) cos(ψ)

sin
(
θ − 2π

M
)

cos(ψ)
...

sin
(

θ − 2π(M−1)
M

)
cos(ψ)

cos(θ) sin(ψ)
cos
(
θ − 2π

M
)

sin(ψ)
...

cos
(

θ − 2π(M−1)
M

)
sin(ψ)

. (27)

In terms of A and b, (24) can be expressed as

b = A
[

∆θ
∆ψ

]
. (28)

A defined in (25) is not a square matrix. Therefore, it is not invertible. Since (28) is an
overdetermined system, the least squares approach can be adopted to get

[
∆θ ∆ψ

]T

from (28): [
∆θ
∆ψ

]
=
(

ATA
)−1(

ATb
)

. (29)

By tranposing (29),
[

∆θ ∆ψ
]

can be written as

[
∆θ ∆ψ

]
= bTA

(
AAT

)−1
. (30)

From (29) and (30), we have[
∆θ
∆ψ

]
[∆θ∆ψ] =

[
∆θ2 ∆θ∆ψ

∆ψ∆θ ∆ψ2

]
=
(

ATA
)−1

ATbbTA
(

AAT
)−1

. (31)

An additive noise on each sensor location is spatially white. From uncorrelatedness of
∆φm, we have

E[∆φm ∆φn] =

{
E
[
∆φ2

m
]
= σ2

φ m = n
E[∆φm]E[∆φn] = 0 m 6= n

(32)

where E[∆φm] = 0 and E[∆φn] = 0 are used both for m = n and for m 6= n. E[∆φm] = 0
and E[∆φn] = 0 are valid when ∆φm and ∆φn are zero-mean random variables.

From (26), bbT can be expressed as
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bbT =


∆φ0
∆φ2

...
∆φM−1

[ ∆φ0 ∆φ1 · · · ∆φM−1
]
=


∆φ2

0 ∆φ0∆φ1 · · · ∆φ0∆φM−1
∆φ1∆φ0 ∆φ2

1 · · · ∆φ1∆φM−1
...

...
. . .

...
∆φM−1∆φ0 ∆φM−1∆φ1 · · · ∆φ2

M−1

. (33)

From (33), the expected value of bbT, E[bbT], can be written as

E
[
bbT

]
=


E
[
∆φ2

0
]

E[∆φ0∆φ1] · · · E[∆φ0∆φM−1]
E[∆φ1∆φ0] E

[
∆φ2

1
]

· · · E[∆φ1∆φM−1]
...

...
. . .

...
E[∆φM−1∆φ0] E[∆φM−1∆φ1] · · · E

[
∆φ2

M−1
]

. (34)

By substituting (32) in (34), E[bbT] can be simplified to

E
[
bbT

]
=


σ2

φ 0 · · · 0
0 σ2

φ · · · 0
...

...
. . .

...
0 0 · · · σ2

φ

 = σ2
φIM. (35)

where IM denotes an M×M identity matrix. From (31), covariance matrix can be expressed as[
E
[
∆θ2] E[∆θ∆ψ]

E[∆θ∆ψ] E
[
∆ψ2] ]

= E
[(

ATA
)−1

ATbbTA
(

AAT
)−1

]
. (36)

Since A in (27) is not stochastic, (36) can be reduced to[
E
[
∆θ2] E[∆θ∆ψ]

E[∆θ∆ψ] E
[
∆ψ2] ]

=
(

ATA
)−1

ATE
[
bbT

]
A
(

AAT
)−1

. (37)

Substituting (35) in (37), we have[
E
[
∆θ2] E[∆θ∆ψ]

E[∆θ∆ψ] E
[
∆ψ2] ]

= σ2
φ

(
ATA

)−1
ATA

(
AAT

)−1
= σ2

φ

(
ATA

)−1(
ATA

)(
AAT

)−1
= σ2

φ

(
ATA

)−1
. (38)

From (27), ATA is given by

ATA =
(

2πr
λ

)2

 cos2(ψ)
M−1
∑

m=0
sin2

(
θ − 2πm

M

)
cos(ψ) sin(ψ)

M−1
∑

m=0
sin
(

θ − 2πm
M

)
cos
(

θ − 2πm
M

)
sin(ψ) cos(ψ)

M−1
∑

m=0
cos
(

θ − 2πm
M

)
sin
(

θ − 2πm
M

)
sin2(ψ)

M−1
∑

m=0
cos2

(
θ − 2πm

M

)


=
(

2πr
λ

)2

 cos2(ψ)
M−1
∑

m=0
sin2

(
θ − 2πm

M

)
1
2 cos(ψ) sin(ψ)

M−1
∑

m=0
sin
(

2θ − 4πm
M

)
1
2 sin(ψ) cos(ψ)

M−1
∑

m=0
sin
(

2θ − 4πm
M

)
sin2(ψ)

M−1
∑

m=0
cos2

(
θ − 2πm

M

)
.

(39)

In Appendix B, the following identities have been derived:

M−1

∑
m=0

sin2
(

θ − 2πm
M

)
=

M
2

(40)

M−1

∑
m=0

cos2
(

θ − 2πm
M

)
=

M
2

(41)
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M−1

∑
m=0

sin
(

2θ − 4πm
M

)
= 0. (42)

By substituting (40)–(42) in (39), ATA can be reduced to

ATA =

(
2πr

λ

)2
[

M
2 {cos(ψ)}2 0

0 M
2 {sin(ψ)}2

]
=

M
2

(
2πr

λ

)2
[
{cos(ψ)}2 0

0 {sin(ψ)}2

]
. (43)

Since ATA is a diagonal matrix,
(
ATA

)−1 is also a diagonal matrix. The diagonal

entries of
(
ATA

)−1 are given by the reciprocals of the diagonal entries of ATA:

(
ATA

)−1
=

1
M
2
( 2πr

λ

)2

 1
{cos(ψ)}2 0

0 1
{sin(ψ)}2

. (44)

By substituting (44) in (38), the covariance matrix can be expressed as :

[
E
[
∆θ2] E[∆θ∆ψ]

E[∆θ∆ψ] E
[
∆ψ2] ]

=
σ2

φ

M
2
( 2πr

λ

)2

 1
{cos(ψ)}2 0

0 1
{sin(ψ)}2

. (45)

6. Numerical Results

In this section, a computer simulation was conducted on the MATLAB R2017a version.
The simulation environment is set as shown in Table 1. The phase error is assumed to be
a Gaussian or a uniform random variables. We compared the MSE of the Monte Carlo
simulation for various values of measurement noise variance. The x-axis of the Figure
represents the standard deviation, and the y-axis represents the MSE value on a log scale.
The simulation was performed by fixing the azimuth angle to 120 degrees and changing
the elevation angle to 15◦, 45◦, and 75◦.

Table 1. Simulation condition.

Parameter Value

Number of sensors 5
Array architecture Uniform Circular Array

Monte-Carlo iteration 1000
Radius of array 0.5λ

The noise of the phase is assumed to be the zero-mean uniform random variables.
Since the random variables are assumed to be uniformly distributed between −A degrees

and A degrees, standard deviation of uniform random variables is σ =
√

A2

3 . Since A
values are 1◦, 5◦, 9◦, 13◦ and 17◦, standard deviations are 0.57◦, 2.88◦, 5.19◦, 7.5◦ and 9.81◦,
respectively.

Figures 2–4 show the simulation results for the Gaussian random error, and Figures 5–7
show the simulation results for the uniform random error. The elevation was set to 15◦,
45◦, and 75◦, and the azimuth was set to 120◦ in all cases. It is shown that the MSE of the
azimuth is larger than that of the elevation for high true elevation incident signal. On the
other hand, it is shown that the MSE of elevation is larger than that of the azimuth for low
true elevation incident signal. In all cases, it can be confirmed that the analytic MSEs show
agreements with the MSEs of the Monte Carlo simulation.
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Figure 2. Performance for Gaussian−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 15◦. This figure shows the mean square errors (MSEs) of azimuth and elevation with respect
to phase error at a signal with low incident elevation. It can be confirmed that the MSE of elevation is
larger than that of the azimuth at low elevation(uniform circular array).
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Figure 3. Performance for Gaussian−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 45◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with medium incident elevation. It can be confirmed that the MSE of elevation is similar to
that of the azimuth at medium elevation(uniform circular array).
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Figure 4. Performance for Gaussian−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 75◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with high incident elevation. It can be confirmed that the MSE of elevation is smaller than that
of the azimuth at high elevation(uniform circular array).
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Figure 5. Performance for uniformly−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 15◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at
a signal with low incident elevation(uniform circular array). It can be confirmed that the MSE of
elevation is larger than that of the azimuth at low elevation(uniform circular array).
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Figure 6. Performance for uniformly−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 45◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with medium incident elevation. It can be confirmed that the MSE of elevation is similar to
that of the azimuth at medium elevation(uniform circular array).
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Figure 7. Performance for uniformly−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 75◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with high incident elevation. It can be confirmed that the MSE of elevation is smaller than that
of the azimuth at high elevation(uniform circular array).

From the upper figures of Figures 2–7, it is clear that azimuth MSE increases with the
increase of the true elevation angle, ψ(0). On the other hand, from the lower figures of
Figures 2–7, it is clear that elevation MSE decreases with the increase of the true elevation
angle, ψ(0). From Figures 2 and 5, the elevation MSE is greater than the azimuth MSE for
small ψ(0) = 15◦. Note that 1

(sin(ψ(0)))2 is greater than 1
(cos(ψ(0)))2 for ψ(0) < 45◦.
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On the other hand, from Figures 4 and 7, the elevation MSE is smaller than the
azimuth MSE for large ψ(0) = 75◦, which is consistent with (19) and (20) since 1

(sin(ψ(0)))2 is

smaller than 1
(cos(ψ(0)))2 for ψ(0) > 45◦. The observations summarized at the end of Section

“Performance analysis of phase comparison interferometer” are validated from Figures 2–7.
To see how the azimuth and elevation MSEs are dependent on true azimuth and true

elevation of the incident signal for array geometry which is not uniform circular array,
rectangular planar array is considered. The array geometry and simulation parameters for
rectangular planar array are presented in Table 2. The results for the Gaussian-distributed
measurement error are shown in Figures 8–10, and those for the uniform-distributed are
illustrated in Figures 11–13.

Table 2. Simulation condition for arbitrary array.

Parameter Value

Number of sensors 9
Array architecture Rectangular Planar Array

Monte-Carlo iteration 1000
Distance of array 0.5λ

4 5 6 7 8 9 10

Standard deviation of Gaussian noise[deg]

0.2

0.3

0.4

0.5
0.6

a
z
im

u
th

 M
S

E
[d

e
g

]

Performance Comparison - Gaussian random variable

2 3 4 5 6 7 8 9 10

Standard deviation of Gaussian noise[deg]

10
0

10
1

10
2

e
le

v
a

ti
o

n
 M

S
E

[d
e

g
]

Monte-Carlo simulation MSE

Figure 8. Performance for Gaussian−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 15◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with low incident elevation by monte-carlo simulation(rectangular plannar array).
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Figure 9. Performance for Gaussian−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 45◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with low incident elevation by monte-carlo simulation(rectangular plannar array).
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Figure 10. Performance for Gaussian−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 75◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with low incident elevation by monte-carlo simulation(rectangular planar array).
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Figure 11. Performance for uniformly−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 15◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with low incident elevation by monte-carlo simulation(rectangular planar array).
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Figure 12. Performance for uniformly−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 45◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with low incident elevation by monte-carlo simulation(rectangular planar array).
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Figure 13. Performance for uniformly−distributed phase measurement error with θ(0) = 120◦ and
ψ(0) = 75◦. This figure shows the MSEs of azimuth and elevation with respect to phase error at a
signal with low incident elevation by monte-carlo simulation(rectangular planar array).

In Figures 8 and 11, elevation MSE is greater than azimuth MSE. In Figures 10 and 13,
elevation MSE is smaller than azimuth MSE. The dependence of azimuth MSE and elevation
MSE on the true elevation is clearly illustrated in Figures 8–13. Note that all the observations
in Figures 2–7 are also true for Figures 8–13.

7. Conclusions

In this paper, we have proposed a method of deriving analytic MSEs of azimuth esti-
mates and elevation estimates of signal incident on the uniform circular array. The derived
expression is validated from the agreement between the analytically derived expression
and the results from the Monte-Carlo simulation in Figures 2–13. In the numerical results,
it is shown that the azimuth MSE and the elevation MSE are highly dependent on the true
elevation of the incident signal rather than true azimuth of the incident signal.

Explicit expressions of the MSEs of the azimuth estimate and the elevation estimate
have been derived. The derived expressions are used to determine how accurate the
interferometer algorithm under measurement uncertainty is. It has been illustrated in the
numerical results.

Another contribution of the proposed scheme is that the azimuth estimation error
in (15) and the elevation estimation error in (16) can be obtained without exhaustive search
of interferometer cost function in (2). In Monte-Carlo simulation, two-dimensional search
with respect to θ and ψ of the cost function in (3) should be performed, which is two-
dimensional nonlinear optimization. On the other hand, the expressions in (15) and (16)
are closed-form expressions of the azimuth error and the elevation error. Therefore, compu-
tationally intensive numerical optimization can be removed. In addition, the MSEs of the
azimuth estimate and the elevation estimate as well as the estimation errors of the azimuth
estimate and the elevation estimate are available in (18) and (19).

In addition, in numerical optimization of (3), the estimates are highly dependent
on the search range and search step, which implies that the estimates from numerical
optimization may be inaccurate if search step and search range are not properly chosen.

In summary, the estimate from the numerical optimization of (3) has two demerits
of computational cost and dependence on search step and search range. In the proposed
algorithm, since the azimuth estimate and the elevation estimate are obtained from (15)
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and (16), and the MSEs are obtained from (18) and (19), two demerits of the Monte-Carlo
simulation-based performance analysis can be removed.

We assume that an additive noise on the antenna elements is Gaussian distributed or
uniformly distributed. Noise at each antenna is spatially white.

In the case of azimuth/elevation estimation of an incident signal using the UCA, it
has been shown that the azimuth estimate and the elevation estimate associated with the
interferometer algorithm can be expressed in the closed-form as (15) and (16), respectively.

The closed-form expressions of the MSEs of the azimuth estimate and the elevation
estimate can be obtained from (18) and (19), respectively, without computationally intensive
Monte-Carlo simulation.

The dependence of the azimuth MSE and the elevation MSE on the true elevation has
been derived. The derived expressions in (18) and (19) are validated from the agreement
between the simulation-based MSEs and the analytically-derived MSEs.. The results is
illustrated in Figures 2–13.

From (18) and (19), it can be confirmed that the azimuth estimation error is the
dominant error for the small true elevation angle, and that the elevation estimation error is
dominant for the large true elevation angle. More specifically, the small true elevation angle
and the large true elevation angle correspond to ψ(0) < 45◦ and ψ(0) > 45◦, respectively.
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Appendix A. Derivation of Partial Derivative of Cost Function with Respect to
Elevation Angle

The result of differentiating the cost function with respect to the elevation angle and
the results of linear approximation can be expressed as follows:

∂J(θ,ψ)
∂ψ

∣∣∣
θ = θ̂ = θ(0) + ∆θ

ψ = ψ = ψ(0) + ∆ψ

=
M−1
∑

m=0
sin
[ 2πr

λ cos(θ − 2πm
M ) cos(ψ)− φ̂m

]
cos(θ − 2πm

M ) sin(ψ)

=
M−1
∑

m=0

[
2πr

λ cos(θ(0) + ∆θ − 2πm
M ) cos(ψ(0) + ∆ψ)− φ̂m

]
cos(θ(0) + ∆θ − 2πm

M ) sin(ψ(0) + ∆ψ)

=
M−1
∑

m=0

[
2πr

λ cos2(am + ∆θ)
(

cos
(

ψ(0)
)

cos(∆ψ)− sin
(

ψ(0)
)

sin(∆ψ)
)(

sin
(

ψ(0)
)

cos(∆ψ) + cos
(

ψ(0)
)

sin(∆ψ)
)

−φ̂m cos(am + ∆θ) sin(ψ(0) + ∆ψ)

]
= 0.

(A1)

Using cos(∆θ) ≈ 1 and sin(∆ψ) ≈ ∆ψ, (A1) is simplified to

∂J(θ, ψ)

∂ψ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ = ψ(0) + ∆ψ

=
M−1

∑
m=0

 2πr
λ cos2(am + ∆θ)

 cos
(

ψ(0)
)

sin
(

ψ(0)
)
+ cos2

(
ψ(0)

)
∆ψ

− sin2
(

ψ(0)
)

∆ψ− sin
(

ψ(0)
)

cos
(

ψ(0)
)
(∆ψ)2


−φ̂m cos(am + ∆θ) sin(ψ(0) + ∆ψ)

 = 0. (A2)

Based on the approximations of (∆ψ)2 ≈ 0, (A2) can be reduced to

∂J(θ, ψ)

∂ψ

∣∣∣∣ θ = θ̂ = θ(0) + ∆θ

ψ = ψ = ψ(0) + ∆ψ

=
M−1

∑
m=0

[
2πr

λ cos2(am + ∆θ)
(

cos
(

ψ(0)
)

sin
(

ψ(0)
)
+ cos2

(
ψ(0)

)
∆ψ− sin2

(
ψ(0)

)
∆ψ
)

−φ̂m cos(am + ∆θ) sin(ψ(0) + ∆ψ)

]
= 0. (A3)
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Appendix B. Proof of
M−1
∑

m=0
cos2(am) =

M−1
∑

m=0
sin2(am) =

M
2

If
M−1
∑

m=0
exp

(
j
(

2θ − 4πm
M

))
can be shown to be identically zero,

M−1
∑

m=0(
cos
(

2θ − 4πm
M

)
+ j sin

(
2θ − 4πm

M

))
is also equal to zero via the Euler formula.

Based on the summation of a geometric series,
M−1
∑

m=0
exp

(
j
(

2θ − 4πm
M

))
is equal to zero:

M−1
∑

m=0
exp

(
j ·
(

2θ − 4πm
M

))
= exp(j · 2θ)

(
exp

(
−j · 4π

M

)
+ exp

(
−j · 8π

M
)
+ · · ·+exp

(
−j · 4πM

M

))
= exp(j · 2θ)

(
1−exp(−j· 4π

M ·M)
1−exp(−j· 4π

M )

)
= 0.

(A4)

The number of sensor elements, M, can not be one since there should be at least two
sensor elements. Since the common ratio of a geometric sequence, exp

[
−j 4π

M

]
, should

not be equal to one, M cannot be two. Therefore, M should be greater than two. Note
that M denotes the number of sensors. Therefore, the derivation in this paper holds
when the number of sensors is at least three. Note that the number of sensors in the
interferometer algorithm is usually greater than two since adopting only two sensors results
in performance degradation due to phase ambiguity and vulnerability to an additive noise.

Apart from the phase ambiguity, there is another reason why there should be at least
three sensors. Array with only two sensors can not simultaneously estimate the azimuth
and the elevation since there exist infinitely many different directions, which result in
the same phase difference between two antenna elements. Therefore, it is impossible to
uniquely determine both the azimuth and the elevation from the phase difference between
two antenna elements. This problem occurs regardless of the distance between two sensor
elements. To obviate this problem, at least three antennas should be used.

Due to
M−1
∑

m=0

(
cos
(

2θ − 4πm
M

))
= 0 and

M−1
∑

m=0
sin
(

2θ − 4πm
M

)
= 0,

M−1
∑

m=0
cos2(am) and

M−1
∑

m=0
sin2(am) can be expressed as follows:

M−1
∑

m=0
cos2(am) =

M−1
∑

m=0

(
1+cos(2am)

2

)
= M

2

M−1
∑

m=0
sin2(am) =

M−1
∑

m=0

(
1−cos(2am)

2

)
=M

2 .
(A5)

Appendix C. Derivation of

E

[{
M−1
∑

m=0
∆φmsin(am)

}2
]
= E

[{
M−1
∑

m=0
∆φm cos (am)

}2
]
= σ2

φ

M
2

E
[
(∆φ0 sin a0 + ∆φ1 sin a1 + · · ·+ ∆φM−1 sin aM−1)

2
]

= E
[
∆φ2

0 sin2 a0
]
+ E

[
∆φ2

1 sin2 a1
]
+ · · ·+ E

[
∆φ2

M−1 sin2 aM−1
]

= E
[
∆φ2

0
]

sin2 a0 + E
[
∆φ2

1
]

sin2 a1 + · · ·+ E
[
∆φ2

M−1
]

sin2 aM−1
= σ2

φ sin2 a0 + σ2
φ sin2 a1 + · · ·+ σ2

φ sin2 aM−1

=
(
sin2 a0 + sin2 a1 + · · ·+ sin2 aM−1

)
σ2

φ = M
2 σ2

φ

(A6)

where the last identity follows from the second equation of (A5). The first identity can be
obtained from (32) with m 6= n and the third identity can be obtained from (32) with m = n.
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Similarly, E

[{
M−1
∑

m=0
∆φm cos(am)

}2
]

can be obtained as follows:

E
[
(∆φ0 cos a0 + ∆φ1 cos a1 + · · ·+ ∆φM−1 cos aM−1)

2
]

= E
[
∆φ2

0 cos2 a0
]
+ E

[
∆φ2

1 cos2 a1
]
+ · · ·+ E

[
∆φ2

M−1 cos2 aM−1
]

= E
[
∆φ2

0
]

cos2 a0 + E
[
∆φ2

1
]

cos2 a1 + · · ·+ E
[
∆φ2

M−1
]

cos2 aM−1
= σ2

φ cos2 a0 + σ2
φ cos2 a1 + · · ·+ σ2

φ cos2 aM−1

=
(
cos2 a0 + cos2 a1 + · · ·+ cos2 aM−1

)
σ2

φ = M
2 σ2

φ

(A7)

where the last identity holds due to the first equation of (A5). The first identity and the
third identity are valid due to (32) with m 6= n and m = n, respectively.
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