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Abstract: A hybrid double cladding erbium–ytterbium co-doped fiber (EYDF) amplifier with a
single-mode-multimode-single-mode (SMS) active fiber is demonstrated in this study. The hybrid
gain fiber with an SMS structure is composed of two kinds of EYDFs with 6 and 12 µm core
diameters. The transmission spectra of the SMS fiber structure were theoretically analyzed and
the simulation results indicated that the maximum loss in the 1~1.1 µm band where the Yb-band
amplified spontaneous emission (Yb-ASE) located, was much larger than that of the 1.5-µm band
because of the wavelength difference. The power performance and spectra properties of the hybrid
fiber amplifier were theoretically and experimentally analyzed and compared with a typical uniform
fiber amplifier under the same conditions. The experimental results demonstrated that this hybrid
fiber amplifier can suppress the Yb-ASE by over 12 dB and increase the slope efficiency by more than
2%, but the ASE in the 1.5-µm band increases by 2~3 dB. This work provides a possible method to
enable EYDF amplifiers to suppress the Yb-ASE and overcome the pump bottleneck effect.

Keywords: fiber amplifier; erbium–ytterbium co-doped fiber; amplified spontaneous emission;
SMS structure

1. Introduction

A single-frequency fiber laser at 1.55 µm wavelength with narrow linewidth, low fiber
transmission loss, and eye-safe properties has great application in many fields, such as
LIDAR, coherence optical communication, high sensitivity fiber sensors, and so on [1,2].
The erbium–ytterbium co-doped fiber (EYDF) amplifier is the main method for obtaining
a high-power single-frequency laser because it can minimize the linewidth broadening.
Compared with the erbium-doped fiber amplifier (EDFA), the amplifier with erbium–
ytterbium co-doped fiber as a gain medium achieves high amplification efficiency by
doping Yb-ions. In 2005, Jeong et al. demonstrated a high-power EYDF amplifier and
obtained a 151 W single-frequency fiber laser with megahertz level linewidth [3]. We also
obtained a 56.4 W high power 1.55 µm fiber laser with a linewidth of 4.2 kHz through
an EYDF amplifier in 2015 [4]. However, the Yb-band amplified spontaneous emission
(Yb-ASE) in the EYDF with a wavelength range of 1000~1100 nm, not only affects the
output signal-to-noise ratio (SNR) but also limits the amplification efficiency of the Er-band
signal light. When the pump rate exceeds the cross-relaxation rate between Yb3+ and Er3+

ions, or in high power pump conditions, the upper-level population of Yb3+ ions will
accumulate and the Yb-ASE intensity will increase rapidly. This phenomenon, known as
the pump bottleneck effect can reduce the conversion efficiency of the pump energy to
Er-band signal and can become an important limitation in the power scaling, besides the
stimulated Brillouin scattering (SBS). In 2007, the bottleneck effect was observed for the first
time in an erbium–ytterbium co-doped fiber oscillator by Jeong et al. [5] and it has attracted
the interest of researchers since then. Several effective Yb-ASE suppression methods have
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been reported in recent years. In 2010, Kuhn et al. demonstrated that an auxiliary laser
with a wavelength in the Yb-band injected in the EYDF and amplified with Er-band signal,
together can avoid the accumulation of Yb-ions upper-level population [6]. In 2011 and
2012, Sobon et al. realized Yb-ASE suppression by reflecting part of backward Yb-ASE [7]
or constructing a Yb-band ring resonator [8]. This auxiliary 1-µm laser feedback method
used in the EYDF amplifier was theoretically analyzed by Han et al. in 2011 [9]. They also
experimentally obtained 40.4% slope efficiency by using FBG feedback partial backward
Yb-ASE in 2015 [10]. Although the feedback of auxiliary 1-µm signal can effectively reduce
the intensity of Yb-ASE, this method needs additional components or laser source, which
will increase the cost and insertion loss of the amplifier. Another effective way to improve
the limitation of the bottleneck effect is by optimizing the pump wavelength. In 2016,
Creeden et al. obtained the record highest output power (207 W) for a single-frequency
1560 nm fiber laser by using the 940-nm LD as the pump source [11]. The corresponding
slope efficiency was 50.5%, which is also the highest efficiency for the EYDF amplifier
up to now. The relationship between the pump wavelength and the intensity of Yb-ASE
was simulated and analyzed by Booker et al. in 2018, which provided a theoretical basis
for optimizing the pump wavelength [12]. However, the commercial LD with specially
optimized wavelength output is too expensive to be widely used. A simple structure,
low-cost method is needed to suppress Yb-ASE effectively and improve the efficiency of
the EYDF amplifier.

In addition, the single-mode-multimode-single-mode (SMS) fiber structure has been
widely researched because of its simple structure, low cost, and easy adjustment of output
spectra [13,14]. Due to the sensitivity of the environmental parameters, the SMS fiber
structure is also used in sensing temperature [15], stress [16], vibration [17], the refractive
index [18,19], and so on. The multimode interference (MMI) effects in the multimode fiber
segment causes output spectral modulation of the SMS structure. The transverse modes
excited in the multimode fiber segment are coherently superimposed at the fusion point of
the output end single-mode fiber. Due to this MMI effect, the number of excited transverse
modes, which is related to the fiber core diameter, determines the coherence intensity,
and then affects the modulation depth of the output spectrum [20]. In step-index fiber,
the normalized frequency V is inversely proportional to the wavelength λ and directly
proportional to the mode number N [21]. The laser with a shorter wavelength can excite
more transverse modes in the same core diameter fiber. It can be inferred that the laser
with a shorter wavelength can obtain greater modulation depth in a specific SMS structure.
Specifically, in EYDF amplifiers, the Yb-ASE with a wavelength near 1 µm can result in
more transmission loss than the Er-ASE with a wavelength range of 1500~1600 nm, when
propagating through an SMS structure. This provides a possible way to suppress Yb-ASE
in EYDF amplifiers by using an SMS structure. Although the SMS fiber structure made with
passive fiber can be used as a bandpass filter [21,22], the increment in fiber length caused
by insertion in the structure is disadvantageous to the fiber amplifier as it suppresses the
nonlinear effect, especially the SBS. In our previous work, two fibers with different core
diameters were spliced together to suppress reverse propagating light [23]. If the SMS
structure can be made from commercial gain fiber with different core diameters, it could
filter the ASE while providing gain without increasing the total length of the amplifier.
However, there are two limitations to the usage of SMS structures based on active fiber.
One reason is that the core size of commercial double cladding gain fiber is too small to
obtain significant MMI effects at their working wavelength. The other is that the fusion
point on the gain fiber will reduce the thermal stability of the amplifier. Broadening the
working wavelength range or considering other light with a shorter wavelength could
obtain sufficient modes to achieve an obvious MMI effect, while the second problem can be
reduced by fiber thermal management.
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In this work, we attempted to make an SMS structure by using commercial EYDF with
different core diameters, and analyzed its properties in an amplifier, not only at the signal
but also the Yb-ASE band. A single-frequency hybrid erbium–ytterbium co-doped fiber
amplifier with an SMS structure is proposed. Two kinds of EYDFs with core diameters of 6
and 12 µm were spliced in sequence to form a hybrid gain fiber with an SMS structure. The
output performance of the hybrid EYDF amplifier was numerically and experimentally
analyzed. The length of multimode fiber in the SMS structure was preliminarily optimized
by simulation. The experimental results demonstrated that compared with a typical
uniform EYDF amplifier, the hybrid EYDF amplifier with the same fiber length can suppress
the Yb-ASE by over 12 dB without any reduction in output power. The efficiency of the
amplifier can be improved by 2.7% because of Yb-ASE suppression and the additional gain
provided by the SMS active fiber structure. This provides a monolithic structure for the
EYDF amplifier to overcome the pump bottleneck effect and achieves high efficiency and
high-power output.

2. Experimental Setup

A schematic diagram of the single-frequency hybrid EYDF amplifier is shown in
Figure 1. The seed laser is a homemade single-frequency fiber laser with a central wave-
length of 1550.14 nm and output power of 30 mW. The linewidth of this seed fiber laser
is 630 Hz [24]. The seed laser is coupled into hybrid gain fiber via an isolator and a
(2 + 1) × 1 combiner in sequence. The isolation coefficient of the isolator is 40 dB and the
max insertion loss is 0.3 dB. The output power after the isolator is 28 mW. The hybrid gain
fiber consists of SM-EYDF-6/125 (Nufern, SM-EYDF-6/125-HE) and MM-EYDF-12/130
(Nufern, MM-EYDF-12/130-HE). The cladding absorption of these active fibers is 1.8 and
4 dB/m at 976 nm, respectively. Three EYDF segments are spliced in the order of SM-6/125,
MM-12/130, and SM-6/125 to form an SMS structure in the core. However, the difference
in the inner cladding diameters of these fibers is tiny, so there is no additional transmission
loss for the inner cladding pump light passing without fusion loss. To keep the amplifier
stable and avoid the influence of fiber temperature on the output spectrum of the SMS
structure [25,26], the whole gain fiber is placed on a water-cooled heat sink for heat dissi-
pation. The 976-nm pump laser and input signal are forward coupled into the gain fiber
through the pump combiner, which is shown in the dotted box in Figure 1. The residual
pump is stripped out by a homemade cladding light stripper (CLS) at the end of the gain
fiber. The output pigtail of the amplifier is angle cleaved to launch the signal. A typical
EYDF amplifier with uniform gain fiber was theoretically and experimentally investigated
for comparison with a hybrid EYDF amplifier. The basic structure and the gain fiber length
of this typical amplifier is the same as those of the hybrid amplifier, except that the gain
fiber is uniform SM-EYDF-6/125. For the convenience of the reader, the structural diagram
of the typical EYDF amplifier is omitted here.
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Figure 1. The schematic diagram of the hybrid EYDF amplifier. CLS, cladding light striper. 

3. Results and Analysis 
3.1. Numerical Analysis of Hybrid EYDF Amplifier 

The power scaling and ASE of the EYDF amplifier with hybrid or uniform fiber were 
numerically analyzed. The simulation model of the hybrid EYDF amplifier is shown in 
Figure 1. The total length L of the gain fiber is 3 m, for both the hybrid and uniform fiber. 
The multimode fiber is inserted into two segments of single-mode fiber. The distance be-
tween the multimode fiber and z = 0 is fixed at 1 m. The length of the multimode fiber is 
assumed to be L1. The seed and pump laser are forward coupled into the gain fiber at 
length position z = 0, and launched at z = L. The power of the seed and pump in the simu-
lation are assumed to be 30 mW and 20 W, respectively. The output performance of hybrid 
gain fiber amplifier is affected by two aspects: one is the spectra modulation of the SMS 
structure, which can be obtained by analyzing the MMI effect; the other is the gain char-
acteristics of the active fiber, which can be obtained by numerically analyzing the steady-
state rate equations of the EYDF amplifier. The length of the multimode gain fiber is opti-
mized by simulation. The core diameter and length of the multimode fiber have a signifi-
cant influence on the transmission spectrum of the SMS structure due to the MMI effect. 
The modulation depth is related to the number of guiding modes N in the center multi-
mode fibers. The number of guiding modes N can be estimated by the core diameter a, the 
working wavelength λ and the numerical aperture (NA), according to Equation (1) [21]. 
The V is normalized frequency. The core NA of MM-EYDF-6/125 is 0.2. If the working 
wavelengths are 1 and 1.5 μm, the number of guiding modes participating in multimode 
coherence are estimated to be 10 and 23, respectively. It can be inferred that the Yb-ASE 
at the 1-μm band has higher modulation depth than Er-ASE at the 1.5-μm band. 

Figure 1. The schematic diagram of the hybrid EYDF amplifier. CLS, cladding light striper.

3. Results and Analysis
3.1. Numerical Analysis of Hybrid EYDF Amplifier

The power scaling and ASE of the EYDF amplifier with hybrid or uniform fiber were
numerically analyzed. The simulation model of the hybrid EYDF amplifier is shown in
Figure 1. The total length L of the gain fiber is 3 m, for both the hybrid and uniform fiber.
The multimode fiber is inserted into two segments of single-mode fiber. The distance
between the multimode fiber and z = 0 is fixed at 1 m. The length of the multimode fiber
is assumed to be L1. The seed and pump laser are forward coupled into the gain fiber
at length position z = 0, and launched at z = L. The power of the seed and pump in the
simulation are assumed to be 30 mW and 20 W, respectively. The output performance of
hybrid gain fiber amplifier is affected by two aspects: one is the spectra modulation of
the SMS structure, which can be obtained by analyzing the MMI effect; the other is the
gain characteristics of the active fiber, which can be obtained by numerically analyzing the
steady-state rate equations of the EYDF amplifier. The length of the multimode gain fiber
is optimized by simulation. The core diameter and length of the multimode fiber have a
significant influence on the transmission spectrum of the SMS structure due to the MMI
effect. The modulation depth is related to the number of guiding modes N in the center
multimode fibers. The number of guiding modes N can be estimated by the core diameter a,
the working wavelength λ and the numerical aperture (NA), according to Equation (1) [21].
The V is normalized frequency. The core NA of MM-EYDF-6/125 is 0.2. If the working
wavelengths are 1 and 1.5 µm, the number of guiding modes participating in multimode
coherence are estimated to be 10 and 23, respectively. It can be inferred that the Yb-ASE at
the 1-µm band has higher modulation depth than Er-ASE at the 1.5-µm band.
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{
N ≈ V2

2
V = 2π a

λ · NA
(1)

The modulation property of SMS structure fiber was numerically analyzed by the
BPM method [27]. Figure 2a is the transmission spectrum of the SMS structure with 5-
cm multimode fiber. There is an obvious periodic modulation of the spectrum due to
the MMI effect. The modulation of the MMI effect is not obvious in the 1.5-µm band
because of insufficient guiding modes. The maximum modulation depth at the 1.5-µm
band is only 3~4 dB, which is much lower than that of the 1-µm band where the Yb-ASE
located. This phenomenon makes it possible to suppress Yb-ASE in the amplifier. The
length of multimode fiber L1 is related to the wavelength spacing ∆λ of the modulation
spectrum. According to the literature [20], the wavelength interval ∆λ can be calculated by
Equation (2):

∆λ =
16ncorea2

(m− n)[2(m− n)− 1]LMMF
(2)
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Here the symbol “±” represents forward (+) and backward (-) transmitted lights. The 
rate equations of the ytterbium and erbium energy system are referred to in the literature 
[29]. All the parameters in segment 1 are the same to those in segment 3. According to the 
fibers’ specification, the signal overlap factor Гs of segment 1 and segment 2 were calcu-
lated to be 0.83 and 0.96, respectively, and the pump overlap factor Гp, which can be ap-
proximated as the area ratio of core to cladding, was 0.0023 and 0.0092, respectively. The 
pump absorption of these fibers was experimentally measured as mentioned above. The 
65 and 56 are the emission and absorption cross-section of Yb-ions, respectively, and 21 
and 12 are those of Er-ions. N2 and N1 are the population of the upper and lower energy 
levels of Er-ions, respectively. In the steady-state equations, the population of metastable 

Figure 2. (a) The transmission spectrum of the active SMS with 5-cm multimode fiber; (b) the maximum loss in the 1-µm
band and wavelength spacing with variation in multimode fiber length; (c) the transmission spectrum of the active SMS with
1-m multimode fiber. (Inset) the transmission loss of a uniform EYDF-6/125 fiber; (d) the zoomed transmission spectrum in
the range of 1545~1555 nm.

Here, m and n are the order number of the linear polarization modes LP0m and LP0n,
respectively. The wavelength interval decreases with the MM fiber length. A sufficiently
small wavelength interval can avoid lasing at other wavelengths. The maximum loss in
the 1-µm band and wavelength interval with variations in the multimode fiber length L1
were simulated, which is shown in Figure 2b. When L1 increases from 5 cm to 1.5 m, the
wavelength interval decreases rapidly while the maximum loss increases slightly until the
length is over 50 cm, then it decreases with the length increment. The multimode fiber
length L1 was selected to be 1 m to obtain sufficient loss and a suitable wavelength interval,
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and the corresponding wavelength spacing was about 1 nm. The transmission spectrum of
the active SMS with 1-m multimode fiber is plotted in Figure 2c. Because the wavelength of
Yb-ASE is much shorter than that of Er-ASE, Yb-ASE can stimulate more transverse modes
in the multimode fiber, and obtains more significant MMI effects. The maximum loss in the
1-µm band was 17.7 dB at 1013 nm, while it was only 2.3 dB at 1553 nm. The transmission
loss of a uniform EYDF-6/125 was also simulated in the wavelength range of 1~1.6 µm,
which is shown as a red line in the insertion in Figure 2c. The spectrum fluctuations of
the uniform fiber were less than 0.04 dB. This comparison of the results demonstrates that
the difference in transmission loss between the 1 and 1.5 µm bands is caused by the effect
of multimode interference. The different transmission loss between the 1-µm and 1.5-µm
band make it possible to suppress Yb-ASE in the amplifier. The transmission spectrum of
the SMS is zoomed from 1545 to 1555 nm and plotted in Figure 2d to evaluate the loss of
signal at 1550 nm. The transmission loss at 1550 nm is only 0.35 dB, and the full width
at half maximum (FWHM) of the transmission peak is near 1 nm, which is equal to the
wavelength interval. Although the transmission spectrum was periodically modulated,
the loss value at spectral drops was still less than 2.5 dB and can be reduced by the gain
property of the active fiber and the suppression of Yb-ASE. It can be inferred that this
structure can not only be applied in narrow linewidth laser amplification, but also it could
support laser amplification at the 1.55-µm band.

Based on the BPM analysis of the SMS structure, the output properties of the hybrid
fiber amplifier were further simulated. Besides the mentioned pump absorption and core
diameter, the steady state rate equations of EYDF and other parameters are referred to
the literature [28,29]. The model of the simulation is plotted in Figure 1. The propagation
equations for the signal power P+

s(z), pump power P+
p(z), Yb-ASE power P±YbASE(z,λ)

and Er-ASE power P±ErASE(z,λ) are shown as follows [29]:

dP+
s (z)
dz = {Γs[N2(z)σ21(λs)− N1(z)σ12(λs)]− α(λs)}P+

s (z) + 2hc2

λ3 ΓsN2(z)σ21(λs)ms∆λ
dP+

p (z)
dz =

{
Γp
[
N6(z)σ65

(
λp
)
− N5(z)σ56

(
λp
)
− N1(z)σ12

(
λp
)]
− α
(
λp
)}

P+
p (z)

± dP±ErASE(z,λ)
dz = {Γs[N2(z)σ21(λ)− N1(z)σ12(λ)]− α(λ)}P±ErASE(z, λ) + 2hc2

λ3 ΓsN2(z)σ21(λ)ms∆λ
±dP±YbASE(z,λ)

dz = {Γs[N6(z)σ65(λ)− N5(z)σ56(λ)− N1(z)σ12(λ)]− α(λ)}P±YbASE(z, λ) + 2hc2

λ3 ΓsN6(z)σ65(λ)ms∆λ

(3)

Here the symbol “±” represents forward (+) and backward (-) transmitted lights. The
rate equations of the ytterbium and erbium energy system are referred to in the litera-
ture [29]. All the parameters in segment 1 are the same to those in segment 3. According
to the fibers’ specification, the signal overlap factor Γs of segment 1 and segment 2 were
calculated to be 0.83 and 0.96, respectively, and the pump overlap factor Γp, which can be
approximated as the area ratio of core to cladding, was 0.0023 and 0.0092, respectively. The
pump absorption of these fibers was experimentally measured as mentioned above. The
σ65 and σ56 are the emission and absorption cross-section of Yb-ions, respectively, and σ21
and σ12 are those of Er-ions. N2 and N1 are the population of the upper and lower energy
levels of Er-ions, respectively. In the steady-state equations, the population of metastable
levels N3 ≈ 0. The Er-ion concentration approaches N1 + N2. N5 and N6 are the population
of the upper and lower energy levels of Yb-ions, respectively, and their summation is the
Yb-ions concentration. According to the absorption coefficient and absorption cross-section,
the Er-ions and Yb-ions concentration of SM-EYDF-6/125 in the simulation are 1.36 × 1024

and 1.29 × 1025, respectively. The Er-ions and Yb-ions concentration of MM-EYDF-12/125
are 3.55 × 1024 and 3.83 × 1025, respectively. The output power properties can be obtained
in the simulation by substituting the fiber parameters at the corresponding position. It
should be noted that since the signal light can pass through the SMS structure with almost
no insertion loss (less than 0.1 dB), and because the inner cladding has the same diameter,
the insertion loss in the SMS structure to the pump light is relatively small and was ignored.
The additional loss caused by the MMI effect is marked as αSMS(λ), which was obtained
above by BPM analysis of the SMS structure. It is assumed that the MMI loss αSMS(λ)
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affects the forward ASE power at the end of the multimode fiber position z = z2, and reacts
to the backward ASE power at z = z1. So, the boundary condition of Yb-ASE and Er-ASE
with MMI loss is shown in Equation (4). dz is the length unit that divides the fiber length.

P+
ErASE(z2 + dz, λ) = αSMS(λ) · P+

ErASE(z2, λ)
P+

YbASE(z2 + dz, λ) = αSMS(λ) · P+
YbASE(z2, λ)

P−ErASE(z1 − dz, λ) = αSMS(λ) · P−ErASE(z1, λ)
P−YbASE(z1 − dz, λ) = αSMS(λ) · P−YbASE(z1, λ)

(4)

In Equation (4), the wavelength λ range of Er-ASE and Yb-ASE are 1000~1100 nm
and 1500~1600 nm, respectively. The output property of the hybrid fiber amplifier can
be obtained by adding the MMI loss αSMS(λ) to the equations and solving them with the
finite difference method [28]. The pump and signal power evolution in the hybrid and
uniform fiber amplifier are plotted in Figure 3a. The launched signal power of the hybrid
fiber amplifier with or without considering the MMI effect are both higher than the 4.52-W
signal power obtained by the uniform fiber amplifier with the same fiber length and pump
conditions due to its high pump absorption. Considering the spectral modulation effect of
the SMS structure, the signal power in the hybrid amplifier (marked as hybrid fiber with
MMI) was 5.51 W under 20 W pump power. However, the power calculated considering
only the fiber size and doping concentration of the hybrid fiber, which is marked as the
hybrid fiber without MMI in the figure, was 5.25 W, which is less than that with MMI
by 0.26 W. The optical conversion efficiency of the hybrid fiber amplifier is 27.5%, which
is 4.9% more efficient than that of the uniform one. The variation trend in the signal
and pump light indicates that more gain and pump absorption can be provided by the
multimode fiber. Comparing the signal in the hybrid fiber with and without MMI effect, the
attenuation effect of the MMI effect on forward and backward ASE is inferred as another
reason for obtaining higher efficiency in the hybrid fiber amplifier.
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The reduction in backward and forward ASE by the MMI effect can improve the small-
signal gain in segment 1 and the energy conversion between Er3+ and Yb3+ in segment 3,
respectively. The signal power without MMI was 1.52 W at z1 position, while the power
with MMI was 1.57 W, which can be further demonstrated by the simulation spectra of the
hybrid fiber amplifier at the 1-µm and 1.5-µm band. The forward spectra are represented
by solid lines in the figure, and the backward spectra are dashed lines. Compared with
the uniform fiber amplifier, the forward and backward Yb-ASE spectra of the hybrid
fiber amplifier with MMI effect are periodically modulated in Figure 3b. However, the
forward and backward Er-ASE at the 1.5 µm band is hardly modulated, which is plotted in
Figure 3c. These results demonstrate that the SMS structure has high transmission loss or
are due to the modulation depth at the 1-µm band. The forward and backward Yb-ASE
without considering the MMI effect have the highest intensity because of the additional
gain provided by the multimode fiber. This situation also appears in the Er-ASE spectra in
Figure 3c. The additional gain increases the output power and ASE intensity at the same
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time. However, the spectral modulation caused by the MMI effect suppresses the intensity
of Yb-ASE. Although there are some spectral peaks in the 1040~1100 nm band, the forward
Yb-ASE peak intensity was still suppressed by 0.5~2.9 dB by the MMI effect. The maximum
suppression was 8.3 dB at 1073 nm. The backward Yb-ASE had the same trend and the
maximum suppression was 8.1 dB at 1073 nm. The forward Er-ASE intensity decreased
by only 1~1.6 dB. Although αSMS(λ) in the 1.5-µm band has a loss of 2~3 dB, the Yb-ASE
decrement improves the energy conversion between Er3+ and Yb3+ and avoids the Er-ASE
decrement significantly. The backward Er-ASE intensity decreased by about 5 dB, which
is the result of the interaction of additional gain and MMI modulation. In summary, the
simulation results demonstrate that the hybrid EYDF with an SMS structure can suppress
part of Yb-ASE.

3.2. Experimental Analysis of Hybrid EYDF Amplifier

Figure 1 presents a schematic diagram of the hybrid EYDF amplifier. The power
performance and spectra properties were experimentally analyzed. The power scaling of
hybrid and uniform EYDF amplifiers was recorded by an optical power meter (Thorlabs,
S425C-L and PM100D) and is plotted in Figure 4a. The output power increases linearly with
the pump power. The hybrid EYDF amplifier with 30 mW seed can launch 4.33 W of output
power under a 20 W pump, and the corresponding slope efficiency is 22.3%. However, the
slope efficiency of the typical uniform SM-EYDF-6/125 fiber amplifier with the same seed
and fiber length is 19.6%, which is less than that of the hybrid EYDF amplifier by 2.7%.
The experimental output power and slope efficiency were less than the theoretical results.
We consider that this difference was caused by the fiber fusion loss in the signal laser, and
the leakage of pump light due to no coating at the fusion point. In addition, the mismatch
between the signal wavelength and the transmission spectrum peak of the SMS structure
will also lead to the decrement in efficiency. Unfortunately, we cannot further improve
the output power because of the limitations of the experimental conditions. Nevertheless,
compared with the uniform fiber amplifier, the hybrid gain fiber amplifier has advantages
in regard to both output power and slope efficiency. One of the reasons is that the insertion
of multimode fiber adds extra gain. Another is that the MMI effect of the SMS structure
can suppress Yb-ASE and promote pump energy transfer, which was demonstrated by the
simulation results and following spectral measurement. The output spectra of the hybrid
and uniform fiber amplifiers at the maximum output power were recorded by an optical
spectrum analyzer (Anritsu, MS9701C) and are plotted in Figure 4b. The Yb-ASE intensity
of the hybrid EYDF amplifier was decreased by more than 12 dB compared with that of
the uniform fiber amplifier. The spectral results illustrate that the SMS structure has a
good effect on Yb-ASE suppression and has the potential to alleviate the bottleneck effect
in EYDF.
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The zoomed spectra in the range of 1000 to 1100 nm are plotted in Figure 5a to analyze
the detail of the Yb-ASE. The output spectrum of the hybrid fiber was obviously modulated.
The maximum Yb-ASE suppression occurs at 1060.2 nm where the suppression intensity
was 15.2 dB. However, the zoomed spectra in the 1530 to 1560 nm region, which is plotted
in Figure 5b, demonstrate that this hybrid fiber amplifier cannot suppress the Er-ASE. The
Er-ASE of the hybrid fiber amplifier was higher than that of the uniform fiber amplifier
by 2~3 dB. These experimental results can be seen clearly in the insertion in Figure 5b,
which is the zoomed spectra around 1535 nm with a 7 nm range. The Yb-ASE suppression
promotes the pump power transfer and the pump leakage from the non-coated bare fiber
can improve the gain in the 1.5-µm band. At the same time, the multimode fiber length
variation caused by the instability in the fiber temperature may increase the signal light
loss. A signal with insufficient power cannot effectively extract the upper-level population
of Er3+, which will also increase the Er-ASE intensity. High quality coating treatment at
the fusion point and accurate fiber temperature control may be a possible way to avoid
this phenomenon.
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4. Conclusions

In this work, we studied a hybrid double cladding EYDF amplifier with an SMS active
fiber. The SMS fiber structure consists of three segments of EYDF. The power performance
and the spectra properties were theoretically and experimentally analyzed. The results
for the hybrid fiber amplifier were compared with those of the uniform fiber amplifier.
The simulation results demonstrate that the Yb-ASE of the hybrid fiber amplifier can be
suppressed by over 10 dB due to high transmission loss in the SMS structure in the 1-µm
band. The slope efficiency can also be improved because of the extra gain of multimode
fiber. Based on the theoretical analysis, the hybrid EYDF amplifier and the typical uniform
fiber amplifier were compared using experimental analysis. The Yb-ASE intensity of the
hybrid fiber amplifier was suppressed by more than 12 dB, and the slope efficiency was
increased by 2.7% compared with the typical uniform fiber amplifier. Although the Er-ASE
increased about 2~3 dB, this hybrid EYDF amplifier has great advantages in regard to
Yb-ASE suppression. This provides a possible technical path to suppress Yb-ASE and
improve the amplification efficiency in the EYDF amplifier.
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