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Abstract: Choroidal Neovascularization (CNV) is the advanced stage of Age-related Macular Degen-
eration (AMD), which is the leading cause of irreversible visual loss for elder people in developed
countries. Optical Coherence Tomography Angiography (OCTA) is a recent non-invasive imaging
technique widely used nowadays in diagnosis and follow-up of CNV. In this study, an automatic
screening of CNV based on deep learning is performed using OCTA choriocapillaris images. CNV
eyes (advanced wet AMD) are diagnosed among healthy eyes (no AMD) and eyes with drusen
(intermediate AMD). An OCTA dataset of 1396 images is used to train and evaluate the model. A
pre-trained convolutional neural network (CNN) is fine-tuned and validated on 80% of the dataset
while the remaining 20% is used independently for predictions. The model can accurately detect
CNV on the test set with an accuracy of 89.74%, precision of 0.96 and 0.99 area under the curve of
the receiver operating characteristic. A good overall classification accuracy of 88.46% is obtained on
a balanced test set. Detailed analysis of misclassified images shows that they are also considered
ambiguous images for expert clinicians. This novel CNN-based application is truly a breakthrough
to assist clinicians in the challenging task of screening for neovascular complications.

Keywords: age-related macular degeneration; choroidal neovascularization; convolutional neural
networks; image classification; optical coherence tomography angiography

1. Introduction

Age-related Macular Degeneration (AMD) is the leading cause of irreversible blind-
ness in the elderly population of developed countries. AMD is characterized by changes
in the Retinal Pigment Epithelium (RPE), Bruch’s Membrane (BM), or Choriocapillaris
(CC) complex [1]. There are several staging systems for AMD, but the most widely used is
the AREDS (Age Related Eye Disease Study) classification, distinguishing between early,
intermediate and late AMD (see Figure 1) [2]. Early and intermediate AMD are charac-
terized by the presence of drusen and pigmentary changes. Late AMD consists of wet
AMD, characterized by choroidal neovascularization (CNV), and dry AMD, characterized
by geographic atrophy (GA) in the macular area [3,4]. While both dry and wet AMD are
visually threatening, in the particular case of wet AMD, CNV progression can result in
rapidly deteriorating visual acuity, leading to scarring and irreversible visual loss [4,5].
Moreover, as hallmarks of early and intermediate AMD, drusen precede the progression
to late AMD [6,7]. Hence, distinguishing between the early, intermediate, and late AMD
plays a key role in both follow-up and treatment decisions, in order to preserve the visual
prognosis.
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Figure 1. Classification of three types of OCTA choriocapillaris images (no AMD, advanced wet AMD, intermediate AMD).
On the top-left: the OCTA cross-sectional B-scan showing retinal layers.

Novel imaging techniques, such as optical coherence tomography angiography (OCTA),
contribute to the accurate diagnosis of early, intermediate and late AMD in a depth-resolved
and non-invasive manner [8–10]. Besides the accurate detection of CNV or GA in the CC
segmentation [11], OCTA has demonstrated CC alterations, i.e., flow deficits (FD) and
signal attenuation associated with drusen, in early and intermediate AMD [12]. Moreover,
recent literature has shown that choriocapillaris FD predict drusen enlargement, therefore
being a significant risk factor for late forms of AMD [7]. Therefore, earlier diagnosis could
ensure better follow-up of patients at high risk of conversion to advanced wet AMD. A
computer-aided diagnosis (CAD) tool in ophthalmic clinical routine could be of significant
assistance for clinicians at daily diagnosis and during follow-up.

The detection of CNV in the context of wet AMD on OCTA images is very challenging
due to OCTA various artifacts [8,9]. Many recent papers dealt with the contributions of
artificial intelligence (AI) and deep learning (DL) approaches in ophthalmology [13–15].
However, only few works have addressed CNV screening on OCTA images using DL
methods [16]. Most of the existing works focused on the diagnosis of AMD using OCT or
Color Fundus Photography. Moreover, published works on OCTA images involved other
retinal diseases such as Diabetic Retinopathy (DR) [17].

In 2017, Rasti et al. [18] proposed a CAD system based on a multi-scale convolutional
mixture of expert model to identify accurately dry AMD and diabetic macular edema using
OCT images. Two different macular OCT datasets of 4142 and 3247 B-scans were used for
the training step. A very good classification score of 99.85% was derived from the receiver
operating characteristic curve (ROC-AUC).

In 2018, Burlina et al. [19] used a set of 67,401 color fundus images of AMD patients
to estimate 5-year risk of progression to advanced stages of AMD by DL techniques. Two
AMD severity scales (4-step and 9-step) were considered, and a human versus machine
comparison was carried out. This study achieved weighted k scores of 0.77 for the 4-step
and 0.74 for the 9-step AMD severity scales. The same year, Grassmann et al. [20] exploited
a database of 120,656 color fundus images, manually graded in 13 AMD severity levels,
to train several CNN architectures (AlexNet, GoogLeNet, VGG, Inception-V3, ResNet
and I-ResNet-V2). A very good-weighted k of 92% was obtained. Govindaiah et al. [19]
have also shown that deep CNN could be efficient to grade color fundus images in four
classes: no AMD, early AMD, intermediate AMD, and advanced AMD. The study included
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a comparison between training using the transfer learning approach and training from
scratch. The obtained accuracies were 78.1% for transfer learning and 83% without transfer
learning.

More recently, Russakoff et al. [21] developed a DL architecture so called “AMDnet”
on OCT images to predict the conversion from early/intermediate AMD to advanced wet
AMD. The study included 71 patients with confirmed early/intermediate AMD that were
imaged with OCT three times over 2 years. Results showed a ROC-AUC of 0.89 at the
B-scan levels and 0.91 for volumes. Hwang et al. [22] used 35,900 labeled OCT images from
AMD patients to train three types of Convolutional Neural Networks (CNNs), VGG19,
InceptionV3 and ResNet50, to perform AMD diagnosis. The authors developed an AI
and cloud-based telemedicine interaction tool dedicated to diagnosis and therapeutic of
AMD. The image discrimination rates obtained by expert clinicians (92.73% and 91.90%)
and provided by the AI-based platform (above 90%) were almost the same.

Further works on OCT imaging, such as the recent study of Romo-Bucheli et al. [23],
proposed a treatment predictive model using a densely connected neural network (DenseNet)
and a recurrent neural network (RNN) on longitudinal OCT scans for neovascular AMD
patients (281 patients for training and 69 for tests). The CNN model achieved 0.85 AUC in
detecting patients with low treatment requirements and 0.81 AUC for patients with high
treatment requirements.

In what concerns the use of OCTA in DL, Le et al. [17] tested the feasibility of using
DL for DR detection from OCTA including 77 patients and 20 control subjects. The authors
applied transfer learning on a VGG16 network for robust OCTA classification. The obtained
results showed an accuracy of 87.27% in differentiating healthy, no DR and DR eyes. In the
same period, Wang et al. [16] developed an algorithm based on two CNNs to classify input
OCTA images (using structural volumes and enface retinal angiograms) as CNV or Non-
CNV and then segment the CNV membrane when present. The proposed neural network
included a cutoff threshold for CNV area to overcome the residual artifacts limitation that
could be confounded with CNV. CNV binary classification ROC-AUC was 0.997.

In this work, we aim to fill the gap of CNV screening on OCTA images using DL by
promoting a novel application of CNNs on OCTA images using the choriocapillaris slab.
The main contribution of this paper is the deep learning-based solution to classify AMD on
two major forms: advanced wet AMD (CNV) and intermediate AMD (drusen/pigmentary
changes) including a healthy control group (no AMD) using choriocapillaris OCTA images.
A second contribution is the adaptation of a pre-trained VGG19 model on non-medical
ImageNet dataset to medical domain using an adapted densely connected classifier on our
limited OCTA data. Additionally, class activation mapping is used to interpret the CNN
prediction on choriocapillaris OCTA images, which is a promising DL application for CAD
systems in retinal clinical routine.

2. Materials and Methods
2.1. Dataset and Study Population

Data from patients with AMD is collected from the Ophthalmology Department of
Intercommunal Hospital Center of Créteil, France, between September 2014 and July 2019.
A database of 1396 choriocapillaris OCTA images of size 304 × 304 with a pixel size of
9.87 × 9.87 µm is built from 787 eyes related to 508 patients (mean age 70.67 ± 17.74 years).
All patients underwent a 3 × 3 mm OCTA examination (AngioVue, Optovue, Freemont,
CA, USA). The choriocapillaris slab is extracted and there are no excluded images due to
motion or projection artifacts.

A retina specialist (A.M.) classified the OCTA images into three classes (391 with no
AMD images from healthy eyes of 156 subjects, 457 images with CNV from 187 AMD
patients, and 548 images with intermediate AMD from 274 patients). Multiple images per
patient are included in this database. On one hand, follow-up images acquired at different
dates are considered in this study as they show notable and significant changes in the
CNV progression or in the number and size of drusen. On the other hand, both eyes are
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considered for some of the patients when both eyes’ examinations are available. This study
is performed in accordance with the Declaration of Helsinki and current French legislation
and with approval of our local ethics committee.

2.2. CNV Screening on OCTA Images

Our goal is to discriminate from OCTA images the three predefined classes: No
AMD (healthy CC), advanced wet AMD (CNV) and intermediate AMD (drusen or CC
impairment) (see Figure 1). OCTA imaging allows physicians to visualize blood vessels in
the individual layers of the retina and choroid without dye injection. Thus, CNV, drusen
and impairment within the CC (pigmentary changes) can be clearly identified on OCTA
images. The healthy choriocapillaris appears on OCTA images as a grainy texture with
bright and dark spots corresponding to blood flow and flow deficits, respectively [7].
Drusen and CC impairment are characterized by black nonflow areas of different sizes
related to flow deficits that can appear anywhere on the OCTA image surrounded by the
grainy texture of the choriocapillaris. Regarding CNV, neovascular membranes harbor the
aspect of a vascular branching, surrounded by the grainy texture of the choriocapillaris.

Nevertheless, these images are corrupted by speckle noise due to the physical prin-
ciples of OCT, in addition to the image acquisition process and artifacts [24]. Moreover,
included CNV lesions could have different sizes and locations with irregular shapes of
neovascular membranes, thus small ones may be confused with the grainy texture of the
choriocapillaris. This makes CNV detection on OCTA images a very challenging task.
Figure 1 illustrates the OCTA choriocapillaris images of the three classes used for the
classification in this work.

2.3. CNN Architecture and Transfer Learning

As depicted on Figure 2, our methodological approach consists of two parts: the
VGG19 deep network [25] that provides the features extraction process on the OCTA image
and a personalized densely connected network that represents the classification part.
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VGG19 is a competition-winning model of the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [26], that has a sequential pipeline architecture consisting of 16 convo-
lutional and 3 fully connected trainable layers including five max-pooling layers. In this
work, only the VGG19 convolutional part is used as a feature extractor where convolution
layers include 3 × 3 convolution filters. A rectified linear unit (ReLU) activation function
and a downsampling 2 × 2 max-pooling operation follow each convolutional stack. This
convolutional part provides vectorized feature maps used as input to the densely connected
classifier.

The densely connected classifier contains three fully connected layers, layers 1 and
2 are composed of 1024 nodes each. The last one consists of three nodes that provide
the classification result into three types of OCTA images. A regularization dropout layer
is included after the first dense layer to overcome overfitting the model by randomly
dropping out 50% of the activations at that layer. ReLU activation function is used on the
two first dense layers, whereas a softmax activation function is used on the last one.

According to the huge number of learnable VGG19 parameters (144 million) and the
limited amount of OCTA data in our training dataset, transfer learning from non-medical
data is applied in our approach [27]. Therefore, learned knowledge from the ImageNet
dataset [26,28] is transferred to the model and adapted to our application by fine-tuning
the convolutional part using OCTA images. The densely connected layers are trained
from scratch on our OCTA data to classify OCTA images. Finally, feature maps from the
last convolutional layer are mapped through the densely connected classifier to generate
Gradient-weighted Class Activation Mapping (Grad-CAM) visualization [29]. The Grad-
CAM produces a localization map that highlights the image’s important features to the
CNN for class predictions.

Additionally, to assess the impact of our approach (transfer learning on modified
VGG19 model) on CNV detection accuracy, we trained the original VGG19 model indepen-
dently from scratch with random initialization on our OCTA data.

2.4. Implementation Details

The dataset is divided into two independent subsets for training and testing. From
the whole dataset, 80% (1115 images) is dedicated to fine-tuning, training, and validation.
Subsequently, this first partition is further separated into 80% (892 images) for train and
20% (223 images) for validation. The remaining 20% (281 images) of the whole dataset is
used for the performance evaluation and tests.

The whole network is trained end-to-end on 100 epochs for transfer learning and
200 epochs for training original VGG19. Stochastic Gradient Descent (SGD) optimization
algorithm [30] and categorical cross entropy loss function are used. The learning-rate is set
to 10−5 for transfer learning and to 10−4 for training original VGG19. Data augmentation
is applied during training to reduce overfitting. Only random zoom is used in transfer
learning to generate 16 OCTA images at each batch while rotation, horizontal and vertical
flip are used in addition in training from scratch the original VGG19 model to generate 8
OCTA images at each batch.

The pipeline is implemented in Python with the Keras-TensorFlow library [31,32].
Training and testing are performed on a NVIDIA Corporation GP104GL [Quadro P4000]
Graphics Processing Unit.

2.5. Performance Evaluation

Performance is evaluated using an independent balanced test set (78 images for each
class) and there are no excluded images due to motion and projection artifacts or to image
quality. The CNN prediction output is compared to the ground truth set by the expert
reader (A.M.). Four statistical metrics are used to report classification performance [33]:
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First, the accuracy that generally describes how the model performs across all classes.
It is obtained as the ratio between the number of correct predictions to the total number of
predictions:

Accuracy =
Truepositive + Truenegative

Truepositive + Truenegative + Falsepositive + Falsenegative

Then the precision, that is calculated as the ratio between the number of positive
samples correctly classified to the total number of samples classified as positive. The
precision measures the model’s accuracy in classifying a sample as positive:

Precision =
Truepositive

Truepositive + Falsepositive

The recall is calculated as the ratio between the number of positive samples correctly
classified as Positive to the total number of positive samples. The recall measures the
model’s ability to detect positive samples. The higher the recall, the more positive samples
detected:

Recall =
Truepositive

Truepositive + Falsenegative

Finally, the F1-score is a way of combining the precision and recall:

F1-score =
2 × Precision × Recall

Precision + Recall

Confusion matrix and area under the curve (AUC) of the receiver operating charac-
teristic (ROC) and precision-recall (PRC) curves (ROC-AUC and PRC-AUC) are supplied.
Additionally, multiple class activation maps are generated to analyze the feature attribution
and understand the CNN predictions.

3. Results

CNV screening evaluation, reported in Table 1 and Figure 3, shows that CNV detection
on OCTA images achieves the best performance with a precision of 96%, recall of 90%,
F1-score of 0.93 and an accuracy of 89.74%. In addition, ROC-AUC and PRC-AUC are 0.99
each. No AMD (healthy CC) OCTA images are also well classified by the proposed VGG19
modified model with a very good accuracy of 94.87% and F1-score of 0.90 (precision 0.85,
recall 0.95). Regarding intermediate AMD (drusen/CC impairment) class, the images are,
in some cases, confused with no AMD class. Sixty-three images from the intermediate
AMD test dataset are correctly classified while 12 images are predicted as no AMD images
and 3 as CNV images. This is summarized by the confusion matrix in Table 2.

Table 1. CNV screening performance of the modified VGG19. Accuracy, precision, recall, F1-
score, area under the curve (AUC) for precision-recall (PRC) and receiver operation character-
istic (ROC) curves for the three classes of OCTA images (HCC: healthy choriocapillaris, DCCI:
drusen/choriocapillaris impairment, CNV: choroidal neovascularization).

Accuracy (%) Precision Recall F1-Score PRC-AUC ROC-AUC

HCC 94.87 0.85 0.95 0.90 0.97 0.99
DCCI 80.77 0.85 0.81 0.83 0.94 0.97
CNV 89.74 0.96 0.90 0.93 0.99 0.99
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Table 2. Confusion matrix of the modified VGG19 prediction on a balanced test dataset of 234 OCTA
images (78 images for each class). CNV: choroidal neovascularization, DCCI: drusen/choriocapillaris
impairment, HCC: healthy choriocapillaris.

Ground Truth Class
Predicted Class

CNV DCCI HCC

CNV 70 7 1
DCCI 3 63 12
HCC 0 4 74

The overall classification accuracy using transfer learning on our modified VGG19
is 88.46% with a loss of 0.089, while the overall classification accuracy using original
VGG19 is 83.76% with a loss of 0.37. The proposed approach on the modified VGG19
achieved better performance than original VGG19 for CNV detection. This is reported
in classification reports (Tables 1 and 3) and confusion matrices (Tables 2 and 4) where
CNV screening accuracy is 74.36% for original VGG19 against 89.74% for our proposed
approach. In addition, PRC-AUC and ROC-AUC are 0.99 each using our modified VGG19,
while PRC-AUC is 0.95 and ROC-AUC is 0.97 using original VGG19.

Table 3. CNV screening performance of the original VGG19. Accuracy, precision, recall, F1-score, area
under the curve (AUC) for precision-recall (PRC) and receiver operation characteristic (ROC) curves
for the three classes of OCTA images (HCC: healthy choriocapillaris, DCCI: drusen/choriocapillaris
impairment, CNV: choroidal neovascularization).

Accuracy (%) Precision Recall F1-Score PRC-AUC ROC-AUC

HCC 97.44 0.84 0.97 0.90 0.96 0.99
DCCI 79.49 0.75 0.79 0.77 0.83 0.93
CNV 74.36 0.97 0.74 0.84 0.95 0.97
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Table 4. Confusion matrix of the original VGG19 prediction on a balanced test dataset of 234 OCTA
images (78 images for each class). CNV: choroidal neovascularization, DCCI: drusen/choriocapillaris
impairment, HCC: healthy choriocapillaris.

Ground Truth Class
Predicted Class

CNV DCCI HCC

CNV 58 19 1
DCCI 2 62 14
HCC 0 2 76

Figures 4 and 5 display Grad-CAM visualizations for correct predictions and incorrect
predictions of the three classes, respectively, (no AMD, intermediate AMD, and advanced
wet AMD). Grad-CAM heatmaps are superimposed on original OCTA choriocapillaris
images with warm colors (red, orange, and yellow) for discriminant features and cold
colors (blue, cyan, and green) for non-discriminant features.

In Figure 4, expected discriminant features are correctly highlighted by Grad-CAM
heatmaps for each class: grainy texture throughout the whole OCTA image for no AMD im-
ages (Figure 4A,B), flow deficits/nonflow areas for intermediate AMD images (Figure 4C,D),
and high flow vascular networks (CNV) for advanced wet AMD images (Figure 4E,F,G,H).
This is further supported by the CNN predicted probabilities for each image. Regarding
no AMD images (Figure 4A,B), the CNN predicted high probabilities were 0.94 and 0.97,
respectively, and were attributed to no AMD class. Predicted probabilities for intermediate
AMD images (Figure 4C,D) were 0.70 and 0.99, respectively, and were attributed to the
correct class. Finally, regarding advanced wet AMD images (Figure 4E,F,G,H) predicted
probabilities were 0.99 for images Figure 4E,G,H and 0.63 for image Figure 4F, correctly
attributed to CNV.

On the other hand, non-discriminant CNV features are highlighted by Grad-CAM
heatmaps in Figure 5I,J, including the flow deficits/nonflow areas or regions in Figure 5I
and grainy texture in Figure 5J.

The CNN predicted probabilities reinforce this observation where image Figure 5I
is predicted as intermediate AMD with 0.84 probability and image Figure 5J as no AMD
image with 0.90 probability. Regarding the Figure 5K, non-discriminant drusen features
are highlighted by Grad-CAM heatmap, grainy texture is highlighted as discriminant
features showing the CNN prediction as no AMD with 0.59 of probability against 0.41
for intermediate AMD. Conversely, Figure 5L represents a healthy CC (no AMD) image
predicted as intermediate AMD with 0.58 of probability against 0.42 for no AMD. The
Grad-CAM heatmap supports these probabilities by highlighting only drusen features as
discriminant rather than those from grainy texture of no AMD images.
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4. Discussion and Conclusions

CNV screening on OCT-angiography choriocapillaris images is challenging due to
the high variance in neovascular membranes sizes, shapes, and locations. Additionally,
the speckle noise and the image acquisition process makes the detection task even more
difficult, particularly to differentiate CNV or early drusen from the grainy texture of the
choriocapillaris. Our proposed VGG19 modified model achieved very good CNV detection
performance with an accuracy of 89.74% and F1-score of 0.93 (as reported in Table 1 [0.96
of precision, 0.90 of recall]). The ROC-AUC and PRC-AUC were 0.99 each (Table 1 and
Figure 3). The confusion matrix in Table 2 shows that the CNN could accurately detect
the CNV lesion on 70 images out of 78 independent test images. Seven CNV images are
confused with intermediate AMD images, only one CNV image is misclassified as healthy
CC, and 3 images of intermediate AMD are misclassified as CNV.

Concerning the no AMD (healthy CC) classification performance by our model, the
statistical analysis reported in Table 1 and Figure 3 shows that it is the second-best classified
class after CNV. Precision and recall are 0.85 and 0.95, respectively, with a ROC-AUC of
0.99, a PRC-AUC of 0.97 and an accuracy of 94.87%. The confusion matrix in Table 2
indicates that 74 no AMD images are correctly classified, only 4 images are confused with
intermediate AMD images and no healthy CC image is misclassified as CNV.

Finally, for intermediate AMD detection, statistics show a F1-score of 0.83 (precision
of 0.85 and recall of 0.81), an accuracy of 80.77%, a ROC-AUC of 0.97 and a PRC-AUC of
0.94 (reported in Table 1 and Figure 3). These results are better explained by the confusion
matrix attributions in Table 2, where 63 of the 78 intermediate AMD images are correctly
classified, while 12 images are predicted as no AMD and 3 images confused with CNV.

Furthermore, the CNN predicted probabilities demonstrate, on one hand, the CNN
certainty when predicting correct classes (probability higher than 0.90 for the images in
Figure 4A,B,D,E,G,H), and on the other hand, the CNN uncertainty for more difficult cases,
such as images C and F of Figure 4. Image C illustrates a flow impairment clustered only
on one region of the image and surrounded by the grainy texture of the CC on the whole
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image. Therefore, the CNN predicted probabilities for image C are 0.70 as intermediate
AMD and 0.29 as no AMD. Regarding image F, the CNV membrane is covered by different
drusen surrounded by the grainy texture of the CC. Consequently, the CNN predicted
probabilities are 0.63 for CNV and 0.36 for intermediate AMD. This shows the CNN’s high
ability to discriminate wet AMD eyes from healthy and intermediate AMD eyes and to
show uncertainty for ambiguous and confusing cases.

The Grad-CAM visualization (see Figure 4) provides a better understanding of these
results. No matter the shape, size, and location of the CNV on images of Figure 4E–H;
the CNN’s predicted high probability is attributed to the correct region with high dis-
criminative CNV features. Conversely, the CNN’s low probability is attributed to the
non-discriminative regions. Similarly, regardless of the presence of artifacts on images of
Figure 4B,C); the CNN feature attribution is correctly highlighted by Grad-CAM heatmaps.
This proves that the CNN prediction is based on relevant regions of the OCTA choriocapil-
laris images related to the three classes: no AMD, intermediate AMD, and advanced wet
AMD, that are also considered by the expert reader to detect CNV on OCTA images.

The most difficult step of this classification problem is, on one hand, the detection of
some confusing CNV where a small, indefinite vascular shape is visible and for which very
small amount of OCTA images are available in our training dataset. On the other hand, the
discrimination of early small drusen from healthy choriocapillaris remains problematic.
These difficulties are addressed in Figure 5 that illustrates two misclassified CNV images
(Figure 5I,J), a misclassified intermediate AMD image (Figure 5K) and a misclassified no
AMD image (Figure 5L).

Image I is misclassified as intermediate AMD with 0.84 of probability and image J is
the only CNV image of our test dataset misclassified as no AMD with 0.90 of probability.
Feature attribution visualization for these two misclassified images illustrated by Grad-
CAM heatmaps in Figure 5 helps understanding the CNN prediction for these cases. The
Grad-CAM heatmap of image Figure 5I shows that discriminant features are those of
drusen by only black nonflow regions which explains the CNN predicted high probability
attributed to intermediate AMD class rather than CNV class. Only one small CNV is visible
in Figure 5I and is considered as non-discriminant feature. The CNN prediction is thus
based on the most present features on the image. Such images are also ambiguous for
clinicians and additional imaging modalities are needed to establish a clear diagnosis.

The Grad-CAM heatmap of image Figure 5J explains again the CNN misclassification.
Only grainy regions present throughout the whole image are considered as discriminant
features by the CNN. The tiny CNV membrane visible on this image is considered as
non-discriminant as it is hidden in the grainy texture. This explains the CNN’s prediction
with high probability (0.90) for image Figure 5J, attributed to no AMD class.

To overcome these classification errors, we should supply our training dataset with
more ambiguous OCTA choriocapillaris images such as images I and J of Figure 5 to train
the model to detect tiny CNV membranes when they are hidden and confused with drusen
or CC grainy texture.

Drusen or significant flow impairment on OCTA choriocapillaris images appear as
nonflow areas/flow deficits that are generally surrounded by the grainy texture of CC.
When these areas are small and less important than the CC texture, the OCTA image
is considered as ambiguous and confusing even by clinicians. This is the case of the
12 OCTA images misclassified by the CNN and predicted as no AMD images. Early small
drusen are hardly visible on OCTA images and can be considered as flow deficits related
to OCTA image acquisition process. Thus, the early small drusen manually classified as
intermediate AMD images are, in some cases, predicted as no AMD by the CNN. These
cases are illustrated by typical images in Figure 5K,L.

The above analysis is supported by the predicted probabilities for images K and L
of Figure 5. Figure 5K represents an intermediate AMD image predicted as no AMD
by the CNN with close probabilities for both classes (0.59 for no AMD against 0.41 for
intermediate AMD). Similarly, Figure 5L is a no AMD image predicted as intermediate
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AMD by the CNN with close probabilities (0.58 for intermediate AMD against 0.42 for
no AMD). This last result reveals again the CNN’s ability to show uncertainty in cases of
confusing features. To resolve this ambiguity, it would be relevant to classify these images
as uncertain images for which the clinician should use additional information from other
imaging modalities or patient history to decide and make a diagnosis.

Despite these few misclassification errors, the CNN showed a great ability to screen
and detect CNV on OCTA choriocapillaris images. This main finding is achieved through
the transfer learning approach that is used to train the proposed VGG19 modified model
to overcome the limitation of the small amount of training data. Fine-tuning the pro-
posed modified VGG19 improved the overall classification accuracy compared to that
obtained from training the original VGG19 from random initialization. The overall accu-
racy increased from 83.76% using original VGG19 to 88.46% using transfer learning on the
modified VGG19 although it was applied from non-medical data.

This study is one of the few works dealing with CNV screening on OCTA data using
only images at the choriocapillaris slab. Obtained results revealed a promising application
of CAD systems to diagnose CNV on OCTA choriocapillaris images in clinical routine
using DL-based methods. In order to produce more reliable results to clinicians and to help
them quantify the CNN uncertainty, we aim to measure the CNN prediction uncertainty in
further works to identify how much a CNN could be trusted in diagnosis [34,35] and to
avoid using images not suitable for diagnosis when high uncertainty is detected [35].

Further studies on this topic will focus on data augmentation, as well as including
more CNV images to work on larger datasets and different imaging modalities to improve
classification performance for ambiguous cases.
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