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Abstract: The solution of the motion equation for a structural system under prescribed loading and
the prediction of the induced accelerations, velocities, and displacements is of special importance
in structural engineering applications. In most cases, however, it is impossible to propose an exact
analytical solution, as in the case of systems subjected to stochastic input motions or forces. This
is also the case of non-linear systems, where numerical approaches shall be taken into account to
handle the governing differential equations. The Legendre–Galerkin matrix (LGM) method, in this
regard, is one of the basic approaches to solving systems of differential equations. As a spectral
method, it estimates the system response as a set of polynomials. Using Legendre’s orthogonal basis
and considering Galerkin’s method, this approach transforms the governing differential equation of
a system into algebraic polynomials and then solves the acquired equations which eventually yield
the problem solution. In this paper, the LGM method is used to solve the motion equations of single-
degree (SDOF) and multi-degree-of-freedom (MDOF) structural systems. The obtained outputs are
compared with methods of exact solution (when available), or with the numerical step-by-step linear
Newmark-β method. The presented results show that the LGM method offers outstanding accuracy.

Keywords: differential equation of motion; Legendre–Galerkin matrix (LGM) method; algebraic
polynomials; single degree of freedom (SDOF); multi degree of freedom (MDOF)

1. Introduction and State-of-Art

Most structural systems in civil engineering applications, as known, are either discrete
or can be estimated as discrete equivalents. The dynamic equation of motion of a continuous
system can be hence handled as a discrete system. The advantage of this assumption is
that the solution of fundamental equations of motion of discrete systems—which is of
utmost importance for engineering applications—can be efficiently calculated to predict the
responses of structural systems. Among others, let us consider the following well-known
second-order differential equation with given initial conditions:{ ..

y(t) = f (t, y(t),
.
y(t)), t0 < t ≤ T,

y(t0) = y0,
.
y(t0) =

.
y0.

(1)

Equation (1) is commonly used to express the governing equation of mechanical vibra-
tions, quantum dynamic calculations, dynamic equilibrium of structures, etc. Employing
and developing new numerical methods for approaching the exact solution is of great
importance.

In structural dynamics, algorithms of direct time integration are usually used to obtain
the solution of discrete temporal equations of motion at selected time steps [1]. In the
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past, to this aim, different integration algorithms in the time domain have been developed
using various methods. The same algorithms are widely used to solve the equation of
systems under dynamic loading. Several well-known algorithms have been presented by
researchers, among which the Newmark-β [2], Wilson-Theta [3], Runge-Kutta [4], etc., can
be pointed out. Detailed explanations can be found in structural dynamics textbooks [1,5,6].

Since 1994, the Chebyshev polynomials [7], Legendre polynomials [8], Bessel polyno-
mials [9], Hermite polynomials [10], Laguerre polynomials [11], and matrix methods have
been used in many research studies to solve linear and nonlinear equations with high or-
ders including partial differential equations, hyperbolic partial differential equations, delay
equations, integral and integro-differential equations, SDOF and MDOF systems, etc. One
of the approaches to find the solution to an initial value problem is taking semi-analytical
procedures such as the differential transform method (DTM) [12–23]. The nature of dy-
namic equations of motion of SDOF systems makes them differential equations with initial
values; hence, DTM has been also applied to solve non-linear SDOF problems [24–33].

Alternatively, Equation (1) can also be solved through spectral methods of discretiza-
tion [34–36], which are strategic for the numerical solution of differential equations. The
main advantage of these methods lies in their accuracy for a given number of unknowns.
For smooth problems with simple geometries, these methods offer exponential rates of con-
vergence/spectral accuracy. In contrast, methods such as finite difference and finite element
yield only algebraic convergence rates. Three spectral methods, namely the Galerkin [37],
Collocation [38], and Tau [39] are extensively used in the literature. Spectral methods are
preferable in numerical solutions of partial differential equations due to their high-order
accuracy [40,41]. The Standard Spectral and Galerkin methods have been extensively
investigated to handle different types of problems [42–45]. Several numerical methods
have been also developed to solve different types of differential equations. Some of these
methods can be used to solve more practical equations. These methods include sparse
multiscale representation of the Galerkin method [46], spectral collocation method [47],
Jacob spectral method [48], and many others. Recently, Erfanian et al. [49] developed a
new method for solving two-dimensional nonlinear Volterra integral equations, based on
the use of rationalized Haar functions in the complex plane. Bernoulli Galerkin matrix
method has been also proposed by Hesameddini and Riahi [50] for solving the system of
Volterra-Fredholm integro-differential equations. A new hybrid orthonormal Bernstein and
improved block-pulse functions method has been studied by Ramadan and Osheba [51]
for solving mathematical physics and engineering problems.

In recent years, researchers have developed a number of numerical methods to find the
solution for such equations. In this regard, matrix methods including the Euler method [52],
Bernoulli collocation method [53], hybrid Legendre block-pulse function method [54], least
squares method [55], Bessel colocation method [56], etc., have received much attention
since 2010. Given that the governing equations of natural phenomena are usually nonlinear
and complex, so the chosen method of solving must be commensurate with the problem’s
complexity and its dimensions. A nonlinear differential equation system consists of several
nonlinear equations that solving such a system requires numerical methods. The basis
of matrix methods is the expression of each of the functions in the problem based on
selected polynomials. After selecting the type of polynomials and expressing each of the
functions, the differential equation system becomes a system of linear equations with
several unknown coefficients, which can be solved by Galerkin and collocation methods.

In this paper, the Legendre–Galerkin matrix (LGM) method is used to solve the
equations of motion of different SDOF and multi-degree-of-freedom (MDOF) structural
systems. The results are compared with those from the exact solution (when available),
or from the numerical step-by-step Newmark-β method with linear acceleration. The
accuracy of the LGM formulation is thus highlighted in the discussion of comparative
calculations.
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2. Basics for SDOF and MDOF Systems

In the dynamic analysis of structures, from a practical point of view, a real structure
is defined as a system with infinite degrees of freedom that can be modeled as a discrete
system with SDOF or MDOF in a finite element approach. In many cases, these simple
models include complex information of the real structure and are able to simulate the
behavior of real structure with a good level of accuracy and high calculation efficiency. As
an example, in blast-resistant design of structures, the basis of current books and codes and
also simplified engineering tools have been established based on equivalent SDOF models
of real structures [57–59].

2.1. Governing Equation for SDOF Systems

A structure with one degree of freedom with mass m, stiffness k, and damping c
is assumed to be under dynamic load P(t) = P0 sin(Ωt) with excitation frequency ς
(Figure 1).

Figure 1. SDOF structure subjected to dynamic load P(t).

The governing equation of this system is [1]:

m
..
u(t) + c

.
u(t) + ku(t) = P0 sin(Ωt) (2)

where Equation (2) is written with similar connotations to Equation (1). The exact solution
to the motion equation of a SDOF system under harmonic load P0 sin(Ωt) with initial
conditions u(0) = u0 and

.
u(0) =

.
u0 is the sum of the displacements of the transient state

of the system (utransient) and the steady state (usteady state), and is expressed as [5]:

utotal = utransient + usteady state, (3)

in which utransient and usteady state are defined as:

utransient = e−ξωt
(

u0 cos ωdt +
.
u0+u0ωξ

ωd
sin ωdt

)
+

p0

k
e−ξωt

(1−β2)
2
+(2ξβ)2

[
2ξβ cos ωdt + ω

ωd

{
2βξ2 − β(1− β2)

}
sin ωdt

]
,

(4)

and
usteady state =

p0

k
1

(1− β2)2 + (2ξβ)2

{
(1− β2) sin Ωt− 2ξβ cos Ωt

}
(5)

where ξ and ω =
√

k
m are the damping ratio and natural frequency of the system, respec-

tively, and ωd = ω
√

1− ξ2 indicates the damped frequency. Finally, β = Ω
ω is the ratio of

the excitation frequency to the system natural frequency.

2.2. Linear Newmark-β Method

One of the most efficient methods of handling equations of motion of SDOF and
MDOF systems has been proposed by Newmark [2]. In 1959, Newmark also presented a set
of step-by-step numerical equations that are entirely known as the Newmark-β method [5].
In the present study, the linear Newmark-β method is taken into account from [5] to verify
the results of the newly developed LGM method.
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In order to solve the equation of motion of a MDOF system using the linear Newmark-
β method, it is important to remind that the following steps should be generally followed:

1. Determination of the initial conditions, {u0},
{ .

u0
}

and
{ ..

u0
}

, where the value of
{ ..

u0
}

is given by:
..
u0 =

p0 − C
.
u0 − Ku0

M
(6)

2. Determination of ∆t (assumed time step, e.g., 0.005)
3. Determination of the effective stiffness matrix:

k̂ = k +
γ

β∆t
C +

1

β(∆t)2 M (7)

where β = 1/6 and γ = 1/2 for linear acceleration method.
4. Calculation of a and b factors:{

a = 1
β∆t M + γ

β C

b = 1
2β M + ∆t

(
γ
2β − 1

)
C

(8)

5. Calculation of the effective load:

∆ p̂i = ∆pi + a
.
ui + b

..
ui (9)

6. Calculation of displacement, velocity, and acceleration:
ui+1 = ui + ∆ui,.
ui+1 =

.
ui + ∆

.
ui,..

ui+1 =
..
ui + ∆

..
ui,

(10)

where,

∆ui =
∆ p̂i

K̂
(11)

∆
.
ui =

γ

β∆t
∆ui −

γ

β

.
ui + ∆t

(
1− γ

2β

)
..
ui (12)

∆
..
ui =

γ

β(∆t)2 ∆ui −
1

β∆t
.
ui −

1
2β

..
ui. (13)

3. Legendre–Galerkin Matrix Method

Legendre polynomials are among the most important functions in the function ap-
proximation theory. The LGM method is highly successful in approximating different
functions which mainly stems from the orthogonality of Legendre basis components. This
orthogonality makes it easy to find the unknown coefficients of the problem. Another
reason for using these basis components is their weight. The weight function will not
be a problem for the calculation of the integrals of the Galerkin method and hence the
operational matrices of differentiations and other existing functions in the problem can be
easily found.

The Galerkin method is an efficient and easy-to-implement approach for solution of
the equations of motion of MDOF systems:

f

∑
j=1

{
mij

..
yj(t) + cij

.
yj(t) + kijyj(t)

}
= pi(t), i = 1, 2, . . . f t ∈ [0, t1], (14)
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under the following initial conditions:{
yi(0) = λi,
y′ i(0) = γi,

f or i = 1, 2, . . . , f . (15)

In Equation (14), mij, cij and kij are, respectively, components of mass, damping and
stiffness matrices. pi(t) is the load prescribed at the i-th degree of freedom and λi and γi
are, respectively, the initial displacement and velocity applied to the i-th degree of freedom.
yi is the displacement of the i-th degree of freedom which is the unknown of the problem,
and t represents time.

3.1. Approximation of the Function Using Shifted Legendre Polynomials

• Legendre polynomials: introduced by Lm(t), the Legendre polynomials are defined in
the interval [−1, 1] and can be obtained using the following recursive equations:

L0(t) = 1,
L1(t) = t,
L2(t) = 3

2 t2 − 1
2 ,

...,
Lm+1(t) = 2m+1

m+1 t Lm(t)− m
m+1 Lm−1(t).

(16)

For further application of these polynomials, they are shifted to the interval [0, L] with
the change of variable 2

L t− 1. Therefore, these shifted polynomials which are shown by
L∗m(t) are represented as the following:

L∗m(t) = Lm(
2
L

t− 1) t ∈ [0, L]. (17)

• Inner product of two functions: the inner product of two functions f(t) and g(t) is
represented by 〈 f (t), g(t)〉. If the functions are known and continuous in the interval
[0, b], then:

〈 f (t), g(t)〉 =
∫ b

a
f (t)g(t)w(t)dt. (18)

• Orthogonality of two functions: two functions f (t) and g(t) are orthogonal with respect
to the weight function w(t) on [a, b] if:

〈 f (t), g(t)〉 = 0. (19)

The shifted Legendre polynomials are orthogonal with respect to the weight function
w(t) = 1 in the interval [0, L]. This means that:

∫ b

a
L∗m(t)L∗n(t)dt =

{
0 m 6= n,

L
2m+1 m = n.

(20)

Orthogonality of the functions has wide application in the function approximation
theory. Any continuous function such as f (x) can be approximated in the interval [0, L]
using these polynomials as below:

f (t) =
∞

∑
m=0

fmL∗m(t), (21)

where fm can be obtained from:

fm =
〈 f (t), L∗m(t)〉
〈L∗m(t), L∗m(t)〉

=
2m + 1

L

∫ L

0
f (t)L∗m(t)dt. (22)
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Only the first N + 1 terms of Equation (21) are used in practice. Therefore:

f (t) =
N

∑
m=0

fmL∗m(t) = FTφN(t), (23)

where F and φN(t) are factors of the shifted Legendre vectors expressed as:

F = [ f0 f1 . . . fN ]
T , (24)

φN(t) = [L∗0(t) L∗1(t) . . . L∗N(t)]
T . (25)

3.2. Expression of the LGM Method

Assuming that Equation (14) has a unique solution under the initial conditions in
Equation (15), the goal is to find an approximate analytical solution to Equation (14) using
the discretized Legendre series as below:

yi,N(t) =
N

∑
m=0

ai,mL∗m(t) = AT
i,N
φN(t) , (26)

where,
Ai,N = [ai,0 ai,1 . . . ai,N ]

T ,
φN(t) = [L∗0(t) L∗1(t) . . . L∗N(t)].

(27)

The matrix form of the derivative vector will be:

d
dt
φN(t) = DφN(t), (28)

where D is a matrix of dimensions (N + 1) × (N + 1) and is obtained as below:

D = [dij] =

 2(2j+1)
L , f or j = i− k,

{
k = 1, 3, . . . , N if N is odd number,
k = 1, 3, . . . , N − 1 if N is even number,

0, otherwise.
(29)

For example, for different values of N, the following equations are obtained:

I f N = 1 → D =

[
0 0
2
L 0

]
I f N = 2 → D =

 0 0 0
2
L 0 0
0 6

L 0



I f N = 3 → D =


0 0 0 0
2
L 0 0 0
0 6

L 0 0
2
L 0 10

L 0


Using Equation (27), the k-th derivative of φN(t) vector is:

dk

dtk φN(t) = DkφN(t), (30)

Therefore, by replacing k = 1 and 2 in Equation (29), and then combining the results
with Equation (25), one can write:

.
yi,N(t) =

N

∑
m=0

ai,mL∗m(t) = AT
i,N

DφN(t), (31)
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and
..
yi,N(t) =

N

∑
m=0

ai,mL∗m(t) = AT
i,N

D2φN(t). (32)

Moreover, the functions pi(t) can be shown in matrix form as follows:

pi(t) =
N

∑
m=0

pi,mL∗m(t) = PT
i,NφN(t), (33)

where PT
i,N is a (N+1) dimensional vector with the following expression:

Pi,N = [pi,0 pi,1 . . . pi,N ]
T , (34)

where,

pi,m =
2m + 1

L

∫ L

0
pi(t)L∗m(t)dt. (35)

By introducing Equations (25) and (30)–(32) in Equation (14), it is thus possible to
obtain:

f

∑
j=1

{
mijAT

j,N
D2 + cijAT

j,N
D + kijAT

j,N

}
φN(t) = PT

i,NφN(t) (36)

Now, let us assume that:

YN = AφN(t) =


y1,N
y2,N

...
y f ,N

, A =


AT

1,N
AT

2,N
...

AT
f ,N

, P =


PT

1,N
PT

2,N
...

PT
f ,N

,

M = [mi j], C = [cij], K = [kij], i, j = 1, 2, . . . , f ,

(37)

where YN is an f dimensional vector, A and P are f × (N + 1) dimensional and M, C and
K are the known f × f dimensional matrices, respectively.

Using Equations (35) and (36), the matrix form for approximation of Equation (14) can
be obtained as:

(MAD2 + CAD + KA)φN(t) = PφN(t), (38)

or
UφN(t) = PφN(t), (39)

where,
U = MAD2 + CAD + KA.

Equation (38) can be solved using different methods, namely the direct method (i.e.,
omitting φN(t) from both sides of the equation and assuming it to vanish), the collocation
method, or the Galerkin method.

In the present paper, the Galerkin method is selected to solve the equation. This
method tries to minimize the error toward zero with the inner product of the equations in
Legendre basis L∗m(t). Consequently:

〈UφN(t), L∗m(t)〉 = 〈PφN(t), L∗m(t)〉, m = 0, 1, . . . , N. (40)

The above equation is an algebraic system of linear equations with N + 1 equations
and N + 1 unknowns that can be easily solved. It is needed, however, to apply the boundary
conditions to the problem, as also in accordance with Equation (15). Following Equations
(25) and (30), it is:

AφN(0) = Λ,
ADφN(0) = Π,

(41)



Appl. Sci. 2021, 11, 9307 8 of 21

where,
Λ = [λ1 λ2 . . . λ f ]

T , Π = [γ1 γ2 . . . γ f ]
T .

Finally, in order to find the response of the system in Equation (14) under the ini-
tial conditions from Equation (15), by replacing 2f of the rows of Equation (40) with
Equation (38), a system of algebraic equations with (N + 1 − 2f ) equations (Equation (38))
and 2f equations (Equation (40)) is created. Their solution yields the analytic approximation
of the original problem. The last rows of Equation (38) are usually replaced with those
equations from Equation (40); however, this is not always obligatory and the rows which
will cause the system of equations to be singular can be alternatively replaced.

3.3. Solution of a Calculation Example

Consider the following equation as a SDOF structure without damping under a
prescribed load: {

0.1y′′ (t) + 4y(t) = 4(e−t − e−15t),
y(0) = 1, y′(0) = −1.

(42)

The exact solution of this system is:

y(t) = −0.3618 sin(6.3245t) + 0.1753 cos(6.3245t)
+0.9756e−t − 0.1509e−15t.

(43)

Choosing N = 5, the LGM method is used to solve the system. The matrix system can
be obtained as below:

(MAD2 + KA)φN(t) = PφN(t), (44)

where M = 0.1 and K = 4. Furthermore:

D2 =



0 0 0 0 0 0
0 0 0 0 0 0
12 0 0 0 0 0
0 60 0 0 0 0
40 0 140 0 0 0
0 168 0 252 0 0

, φN(t) =



1
2t− 1

6t2 − 6t + 1
20t3 − 30t2 + 12t− 1

70t4 − 140t3 + 90t2 − 20t + 1
252t5 − 630t4 + 560t3 − 210t2 + 30t− 1

,

A =
[

a0 a1 . . . a5
]
, P =

[
2.2618 −0.5503 −0.6653 0.7842 −0.6008

]
,

(45)

where φN(t) is the shifted Legendre vector on the interval [0,1].
Using the Galerkin matrix method, the following algebraic system of equations is

obtained: 

4 0 1.2 0 4 0
0 1.33 0 2 0 5.6
0 0 0.8 0 2.8 0
0 0 0 0.5714 0 3.6
1 −1 1 −1 1 −1
0 2 −6 12 −20 30





a0
a1
a2
a3
a4
a5

 =



2.2618
−0.1834
−0.1331
0.1120

1
−1

 (46)

Solving the above algebraic equations, the unknown Legendre coefficients are finally
obtained as follows:

a0 = 0.60901, a1 = 0.07098, a2 = 0.27735, a3 = −0.40712, a4 = −0.12676, a5 = 0.09574.

By replacing the obtained values in Equation (17), the approximate solution for y(t) is:

y(t) ∼= 24.1271 t5 − 69.1914 t4 + 63.2204 t3 − 17.6372 t2 − t + 1. (47)
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Figure 2 illustrates the results of the exact solution as a function of time, along with its
approximation. The accuracy of the LGM method compared to the exact solution can be
noticed in the whole time interval.

Figure 2. Comparison of LGM and exact solutions for an SDOF system.

4. Worked Examples and Discussion of Results

For a more exhaustive discussion of the developed LGM method and for a reliable
assessment of its potential in structural analysis, the motion equation of an MDOF system
is solved in accordance with Equation (14), and some numerical examples are presented.
These examples are representative of simple models of real structures (by introducing mass,
stiffness, and damping matrices) with and without damping. Accordingly, the current
study and the presented formulation of the LGM method represents a first step towards its
further extension and use for other applications, such as reliability analysis, optimization,
and modal analysis of structures.

4.1. Two-Degree-of-Freedom (2DOF) Structure

A structure with two degrees of freedom (2DOF) is analyzed in different dynamic
conditions. The structure is first analyzed under free vibration with no effective damping,
and then with additional damping. Successively, the analysis is further performed with
the assumption of forced vibration, with and without damping. Basic input data and
parameters are summarized as follows:

• Free vibration, without damping: it is M =

[
1.5 0
0 2

]
, C = 0 and

K =

[
300 −300
−300 800

]
for mass, damping and stiffness parameters.

The initial conditions are u(0) =
[

1
1/2

]
and

.
u(0) =

[
0
0

]
.

• Free vibration, with damping: it is C =

[
1.628 −0.256
−0.256 2.512

]
, while all the other

parameters are equal to the undamped case.

The solution of the motion equation using Legendre’s method for u1(t) and u2(t) are
respectively shown in Figures 3 and 4. Moreover, the LGM results are compared with
the exact method, giving evidence of acceptable consistency. It is worth noting that the
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exact solution is obtained using the Solver of Systems of Equation in the Maple software.
Comparisons are then made with the approximate solution.

Figure 3. Free vibration analysis for a 2DOF system. Comparison of u1(t) as a function of time, as
obtained from the LGM method or the exact solution.

Figure 4. Free vibration analysis for a 2DOF system. Comparison of u2(t) as a function of time, as
obtained from the LGM method or the exact solution.

Successively, the examined structure is analyzed under forced vibration. In this case,
it is:

p(t) =

[
sin 3t

0

]
, u(0) =

[
0
0

]
and

.
u(0) =

[
0
0

]
Once again, the structure is analyzed with and without damping, using the developed

LGM method. The analytical results obtained from the LGM method for u1(t) and u2(t)
are shown in Figures 5 and 6, respectively, and compared with the exact solution, proving
again a rather acceptable consistency in the examined time interval.
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Figure 5. Forced vibration analysis of a 2DOF system. Comparison of u1(t) as a function of time, as
obtained from the LGM method or the linear Newmark-β method.

Figure 6. Forced vibration analysis of a 2DOF system. Comparison of u2(t) as a function of time, as
obtained from the LGM method or the linear Newmark-β method.

4.2. Three-Degree-of-Freedom Structure

As a further validation example, a structure with three degrees of freedom (3DOF) is
analyzed in forced and free vibration conditions, with or without damping.
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• Free vibration, without damping: it is M =

 2 0 0
0 2 0
0 0 2

, C = 0 and

K =

 2 −2 0
−2 3 −1
0 −1 1

 for mass, damping and stiffness, respectively. The initial

conditions are u(0) =

 1
2/3
1/3

 and
.
u(0) =

 0
0
0

.

• Free vibration, with damping: it is C =

 0.8 0 0
0 0.7 0
0 0 0.6

, while the other parameters

are the same as without damping.

The results for u1(t), u2(t) and u3(t) are shown in Figures 7–9, respectively, where it
is possible to see the comparison of the LGM method and linear Newmark-β method, with
rather good consistency.

The equation of motion of the structure under forced vibration (with and without

damping) for p(t) =

 sin t
0
0

 with initial conditions u(0) =

 0
0
0

 and

.
u(0) =

 0
0
0

 is solved further by using Legendre’s method.

The results obtained in this case for u1(t), u2(t) and u3(t) are proposed in
Figures 10–12, respectively, and compared with the results by the linear Newmark-β
method. Moreover, in this case, the comparative data show the consistency of the LGM
with the linear Newmark-β method.

Figure 7. Free vibration analysis of a 3DOF system. Comparison of u1(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.
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Figure 8. Free vibration analysis of a 3DOF system. Comparison of u2(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.

Figure 9. Free vibration analysis of a 3DOF system. Comparison of u3(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.
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Figure 10. Forced vibration analysis of a 3DOF system. Comparison of u1(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.

Figure 11. Forced vibration analysis of a 3DOF system. Comparison of u2(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.
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Figure 12. Forced vibration analysis of a 3DOF system. Comparison of u3(t) as function of time, as
obtained using the LGM method or the linear Newmark-β method.

4.3. Five-Degree-of-Freedom Structure

In conclusion, a structure with five degrees of freedom (5DOF) is analyzed with the
LGM method, both under free vibration with and without damping.

• Free vibration, without damping: it is assumed that M =


1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

, C = 0

and K =


4 −4 0 0 0
−4 12 −8 0 0
0 −8 20 −12 0
0 0 −12 24 −12
0 0 0 12 28

, respectively.

The initial conditions are u(0) =


1

4/5
3/5
2/5
1/5

 and
.
u(0) =


0
0
0
0
0

.

• Free vibration, with damping: it is assumed that C =


0.5 0 0 0 0
0 0.5 0 0 0
0 0 0.5 0 0
0 0 0 0.5 0
0 0 0 0 0.5

,

while the other parameters are the same as in the undamped case.

The solutions of the equation of motion of the structure using the LGM for damped
and undamped states, in terms of u1(t) to u5(t), are shown in Figures 13–17 and compared
with those by the linear Newmark-β method. As for the previously discussed calculation
examples, the comparative plots prove an appropriate consistency and a high level of
accuracy of the LGM procedure.
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Figure 13. Free vibration analysis of a 5DOF system. Comparison of u1(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.

Figure 14. Free vibration analysis of a 5DOF system. Comparison of u2(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.
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Figure 15. Free vibration analysis of a 5DOF system. Comparison of u3(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.

Figure 16. Free vibration analysis of a 5DOF system. Comparison of u4(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.
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Figure 17. Free vibration analysis of a 5DOF system. Comparison of u5(t) as a function of time, as
obtained using the LGM method or the linear Newmark-β method.

It should be noted that, in the case of stochastic analysis that is interpreted classically as
a repetition of solution for different input values with defined probability density functions
(taking into account uncertainties associated with input parameters), the methods such
as Monte Carlo simulation (MCS) [60] can be easily used along with the results of LGM
method to investigate the problem in a probabilistic manner. This is due to the fact that,
in the LGM method, the solution is approximated by discretized Legendre series that can
be used as a state function in reliability analysis where no mathematical closed-form state
function can be found (e.g., through finite element method). Furthermore, such a solution
obtained from the LGM method can also be utilized with analytical reliability methods
(e.g., jointly distributed random variables method [61]) or approximate ones (e.g., first
and second-order reliability methods (FORM and SORM), point estimate method (PEM),
etc. [62]), with less computational efforts in comparison to the MCS method.

5. Conclusions

The Legendre–Galerkin matrix (LGM) method was developed in this study to solve
systems of differential equations of motion. As shown, the advantage of this spectral
method is that it converts the governing differential equation of a given problem to a
system of algebraic equations, based on a set of orthogonal Legendre polynomials. The
final solution leads to a good estimate of the solution for a system of differential equations.
In the present research study, the selected differential equations were typical of single
degree (SDOF) and multi-degree-of-freedom (MDOF) structural systems.

In order to prove the accuracy of the proposed method in the response calculation of
SDOF and MDOF structures, a number of numerical examples for damped and undamped
structural systems under free or forced vibrations were developed and discussed. When
available, exact solutions were taken into account for the comparative analysis of LGM
predictions, otherwise, the results of the numerical linear Newmark-β method were used
to verify the estimates from the developed LGM method. The overall comparative data
showed that the LGM method is of high accuracy in estimating the response of SDOF
and MDOF systems and can be thus effectively employed in the solution of fundamental
motion equations of structures.
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56. Yüzbaşı, Ş. Numerical solutions of system of linear Fredholm–Volterra integro-differential equations by the Bessel collocation

method and error estimation. Appl. Math. Comput. 2015, 250, 320–338. [CrossRef]

http://doi.org/10.1016/S0020-7403(98)00095-2
http://doi.org/10.1016/S0307-904X(98)10002-1
http://doi.org/10.1016/j.jsv.2005.01.055
http://doi.org/10.1016/j.apm.2007.06.010
http://doi.org/10.1016/j.compstruct.2010.05.022
http://doi.org/10.17512/jamcm.2019.2.02
http://doi.org/10.1016/j.jestch.2018.09.008
http://doi.org/10.1016/j.amc.2014.08.062
http://doi.org/10.1137/0709034
http://doi.org/10.1007/BF02243435
http://doi.org/10.1007/s11075-017-0325-x
http://doi.org/10.1016/j.camwa.2017.07.022
http://doi.org/10.1016/j.jcp.2015.11.047
http://doi.org/10.1080/00207160.2016.1227799
http://doi.org/10.1002/mma.6068
http://doi.org/10.1016/j.amc.2019.124915
http://doi.org/10.1007/s00366-020-00953-9
http://doi.org/10.1166/asem.2020.2538
http://doi.org/10.1007/s40995-018-0584-y
http://doi.org/10.1016/j.aej.2020.06.014
http://doi.org/10.1016/j.joems.2013.06.016
http://doi.org/10.1016/j.amc.2015.08.107
http://doi.org/10.1016/j.amc.2014.10.110


Appl. Sci. 2021, 11, 9307 21 of 21

57. US DoD. UFC 3-340-02 Structures to Resist the Effects of Accidental Explosions; US DoD: Washington, DC, USA, 2008.
58. Bounds, W.L. Design of Blast-Resistant Buildings in Petrochemical Facilities; ASCE Publications: Reston, VA, USA, 2010.
59. Momeni, M.; Hadianfard, M.A.; Bedon, C.; Baghlani, A. Damage evaluation of H-section steel columns under impulsive blast

loads via gene expression programming. Eng. Struct. 2020, 219, 110909. [CrossRef]
60. Hadianfard, M.A.; Malekpour, S.; Momeni, M. Reliability analysis of H-section steel columns under blast loading. Struct. Saf.

2018, 75, 45–56. [CrossRef]
61. Johari, A.; Momeni, M.; Javadi, A. An analytical solution for reliability assessment of pseudo-static stability of rock slopes using

jointly distributed random variables method. Iran. J. Sci. Technol. Trans. Civ. Eng. 2015, 39C2, 351–363.
62. Nowak, A.S.; Collins, K.R. Reliability of Structures; CRC Press: Boca Raton, FL, USA, 2012.

http://doi.org/10.1016/j.engstruct.2020.110909
http://doi.org/10.1016/j.strusafe.2018.06.001

	Introduction and State-of-Art 
	Basics for SDOF and MDOF Systems 
	Governing Equation for SDOF Systems 
	Linear Newmark- Method 

	Legendre–Galerkin Matrix Method 
	Approximation of the Function Using Shifted Legendre Polynomials 
	Expression of the LGM Method 
	Solution of a Calculation Example 

	Worked Examples and Discussion of Results 
	Two-Degree-of-Freedom (2DOF) Structure 
	Three-Degree-of-Freedom Structure 
	Five-Degree-of-Freedom Structure 

	Conclusions 
	References

