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Abstract: This paper presents a new formulation for analyzing a beam on elastic supports traveling
on irregular profiles. The model is a first approximation of a passenger railway vehicle car body.
The main difference with previous works is the use of a complex modulus to represent structural
damping rather than relying on equivalent viscous terms. The formulation groups rigid body modes
with flexible modes and proposes a matrix form that is easy to interpret and solve in the frequency
domain. Comfort indexes are readily obtained from weighted response spectral densities. The model
is used to assess the influence of structural damping and stiffness on comfort. It will be shown that
the evolution of comfort with stiffness is non-monotonic and, therefore, comfort does not always
improve as stiffness increases.

Keywords: Euler–Bernoulli; frequency domain; comfort; transfer function; loss factor; complex modulus

1. Introduction

There are two current trends in passenger rail transport that may influence comfort
in a negative way. One of these trends is the increase in operational speeds on new
and existing high-speed train tracks. The other is weight reduction when achieved at
the cost of structural stiffness. The influence of the structural response on comfort is
acknowledged by most rolling stock manufacturers, who routinely take it into account
in their simulations. Multibody (MB) analyses conducted to predict dynamic behavior
and comfort often include flexible frames represented by mass, damping, and stiffness
matrices (or condensed versions of these matrices) derived from finite element models
(FEM). These combined MB–FEM analyses show the influence of many design features
on comfort but, at the same time, often hide the basic relationships between the most
fundamental design parameters and passenger vibration. To unveil these relationships, it
is helpful to strip the models down to their bear minimum. For instance, despite the fact
that connected cars influence the vertical dynamics of one another, the inclusion of all cars
in the models may obscure the basic connection between comfort and structural stiffness.
Most simplified studies, such as the one presented in this paper, consider a single isolated
car on two trucks or bogies [1–9]. Our case, however, differs in that it focuses on vehicles
in which consecutive cars share either a bogie or a yoke with independent wheels (such as
the configurations patented by the Spanish manufacturer “Talgo”). In either case, the cars
are supported at the very end of their structure, as shown by the models described in the
next section. The second simplifying step is to disregard the mechanical complexities of the
suspension, ignore unsuspended and semi-suspended masses, and represent the system as
a simple linear spring–damper set. The third and bolder simplification is to assume that
the car structure behaves like a uniform cross-section Euler–Bernoulli beam with all mass
(including payload) evenly distributed along the beam.
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Similar models have been analyzed in a number of papers [1–9] with the same goal that
drives our research: to assess the influence of structural flexibility on passenger comfort.
However, to the best of our knowledge, no previous work on this particular subject
has modeled structural dissipation by means of a complex modulus. They all include a
viscous term in the equation of motion of the beam that stems from cross-section stresses
proportional to strain rate and in-phase with strain rate. This Kelvin–Voigt damping, also
referred to as strain-rate damping, is convenient because it complies with the principle of
causality, allowing models to be analyzed in the time domain.

Zhou et al. [1] analyzed a Euler–Bernoulli beam with strain-rate damping supported
on two bogies. They quantified comfort via the Sperling index and concluded that comfort
improves with stiffer beams. They also showed that to maintain comfort levels for higher
speeds, structures should be made stiffer. Huang et al. [2], as well as Shi et al. [3], used the
same model with a mass under the beam connected with a flexible element to represent
the effect of undercarriage equipment. They showed that the equipment could be used as
a dynamic vibration absorber when the connecting stiffness and damping characteristics
are properly designed. They compared their model results to experimental measurements,
which showed good agreement. Gong et al. [4] also used the same basic model but fitted,
in this case, with underframe dampers. They showed that properly placed dampers could
mitigate the flexural vibration of the car frame. Their model results were compared to finite
element results, showing good agreement.

Dumitriu [5–9] has conducted similar studies also using a Euler–Bernoulli beam with
strain-rate damping supported on two bogies. She first presents the model as a viable tool
for virtual certification [5] and later [6] uses the model to show that the consideration of
frame flexibility may shift the least comfortable point on the beam from atop the bogie (for
a rigid beam) to the beam center (for a flexible beam under particular conditions).

The ubiquity of the strain-rate damping model notwithstanding, its ability to represent
structural damping is questionable. The energy dissipated per cycle grows with frequency
in the case of viscous damping, whereas experience shows otherwise. Banks and Inman [10]
conducted experimental tests with composite beams, from which the damping parameters
of several models they proposed were extracted. The analytical time response obtained
with the estimated coefficients was then compared to the experimentally measured time
response. Their hysteresis models produced better results than the strain-rate damping
model. Dropping the Kelvin–Voigt term in favor of a complex modulus for the beam
material is a better option to represent structural damping. In this case, damping stresses
are proportional to strain (rather than strain rate), albeit in-phase with the strain rate. The
drawback of complex modulus is that the principle of causality is lost, and models are not
amenable to time-domain analysis. Fortunately, frequency domain analysis with a complex
modulus is not only feasible but quite simple and straightforward as will be shown next.
Moreover, mean square accelerations, from which comfort indexes may be estimated, can
be easily obtained from frequency analyses.

2. Formulation

The model in Figure 1 is a uniform Euler–Bernoulli beam on two spring–damper
sets. Let l be the length of the beam (equal, in our case, to the distance between axles, as
mentioned in the introduction); I, its cross section area moment of inertia; m, its uniformly
distributed mass (with µ = m/l, the mass per unit length); Er, the material storage modulus;
and η, its loss factor (so that E = Er(1 + iη)). The suspension is simplified as linear springs
and dampers at each end of the beam with no unsprung mass considered. As shown in
Figure 1, k and c are the suspension stiffness and damping constants, respectively; z1 and
z2, the front and rear wheel vertical displacements, respectively; x, the coordinate along
the beam measured from the front axle; and w(x, t), the vertical displacement of the beam.
The equation of motion is

EIwIV + µẅ = f (1)
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where Roman numerals indicate derivation with respect to x and dots derivation with
respect to time. The right-hand side f ( f (x, t), that is) is the load distribution on the
beam (gravitational forces not included since displacements are measured from the static
equilibrium position). In our case, f is concentrated at each end of the beam and corresponds
to the spring and damper forces that can be written as

f = (k(z1 − w0) + c(ż1 − ẇ0))δ(0) + (k(z2 − wl) + c(ż2 − ẇl))δ(l) (2)

where w0 = w(0, t), wl = w(l, t), and δ is Dirac’s delta.

l

k c

z
1
      z

2

wx

k c

Figure 1. Railway vehicle car model.

Displacements are expressed as the following superposition of n modes:

w(x, t) =
n

∑
i=1

Wi(x) qi(t) (3)

where

W1(x) = 1
W2(x) = x− l/2
Wi(x) = cos βix + cosh βix−

cos βi l−cosh βi l
sin βi l−sinh βi l

(sin βix + sinh βix) i ≥ 3
(4)

The first two functions being the rigid body modes, while the rest are flexible modes
for the free–free boundary conditions, with βil ≈ (2i− 3)π/2 for i ≥ 3. In principle, the
set of modes for the case of a simply supported beam could also be used. Nevertheless, in
that case, all resulting equations except for the two involving rigid body modes become
homogeneous, and, therefore, amplitudes obtained from those equations could be arbitrarily
scaled. Introducing Expressions (2) and (3) in Equation (1), multiplying by mode Wi,
integrating along the length of the beam, and verifying that all modes (including rigid
body modes) are orthogonal, the following equation is obtained:

EIβ4
i

mi
µ qi + mi q̈i =

(k(z1 − w0) + c(ż1 − ẇ0))Wi(0) + (k(z2 − wl) + c(ż2 − ẇl))Wi(l)
(5)

where mode Wi could be any of the n modes included (making Equation (5), in fact, a
system of n ordinary differential equations), and where mi = m for i = 1, 3, . . . n, and
m2 = Ig, the rigid beam moment of inertia with respect to its center of mass. Using
Equation (3) to express displacements and velocities at each end of the beam (w0, ẇ0, wl ,
and ẇl) as a superposition of modes, the set of equations can be written as

EIβ4
i

mi
µ qi + mi q̈i = (kz1 + cż1)Wi(0) + (kz2 + cż2)Wi(l)−

k ∑n
j=1
(
Wj(0)Wi(0) + Wj(l)Wi(l)

)
qj − c ∑n

j=1
(
Wj(0)Wi(0) + Wj(l)Wi(l)

)
q̇j i = 1, . . . n

(6)
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Defining vectors q, W, W0, and Wl as

q =


q1
...

qn

 W =


W1(x)

...
Wn(x)

 W0 =


W1(0)

...
Wn(0)

 Wl =


W1(l)

...
Wn(l)

 (7)

matrices M and B as

M =


m

Ig
m

. . .
m

 B =


0

0
β4

3
. . .

β4
n

 (8)

and matrix A as W0WT
0 + WlWT

l , Equations (6) can be grouped in matrix form as

Mq̈ + cAq̇ +

(
kA +

EI
µ

BM
)

q = (kz1 + cż1)W0 + (kz2 + cż2)Wl (9)

It is worth noting that this system of equations reduces to the dynamic equations of a
rigid body on two elastic supports when all modes are discarded except for the first two.

For harmonic input, z1 = Zeiωt, harmonic solutions of Equation (9) may be sought
in the form q = Qeiωt, in which case Equation (9) becomes the following set of algebraic
equations: [

kA + iωcA +
EI
µ

BM−ω2M
]

Q = Z(k + iωc)
(

W0 + e−iωl/v Wl

)
(10)

where input z2 lags behind z1 the time it takes the vehicle to travel the distance l, that
is z2 = Zeiω(t−l/v), with v, the vehicle speed. Given the Fourier transform Z of input z1,
vector Q can be obtained by solving Equation (10) for each frequency ω. Each component
of vector Q represents the amplitude with which the corresponding mode participates in
beam motion at frequency ω. Nevertheless, it will soon be clear that, for the purpose of
comfort assessment, it is more convenient to solve Equation (10) for the quotient Q/Z, in
which case Fourier transform Z need not be explicitly specified. This fraction, which will
be referred to as H1 in what follows, can be interpreted as a vector of transfer functions
between input z1 and “modal” time responses q. Using the vectors defined in Equation (7),
the summation in Equation (3) can be written as

w = WT q (11)

For the harmonic case (q = Qeiωt), defining W (not to be mistaken with vector W nor
its components Wi) such that w = Weiωt, the following relations hold:

w = Weiωt = WTq = WTQ eiωt = WTH1Z eiωt = WTH1z1 (12)

Therefore, the transfer function defined as H2 = W/Z can be computed as

H2 = WTH1 (13)

This transfer function can now be used to determine the response spectral density
in terms of the input spectral density. However, comfort indexes are determined from
a filtered or weighted response rather than from the raw signal. The goal is to take into
account the effect of the different frequencies on comfort. For a detailed explanation of the
calculation procedure, as well as of the meaning, of the comfort index used in this work,
see [11]. Filtering in the time domain is tantamount to multiplying by the filter transfer
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function in the frequency domain. Therefore, multiplying H2 by the comfort filter (let it
be referred to as Hc) yields the transfer function between weighted accelerations (ẅw) and
input acceleration (z̈1) as H = H2Hc. The spectral density of the weighted response can
thus be obtained as

Sẅw = |H|2Sz̈1 = |H|2ω4Sz1(ω) = |H|2ω4Sz1(Ω)/v (14)

where the input spectral density Sz1 is usually expressed in terms of spatial frequency Ω
(with Ω = ω/v, in rad/m). In fact, reference [12] suggests that Sz1(Ω) may be assumed to
be given by

Sz1 =
AvΩ2

c
(Ω2 + Ω2

r )(Ω2 + Ω2
c )

(15)

where Ωc = 0.8246 rad/m, Ωr = 0.0206 rad/m, and parameter Av can be fine-tuned to
represent different track irregularity levels. Figure 2 plots Expression (15) for the following
values of Av: Av = 0.4032 µm rad, which is considered a low irregularity track (labelled
“ORE low” in the Figure), Av = 1.08 µm rad, which is considered high irregularity (labelled
“ORE high” in the Figure), and Av = 0.6 µm rad as an intermediate value (labelled “ORE
mid” in the Figure). The figure also plots an instance of experimental measurements
conducted by the authors in collaboration with the Spanish rolling stock manufacturer
“Talgo” on board their test train “Avril”. The experimental spectral density is computed
from accelerations measured on one of the journal boxes when the train was traveling at
300 km/h on a high-speed train track. It can be seen that Expression (15) cannot be a perfect
interpolating function for all tracks and stretches, and that, at least in this instance, some
frequency bands are better captured by the expression than others. Experimental deviations
notwithstanding, our test data allow us to state that Expression (15), with the appropriate
Av value, and adjusting parameters Ωr and Ωc if needed, can be a fair representation of
the frequency content of many tracks.
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Figure 2. Track power spectral density (PSD).

Integrating Sẅw of Equation (14) into the range of relevant frequencies yields the
mean squared weighted acceleration (E[ẅ2

w]), from which comfort indexes are readily
calculated (see [11]) as cI = 6

√
E[ẅ2

w] (note that this definition makes the index decrease
as comfort improves). The comfort filter Hc strongly attenuates frequencies above 30 Hz.
The contribution of higher frequencies to comfort indexes may thus be neglected.

The proposed procedure formulated in this section is extremely efficient in terms of
computational cost. The dimension of the system of linear algebraic equations to be solved
(Equation (10)) is small since just a few modes suffice to represent structural flexibility. It is
true, nonetheless, that the system needs to be solved for every frequency in the range of
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interest and that the resulting spectral density needs to be integrated, but neither of these
tasks is a big burden on the computational cost.

3. Complex Modulus versus Viscous Damping for Comfort Assessment

As stated in the introduction, there are solid theoretical arguments, as well as some
experimental evidence, in favor of complex moduli as opposed to viscous terms to model
structural damping. Nevertheless, it was also mentioned that, despite the loss in accuracy,
most researchers resort to viscous terms. To quantify the difference, the formulation in
the previous section can easily be tweaked to include viscous damping. The equivalent of
Equation (1) is now

Er IwIV + νIẇIV + µẅ = f (16)

where ν is the viscous modulus that, forcing the imaginary parts of Equations (1) and (16)
to coincide at the first bending frequency, is given by

ν =
η

(π/l)2

√
Erµ

I
(17)

Using the same procedure and notation as in the previous section, the equivalent of
Equation (10) is now[

kA + iωcA +
Er I
µ

BM + iωνIl B−ω2M
]

Q = Z(k + iωc)
(

W0 + e−iωl/v Wl

)
(18)

The same frequency analysis described above can be used to quantify comfort indexes
at any location along the beam for any given set of parameters. For instance, let all
parameters take the values shown in the first row of Table 1. The loss factor can take values
between 0.01 and 0.1. Figure 3 shows the evolution of the comfort index with a loss factor
at two locations on the beam when computed using viscous damping (v.d. in the figure) as
well as when using complex modulus (c.m.). It can be seen that differences between both
damping models are quite significant when measured in terms of the comfort index. The
viscous model greatly overestimates damping as the frequency increases, thus yielding
too optimistic comfort index values, as Figure 3 attests. This result sheds some doubt on
previous works and prompts experimental verification. This, however, lies beyond the
scope this paper.
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Figure 3. Comfort index at two locations on the beam versus the material loss factor (η) using both
the viscous (v.d.) and complex modulus (c.m.) damping models.
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Table 1. Parameters used to obtain each of the figures.

Fig. Av (µm rad) l (m) m (kg) fb (Hz) ξb Er (GPa) η f3 (Hz) v (km/h)

Figure 3 0.6 13 13,370 1.3 0.05 70 0.01–0.1 8 300
Figure 4 - 13 - ∞ - ∞ - ∞ 300
Figure 5 0.6 13 13,370 0.5–2 0.05 ∞ - ∞ 300
Figure 6 0.6 13 13,370 1.3 0.01–0.1 ∞ - ∞ 300

Figures 7 and 8 0.6 13 13,370 1.3 0.05 70 0.01 6–20 300
Figure 9 0.6 13 13,370 1.3 0.05 70 0.01 6–40 300

Figures 10 and 11 0.6 13 13,370 1.3 0.05 70 0.01–0.1 8 300
Figure 12 0.6 13 13,370 1.3 0.05 70 0.01–0.9 8 300

Figures 13 and 14 0.6 13 13,370 1.3 0.05 70 0.01 8 90–360
Figure 15 0.6 13 13,370 1.3 0.05 70 0.01 8 90–500

4. Application to Oversimplified Cases

Before using the formulation presented in the previous section to assess the influence of
structural damping and flexibility on comfort, it is clarifying to use it for two oversimplified
cases. The intention here is to present the order of magnitude of the comfort indexes for the
values of the parameters to be used throughout this research and to show the shape of the
comfort curves (i.e., comfort as a function of position along the beam) to help interpret the
results of the next section. The two oversimplified cases are a rigid beam on stiff supports
and a rigid beam on a suspension.

4.1. Rigid Beam on Stiff Supports. Geometric Filtering

The very well known phenomenon of geometric filtering is simply a consequence of
the fact that all points on a stiff beam are located at intermediate heights between the front
and the rear. If the front rises while the rear sinks (or vice versa), all points in between
have smaller amplitudes. In fact, when the wavelength of a harmonic input is such that
the front is on a crest while the rear is on a trough, the center of the beam does not move
vertically. In that case, the amplitude of the vertical motion grows from zero at the center
to the maximum at both ends.

While the previous paragraph is trivial, it is worth pointing out that many of these
“filtered frequencies” for typical railway vehicle passenger car lengths and speeds lie
within the range of interest for comfort evaluation. Input harmonics with frequencies
f = (n + 0.5)v/l, n = 0, 1 . . . are not felt at the center of a rigid beam on stiff supports.
Higher speeds and shorter cars push some of these frequencies outside the 0–30 Hz
range of interest, but even for the short cars built by the Spanish manufacturer “Talgo”
(approximately 13 m), at 300 km/h, there are five filtered frequencies within said range.

Figure 4 shows the modulus of transfer function H2 (Equation (13)) at four locations
along a thirteen meter long rigid beam on infinitely stiff supports traveling at 300 km/h
(see Table 1). Both ends of the beam are forced to replicate the input (stiff supports,
|H2(0, f )| = |H2(l, f )| = 1), whereas the amplitudes are attenuated elsewhere for most
frequencies. Total canceling can only happen at the midpoint on the beam for the specific
frequencies mentioned in the previous paragraph.
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Figure 4. Modulus of transfer function H2 at four locations on the beam.

4.2. Rigid Beam. Influence of Suspension Parameters on Comfort

Although, as will be shown in the next section, structural behavior strongly influences
comfort on a railway vehicle passenger car, it can nonetheless be confidently said that the
suspension is the single most important system for comfort. To support this statement,
comfort indexes will be determined using the formulation in Section 2 for a rigid car
(removing flexible modes or setting a very large cross-section area moment of inertia I since
both methods yield the same results) traveling at 300 km/h on an intermediate quality
railroad (Av = 0.6 µm rad in Equation (15)). The distance between axles is 13 m, the
mass of the car is 13,370 kg, and the suspension damping factor is 5% (ξb = 0.05, with
which c = ξb

√
2 km). Suspension stiffness will be specified in terms of bounce frequency

( fb =
√

2 k/m/(2π)) and allowed to vary from fb = 0.5 Hz to fb = 2 Hz (see Table 1).
Figure 5 shows comfort indexes at four locations along the beam versus the bounce

frequency fb. The plot clearly shows that comfort improves significantly as the suspension
stiffness is reduced. Extremely soft suspensions ( fb = 0.5 Hz) are so comfortable (cI < 0.5)
that the added benefit of geometrical filtering towards the midpoint of the beam is hardly
noticeable. On the other end of the range considered ( fb = 2 Hz), the ride is very
uncomfortable near the axles (cI > 8), but the effect of geometrical filtering is significant.
Typical bounce frequencies for passenger railway vehicle secondary suspensions are in the
vicinity of 1 Hz, which means that, on a track with Av = 0.6 µm rad, at 300 km/h with
ξb = 0.05, not every location on the beam can be in the “very comfortable” range (cI < 1.5,
see [11]), not to mention the case of poorer quality tracks.

The influence of suspension damping is depicted in Figure 6. Here again l = 13 m,
v = 300 km/h, Av = 0.6 µm rad, m = 13,370 kg, flexible modes have been removed,
and suspension stiffness is now fixed at fb = 1.3 Hz, whereas the suspension damping
factor ξb is allowed to vary from 1 to 10% (see Table 1). Comfort improvements when
going from undamped to a damping factor of a few percentage points are quite significant.
Nevertheless, marginal benefits go down as ξb grows; therefore, there is no point in
increasing ξb beyond moderate values (6 or 7%, for example).
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5. Results

The formulation in Section 2 allows flexible modes to be included. To assess the
influence of structural stiffness, the beam cross-section area moment of inertia (I) will be
allowed to vary within a range that will be specified in terms of the first bending frequency
of the free–free beam. To be consistent with the numbering of modes in Equation (4), the
first bending frequency is tagged f3. The relation between f3 and I is

I =
( f32π)2m/l
(Erβ3/l)4 (19)

where f3 is varied in the range from 6 Hz to 20 Hz, where the beam has been assumed to
be made of aluminum, and thus Er = 70 109 N/m2, and where β3 ≈ 4.13/l. The rest of
the parameters take the same values as in the previous section (l = 13 m, v = 300 km/h,
Av = 0.6 µm rad, m = 13,370 kg, and fb = 1.3 Hz), with ξb now fixed at ξb = 0.05. The
material loss factor (η) has been set at a higher value (η = 0.01) than that of aluminum to
better account for typical structural damping (see Table 1).

Figure 7 shows comfort indexes along the length of the beam versus bending frequency
f3, whereas Figure 8 shows sections of this surface at four locations along the beam. It could
be said that, as a general trend, comfort improves as the structure stiffens. Nevertheless,
the statement cannot be taken for granted since the dependence of the comfort index
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on stiffness is non-monotonic, thus proving the statement wrong every time the slope is
positive in the cI vs. f3 curve. This behavior makes the task of the designer particularly
difficult. For example, stiffening the structure of the example under discussion beyond
9.3 Hz ( f3 > 9.3 Hz, Figure 8) worsens comfort at a great rate (measured as the slope of
cI vs. f3 for a given x). In fact, comfort does not start to improve again until f3 reaches
a value of approximately 15 Hz, and the improvement only happens for a short range of
bending frequencies, starting to worsen again before f3 reaches 16 Hz.
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Figure 7. Comfort index along the length of the beam versus the first bending frequency ( f3).
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Figure 8. Comfort index at four locations on the beam versus the first bending frequency ( f3).

Despite the wavy evolution of comfort with stiffness, it is true that the values of the
curves in Figure 8 lie above the corresponding values for the infinitely stiff beam analyzed
in the previous section. This statement is supported by Figure 9 where the upper limit for
the first bending frequency has been stretched beyond what is reasonable or even feasible
(see Table 1). It can be seen that the non-monotonic comfort curves tend toward their
corresponding rigid body asymptotes. These asymptotic values may be checked against
those in Figure 5 for fb = 1.3 Hz or against those in Figure 6 for ξb = 0.05.
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Figure 9. Comfort index at four locations on the beam versus f3 with outstretched upper limit.

The influence of structural damping is depicted in Figures 10 and 11. All parameters
have the same values as in the previous analysis except for the bending frequency, which
is now fixed at f3 = 8 Hz, and the previously fixed material loss factor η, which is now
free to vary from 0 to 10% (see Table 1). It can be seen that comfort improvements with an
increasing loss factor are significant but not dramatic. These results indicate that railroad
passenger car frames should have sufficient structural damping to improve comfort but
that, at the same time, if the measures needed to increase the loss factor are too complicated,
too costly, or too heavy (referring to the weight of the materials that would need to be
added), the designer may pursue meeting specifications by other means rather than by
increasing structural damping. The current trend to use viscoelastic materials to dampen
vibrations is, in light of the simplified results presented in this paper, only advisable if
the goal is to mitigate local vibrations of structural components rather than to dampen
the overall vibration of the car. It could be argued that these statements may need to be
revisited if it were possible to achieve much larger material loss factors. Nevertheless, as
Figure 12 shows, marginal benefits go down as η grows, becoming very small at most
locations along the beam for η > 0.5. Needless to say that the upper limit for the material
loss factor in this figure has been stretched beyond what is feasible.

It was mentioned in the introduction that increasing the operational speed may have
a negative effect on comfort. The assertion seemingly stands without proof. The rail
irregularity spatial frequency content is mapped onto a larger range of frequencies for
a higher velocity (ω = vΩ). As the speed increases, high spatial frequency harmonics
are being pushed out of the interval of interest for comfort evaluation. However, at the
same time, they are being replaced by low spatial frequency harmonics that, given the
shape of typical input spectral density (Figure 2), are likely to have higher amplitudes.
The consequence, therefore, is a larger response and reduced comfort. Nevertheless, the
previous rationale forgets the fact that the mean square input displacement is not modified
by the increase in speed and that, as a consequence, amplitudes are spread over a larger
frequency range (Sz(ω) = (1/v)Sz(Ω)).
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Figure 10. Comfort index along the length of the beam versus the material loss factor (η).
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The two conflicting factors mentioned in the previous paragraph, along with the fact
that the structural response is frequency-dependent, may (and, in fact, do) give rise to the
non-monotonic evolution of comfort versus velocity. The influence of speed is depicted
in Figures 13 and 14. All parameters have the same values as in the previous analysis
except for the material loss factor, which is now fixed at η = 0.01, and the previously
fixed velocity v, which is now free to vary from 90 km/h to 360 km/h (see Table 1). The
anticipated non-monotonic behavior is clearly seen in the plots. It is unfortunate that
comfort deteriorates rapidly for speed increases that are now within reach (without major
changes in infrastructure nor regulations) in typical high-speed train tracks (changing the
maximum speed from 300 km/h to 360 km/m, for instance). As Figure 15 shows, velocity
would have to be pushed beyond what is currently customary to start witnessing a new
interval of comfort improvement with speed.
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Figure 13. Comfort index along the length of the beam versus speed (v).
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Figure 15. Comfort index at four locations on the beam versus v with outstretched upper limit.

6. Conclusions

The main conclusions are: (a) using a viscous damping model overestimates the
dissipation capacity of the structure, thus yielding too optimistic comfort levels; (b)
determining comfort indexes from frequency domain analyses of beam models with
complex moduli is not only feasible also but simple and straightforward. The analyses
show that caution should be exercised when stiffening railway vehicle car structures. The
general rule that “comfort improves as stiffness increases” breaks down for many stiffness
intervals. Regarding the energy dissipation capacity of the structure, it has been shown
that introducing moderate levels of structural damping noticeably reduces comfort indexes.
Nevertheless, marginal benefits wane as the material loss factor grows, so a very large loss
factor is seldom a cost-effective option.
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