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Featured Application: The outcomes of this work can be applied to understand better when and
why global time series forecasting models issue incorrect predictions and iteratively groom the
dataset to enhance the models’ performance.

Abstract: While increasing empirical evidence suggests that global time series forecasting models can
achieve better forecasting performance than local ones, there is a research void regarding when and
why the global models fail to provide a good forecast. This paper uses anomaly detection algorithms
and explainable artificial intelligence (XAI) to answer when and why a forecast should not be trusted.
To address this issue, a dashboard was built to inform the user regarding (i) the relevance of the
features for that particular forecast, (ii) which training samples most likely influenced the forecast
outcome, (iii) why the forecast is considered an outlier, and (iv) provide a range of counterfactual
examples to understand value changes, in the feature vector or the predicted value, can lead to
a different outcome. Moreover, a modular architecture and a methodology were developed to
iteratively remove noisy data instances from the train set, to enhance the overall global time series
forecasting model performance. Finally, to test the effectiveness of the proposed approach, it was
validated on two publicly available real-world datasets.

Keywords: explainable artificial intelligence; XAI; time series forecasting; global time series models;
machine learning; artificial intelligence

1. Introduction

Time series forecasting is a relevant problem with application in many domains [1],
gaining further relevance with the increasing availability of historical data [2]. Historically,
much research focused on time series models trained on a single time series [3]. Though
global machine learning models issued good results in the past, they gained new attention
with the advent of deep learning [4], and recent success on the M4 and M5 time series
forecasting competitions [5,6]. Such models can learn patterns shared across multiple time
series, enhancing the overall forecasting performance. The usage of multiple time series to
train the model can be considered a source of explainability: each forecast can be explained
not only through past behavior on a single time series, but similar patterns can be found in
other time series, providing a different perspective and complementary insights [7]. The
ability to develop global time series models implicates scaling advantages too: it reduces
the number of forecasting models, and thus the amount of human supervision required to
build them, and fewer deployments, monitoring, and maintenance [8].

While authors have shown that global time series machine learning forecasting models
(GTSMLFM) can achieve better performance overall, “understanding when and why global
forecasting models work, is arguably the most important open problem currently in time
series forecasting" [3]. It is thus crucial to develop Explainable Artificial Intelligence (XAI)
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approaches to answer those questions. The approaches can differ based on the goal they
aim to tackle (e.g., increase trust in the model or provide insights that can be used to
improve the model), the user profile they target and focus (if the explanations provided are
either local or global) [9].

The paper focuses on understanding when and why GTSMLFMs work, providing
relevant information to the end-users and the machine learning engineers. The end-
users must understand if a particular forecast instance can be relied upon (e.g., detect
if it can be considered anomalous) and what features do influence the forecast. If the
forecast is anomalous, the user can be interested in getting to know some counterfactual
examples. While machine learning engineers will appreciate this information, they can
also find which instances from the train set most likely influenced the models’ learning
to issue an unlikely forecast. To provide such an understanding to the users, we use local
features relevance, anomaly detection models, and develop a novel approach to provide
counterfactual explanations for regression methods. Furthermore, we integrate the insights
into a dashboard that can serve the end-users and the machine learning engineers, to
understand better when and why global time series forecasting models work.

This research provides several contributions, with which we address the gap of pro-
viding means to answer when and why a GTSMLFM prediction should be considered a
bad forecast [3]. First, we make use of anomaly detection algorithms to identify potentially
wrong forecasts. Then, we compute the models’ feature attribution for those data instances,
identify similar data instances in the train set, and create counterfactual examples. Further-
more, we develop a dashboard integrating the insights mentioned above and a line plot
showing the time series, with a relevance heatmap overlay to inform the influence of data
points on a given forecast. While such relevant heatmaps have been widely applied for
deep learning models, they are not frequently used for other time series models. In addi-
tion, such a dashboard enables a visual inspection of time series and forecasts—a valuable
tool for end-users and machine learning engineers. Finally, based on our experience, we
outline an architecture and a methodology that can be followed to enhance the dataset and
GTSMLFMs iteratively.

To evaluate our approach, we conduct a series of experiments and perform a quantita-
tive evaluation to measure the impact of the insights are developed when engineering the
GTSMLFM. In particular, we measure the Mean Absolute Scaled Error (MASE) [10], the
number of outliers observed in the test set, and the number of instances removed from the
train set, based on the detected anomalous predictions.

We organized the remainder of this paper as follows. In Section 2, we review related
scientific works; in Section 3, we introduce the proposed architecture, while in Section 4,
we provide details on the methodology that we followed to treat the dataset and train
new GTSMLFMs iteratively. In Section 5, we describe two different time series datasets
that we used to test our approach, detailing the preprocessing steps and features that we
created. In Section 6, we describe the experiments that we performed, provide a more
detailed overview regarding the metrics used to measure the results, and the results we
obtained, while in Section 7 we address the limitations of this research. Finally, in Section 8,
we conclude by summarizing this research, and outline future work.

2. Review of Related Scientific Works
2.1. Forecasting Time Series: Local vs. Global Approach

For many decades, most research on time series forecasting assumed that the time
series are generated by independent processes and can be tackled as a regression problem,
creating a single model per time series (local models) [8,11]. Growing empirical evidence
suggests that creating a single model to forecast multiple time series (under the assumption
of forecasts’ independence for different time series) known as global models can outperform
local ones. Seminal research on using global models developed decades ago [12], and the
concept was further explored by many researchers afterwards [13]. The first approaches
towards global models considered pooling similar time series, which improves the overall
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models’ accuracy. By having more training data of similar time series, algorithms can
better distinguish common data patterns, while also minimizing distortions introduced
by outlier data points [14]. On the other side, this approach requires defining some time
series grouping criteria, which can lead to suboptimal groupings [15]. Among pooling
strategies, we can find model-based clustering [14,16,17], random clustering [8], grouping
based on similarity measures [18–20], or expert judgement [21]. Recent research has
explored creating global models considering all available time series, regardless of their
heterogeneity, obtaining promising results [3,8,22]. Furthermore, it has been demonstrated
that, for every dataset, some global model exists that can equal or outperform a local
model, regardless of how heterogeneous the data may be [8]. Such models make the strong
assumption that some relationship exists between time series, though the forecasts are
independent of each other [11].

These insights, the good results obtained by applying global neural network models
for time series forecasting [11,23–27], and success of global models at the M4 and M5
competitions [5,6], have renewed the research interest on global models for time series
forecasting [3]. In such models, the relationship between time series is not very well
understood, and understanding why and when do global time series forecasting models
work remains an open research topic [3]. We envision that anomaly detection algorithms
can be used to detect when the GTSMLFM provides accurate forecasts or not, and XAI
approaches can provide insights to understand better factors affecting the forecasts, and
provide prototype (local) explanations [28], and counterfactual examples.

2.2. Time Series Anomaly Detection

One of the open research questions regarding GTSMLFM is, when do such models
provide acceptable forecasts [3]? Such response can be obtained from anomaly detection
algorithms and models, which can alert on point anomalies. In this section, we provide an
overview of anomaly detection techniques, focusing on the ones developed and applied in
a time series setting. We use the terms anomaly, outlier, or deviant interchangeably [29], to
denote “observations that deviate so much from others as to arouse suspicion that it was
generated by another mechanism" [30]. In particular, outliers related to time series data
must also consider the behavior across time [31].

Outliers can be characterized into many types. The first characterization of this type
can be found in [32], who introduced the concepts of two time series’ outlier types: those
(a) that affect a single observation (type I), and those (b) that affect an observation and the
subsequent ones (type II). More recently, [31] distinguishes between point outliers (single
point in the time series, which has an unusual value when compared to the whole time
series or the neighboring points) and subsequence outliers (points which may not be outliers
by themselves, but the sequence arrangement is anomalous). Subsequence outliers are further
classified into contextual anomalies (they are anomalous in the context of the surrounding
observations) or pattern anomalies (they are anomalous regardless of the surrounding
observations) [33]. In this research, we limit ourselves to point outliers.

Anomaly detection techniques are frequently classified into three categories: statis-
tical, distance-based approaches, and model-based approaches [34]. The first anomaly
detection techniques were developed in statistics and remained among the most frequently
used ones. Non-parametric techniques usually allow fast computations and are adopted
where such speed is of primary importance. Among them, we find the histogram-based
approaches, which assume feature independence and determine the outliers based on the
histogram distribution [35–38]. Other non-parametric approaches are bitmap time series
anomaly detectors, which compute the relative frequency of its features to create a bitmap
and identify anomalous time series [39,40], and statistical methods that allow estimating
outliers based on a kernel density estimation by using a kernel function. Such kernel
functions can provide a probability estimate, given that function is a probability density
function [34,41–43]. Among the parametric methods, we find the Gaussian methods, such
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as box-plot anomaly detection [44], the Gaussian process [45,46], or regression approaches
such as least squares regression [47–49].

Statistical anomaly detection methods cannot be applied on datasets with an unknown
distribution [38]. Different approaches were developed to overcome this issue. When con-
sidering the distance between data points, we find the k-nearest-neighbors (kNN), which
determines the outliers based on the kNN distance. While approaches were developed to
determine the best k parameter [50], some techniques attempted to avoid dependence on
the k-value. One such method is the local outlier factor (LOF) method, which computes
the distance from a point to all other points in the dataset [51]. A similar approach was
followed at the outlier detection using indegree number (ODIN), which computes the num-
ber of instances that contain a given point in their neighborhood. However, a parameter
is required to determine the outlier threshold [52]. A different method was developed
by [53], who introduced the multi-granularity deviation factor to identify local density
variations that lead to isolated outliers or outlying clusters. Variations to the LOF method
were developed to solve some of its shortcomings. For example, the connectivity-based
outlier factor (COF) aims to capture better clusters where the data points are distributed in
a linear manner [54], while influenced outlierness (INFLO) attempts to better discriminate
points nearby two clusters with different densities [55]. Finally, to account for the different
feature importance, [56] developed an alternative anomaly detection algorithm, using a
weighted kNN.

Model-based techniques can be divided into (i) models that learn and predict whether
the value is anomalous and (ii) models that compare the potential outlier with expected
values drawn from a generative model or data distribution. Since model-based techniques
require labeled data, active learning can be utilized to minimize the labeling effort [57].
Among the models of the first group, we find the SVM-based models, such as the one-class
support vector machine (OC-SVM), which was introduced by [58], and later enhanced by
many authors [59,60]. Since the regular SVM algorithm can provide poor generalization on
an imbalanced dataset, the authors suggested representing the anomalous classes with the
high dimensional space origin and mapping anomalous instances close to it. Other SVM
variants used for anomaly detection include support vector data description (SVDD) [61],
and SVM-SVDD [62]. A different intuition is followed in the Isolation Forest. This tree-
based model is based on the principle that the fewer instances of anomalies generate a
smaller number of partitions, and thus are likely to have short paths in the tree structure
[63]. Other models reported in the literature involve the use of random forests [64], gradient
boosted machines [65], artificial neural networks [66], or voting ensembles [67]. Models
from the second group have multiple configurations, varying the generative methods
and outlier detection criteria. Some examples are the use of ARIMA models to predict
future time series values and mark incoming readings as anomalies if they exceed a certain
threshold when compared with the forecast [68,69]. Other approaches fused statistical
methods and ANNs [70], or used ANNs alone [31,71].

Anomaly detection algorithms can identify anomalous forecasts in the context of a
particular time series. Based on the algorithm type, insights can be gained on why the
point forecast is considered anomalous. Additional insights can be obtained through
XAI to understand which features were most influential to such forecast and provide
counterfactual examples, highlighting value changes to those features that would produce
a better outcome.

2.3. Explainable Artificial Intelligence

The increasing adoption of artificial intelligence demands understanding the logic
beneath the forecasts so that a decision can be made as to whether such forecasts can be
trusted or not [72]. The sub-field of artificial intelligence devoted to research on obtaining
and providing such understanding is called explainable artificial intelligence (XAI). Authors
identify two sources of model opacity [73]. The first one is the complexity of the formal
structure of the model, which can be beyond human comprehension, or alien to human
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reasoning. When the opacity cannot be removed even by human experts, we speak about
deep opacity [74]. The second source of opacity is the intentionally induced opaqueness to
avoid revealing sensitive model details (e.g., due to their proprietary nature).

Researchers developed multiple approaches to provide black-box explanations of
forecasting models. Among the most frequently cited, we find LIME [75] and its variants
(e.g., k-LIME [76], DLIME [77], and LIMEtree [78]), Anchors [79], Local Foil Trees [80], or
LoRE [81]. These approaches build surrogate models for each prediction sample, learning
the reference model’s behavior on the particular case of interest by introducing perturba-
tions to the feature vector variables. The Shapley additive explanations take a different
approach (SHAP) [82,83], which are grounded in cooperative game theory. The feature
relevance is computed based on the approximate computation of Shapley values. Shapley
values are also used to explain features relevance in a time series setting. In particular, the
TimeSHAP implementation measures which features and past events are most relevant to
a recurrent model [84].

Research regarding XAI for time series has focused mainly on explainability for deep
learning models. One of the first of such methods was introduced by [85], who computed
feature attributions by taking the partial derivative of the output class with respect to the
input. This method was later improved in the Gradient*Input method, which computes
neuron and filter activations for a specific instance by multiplying the input by the partial
derivative of a layer with respect to the input [86]. Similar approaches followed, such
as the Deep Learning Important FeaTures (DeepLIFT) [87], integrated gradients [88], or
Smooth-Grad [89]. The introduction of attention mechanisms to deep learning models was
also envisioned as a source of explainability, since it provides insights regarding which
points in time are relevant to the forecast [90]. Such information is frequently presented in
heatmaps [91,92], saliency maps [85,93], and custom visualizations [94]. Finally, several
feature perturbation methods were developed to measure the features’ contribution to the
forecasted value when such features are removed [95], or masked [96–98].

Methods such as Shapley values [99] and region partition trees [100] have been suc-
cessfully applied to explain detected anomalies. More systemic approaches have been
developed too, such as Exathlon [101], EXAD [102], and others [103]. While EXAD focuses
on explanation discovery for each anomaly, Exathlon crafts the explanations, providing
two pieces of information to the user: why the data point was identified as an anomaly
and the root causes of such anomaly.

Along with feature relevance, it is sometimes important to know how values should
change to achieve a different forecast. Such examples are known as counterfactual expla-
nations. When counterfactual explanations are provided as actionable advice, they are
known as directive explanations. Directive explanations can be either directive-specific
(suggest a concrete action to change the forecasted value), or directive-generic (suggest
a generic action to alter the forecasted value) [104]. While most frequently applied to
classification models, counterfactual explanations are also applied to regression models.
While such counterfactual explanations most frequently use some threshold [105], other im-
plementations were developed based on potentials [106], or satisfiability modulo theories
solvers [107], among others.

While counterfactual examples provide value to understand how to change a certain
target state, sometimes it is useful to visualize prototypical instances similar to the feature
vector used to issue a prediction. Such examples are known as prototype explanations, and
allow us to understand better which instances influenced a certain forecast [108].

As described above, multiple methods exist to obtain relevant information that can
explain the underlying reasoning of an artificial intelligence model. Along with them,
it is also important to consider how such information is presented to the users. Good
explanations should convey meaningful information, resemble a logic explanation [109],
target a specific user profile [110], focus on actionability, and if possible, provide some
counterfactual examples [111]. An explanation should take into account relevant context,
which can be captured in three elements: the target user profile, the explanation goals
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(e.g., improve the model, or enhance trust in the system), and the focus (if the explanations
provided are meant at a global or local level).

When developing our architecture and dashboard, we considered different intuitive
ways to present the information, ranging from plots and tables to human-readable sen-
tences. When the forecasts are considered anomalous, it is helpful to the user to understand
why such a forecast is considered anomalous, which are the most relevant features to that
forecast, provide counterfactual examples, and examples from the training set that could
have influenced the forecast.

3. The Proposed Architecture

We propose a modular architecture to provide forecast explanations for global time
series forecasting models. We combine anomaly detection and explainability methods
to enhance the forecasting precision and provide valuable contextual information to the
end-users. The anomaly detection module provides a means to identify potentially bad
forecasts. In such cases, we can fall back to a local statistical model, or alert the user that a
given forecast should not be trusted given past time series’ behavior. The feature relevance
informs the user on which variables exercised the most influence on the forecast. We use
them as an input when computing the counterfactual examples to understand better what
value changes on those variables would produce an outcome that is no longer considered
an outlier. Finally, we provide insight to the user on which data instances could have
influenced the forecasting models to provide such a forecast by identifying them in the
train set based on their similarity regarding the forecasted one. We consider that this
information helps investigate possible patterns learned by the model and how to engineer
a better model learning in the future.

The architecture (see Figure 1) comprises the following components:

• Data Module: provides a dataset to train machine learning GTSMLFMs. The dataset
comprises time series data, either considering their raw values and derivative features
or a refined version where specific instances that could cause outlier forecasts were
treated. The module wraps a set of strategies to find and treat data instances that are
similar to the ones producing outlier forecasts, identified by the anomaly detection
module.

• Forecasting Module: comprises a machine learning GTSMLFM, and a set of local
statistical models to forecast the time series. The machine learning GTSMLFM is
created based on a dataset obtained from the Data Module. The Forecasting Module
makes use of the input provided by the Anomaly Detection Module to decide whether
the outcome should be the forecast obtained from a GTSMLFM, or a local statistical
model.

• Anomaly Detection Module: leverages algorithms and models to analyze the forecast
in the context of a time series and classify it as an anomaly or not. It interacts with the
Forecasting Module and the XAI Module, providing feedback on whether a forecast
can be considered anomalous or not.

• XAI Module: uses various XAI algorithms and models to craft forecast explanations
for the user. In particular, we envision that this module (i) indicates if the forecast is
anomalous, (ii) crafts a text explanation highlighting most relevant features influencing
a specific forecast, (iii) shows a sample of n data instances found in the train set that
most likely influenced the GTSMLFM towards the given forecast, and (iv) shows a set
of counterfactual examples created considering (a) the relevant features to that specific
forecast, and (b) past values observed for that particular time series. We consider that
this information provides the user a good insight into whether the forecast can be
trusted and understand the behavior of the underlying model.

• API: a standard Application Programming Interface (API) endpoint can be used to
serve the user as a front-facing interface, masking the structure, complexity, and
deployment configuration of each of the modules mentioned above.
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Figure 1. Architecture overview.

The architecture was implemented in a prototype application for the purpose of this
paper, and not deployed into production. The backend was built using the Python 3.6
language, and leveraging multiple open-source data processing and machine learning
libraries (Numpy [112], Pandas [113], Scikit-Learn [114], Scipy [115], Lime [75], Pyod [116],
LightGBM [117]), and exposing relevant data through an HTTP REST API, using the Flask
framework [118]. To build the frontend, we used HTML to layout the core of the dashboard,
the Bootstrap framework to embellish the user interface, Plotly-js [119] to draw the plot,
and jQuery [120] to interface with the HTTP REST API, retrieving the data and serving the
content to the web page.

The interaction between the modules embodies the methodology we followed to en-
hance the GTSMLFM performance iteratively and provide an insight to the user regarding
when and why does a GTSMLFM model provides an adequate forecast or not. We detail
the methodology in Section 4.

4. Methodology

In this section, we describe how we leveraged the information provided by a prototype
application built following the architecture described in Section 3, to enhance a GTSMLFM.
To that end, we developed an iterative methodology inspired by work done by several
authors, and summarized in Fig. 2. Scientific literature on GTSMLFMs agrees that pooling
similar time series does provide an advantage over local models [3,4,13,21], while pooling
and time series similarity criteria remain an arbitrary choice [15]. Furthermore, some
research indicates that GTSMLFMs can be trained over disparate time series and still
obtain good forecasting results. We propose training an initial model over all the time
series and measuring its performance. We then identify anomalous forecasted values.
We consider that these values are a consequence of a subset of train data instances with
a similar feature vector but different target values. To identify such instances, we first
compute the feature relevance for a particular forecast. Given the N most relevant features
to that forecast, we search for similar instances in the train set computing the cosine
distance across the feature vectors, considering only the subset of the aforementioned N
features. To avoid distortions due to different feature magnitudes, we scaled the features
between zero and one. To decide which train instances to remove, we set an arbitrary
similarity threshold. It is important to consider that the GTSMLFM performance can be
affected by train data instances that lead to learning inaccurate forecasting patterns and
the amount of data available, which can eventually lead to better predictions. Thus, setting
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the right threshold requires a compromise between both factors and can be subject to trial
and error. To conclude an iteration, we assess the GTSMLFM quality. In particular, we
decided to measure it through three metrics (see Section 6): (i) mean absolute scaled error
(MASE) [10], (ii) the number of outliers detected in the test set, and (iii) the number of
train instances removed from the dataset to train that particular GTSMLFM. Following
the Equation (1) [28], we argue that, while local statistical models do not match the overall
performance of a good GTSMLFM, they can sometimes provide a better prediction when
the GTSMLFM provides an anomalous forecast. To retain the scaling advantages, such as
ease of deployment, and avoid dedicating human resources to developing and maintaining
such models, simple heuristics such as the näive forecast, simple moving average, or
exponential smoothing can be used.

Data = Global Model + Local Models + Noise (1)

The equation represents that local models can make better forecasts when the global
model fails to predict reasonably. The equation was reproduced from [28].

Figure 2. Fluxogram detailing the methodology that we applied to identify anomalous forecasts,
most similar instances in the train set, and their treatment to enhance the performance of futureGFMs.

Once we finalize an iteration, we start a new one by retraining the GTSMLFM on the
new dataset, following the steps mentioned above. Iterative model retraining is based on
the RemOve And Retrain (ROAR) method [121], developed to identify features relevance
measuring the model performance change between iterations when a feature is nullified.
In our case, we do not measure the impact of the features but of a subset of training
instances when removed from the dataset. Furthermore, inspiration to look into training
instances to understand their impact on a given forecast was obtained from [122], who did
so using influence functions.

5. Case Study

In this research, we considered two open datasets that are widely used in time series
forecasting research: M4 competition dataset (M4CD) [5], and the Kaggle Wikipedia Web
Traffic forecasting competition dataset (KWWTFCD) [123]. To ensure that the performance
of the global models does not depend on the knowledge of a particular domain or charac-
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teristics of the time series data, we defined the same set of generic features for both cases.
In this section, we describe the characteristics of each dataset, provide details on how we
sampled instances from them, and the preprocessing steps we performed before training
the GTSMLFM.

The M4CD comprises 100,000 time series selected from the ForeDeCk database, cor-
responding to multiple business domains, such as industries, government, transport,
household, and natural resources. While the dataset includes time series at different fre-
quencies (from hourly to yearly frequency), we focused on those provided monthly, which
account for 48,000 time series. When analyzing their metadata and the actual time series
length, we found some discrepancies. We clarified them with the authors from [124], who
researched how representative it is of the reality. In private correspondence, the authors
confirmed that such discrepancies existed, attributing them to the original public sources
from which they were obtained. Since such time series represented only a tiny proportion
of the total dataset, we ignored them.

The KWWTFCD was provided by Google and introduced in a Kaggle competition in
2017. The dataset comprises time series accounting for the daily views of approximately
145,000 Wikipedia articles, starting from 1 July 2015, until 11 September 2017. The dataset
distinguishes between zero and missing values.

We randomly sampled 2000 time series for each dataset and selected only a subse-
quence to minimize the number of missing values (first 45 values for M4CD and first
56 values for the KWWTFCD). We considered 2000 time series as a big enough sample to
evaluate diverse time series and provide meaningful results, while avoiding processing
the whole dataset. The need for sampling is grounded in the fact that a feature vector is
created per time step for each time series, requiring extensive computational resources and
time to train the models.

When designing the experiment, we considered that a global model is more likely
to produce anomalous forecasts if trained over a dataset that contains two types of time
series: (i) the ones whose values remain in the same order of magnitude, and (ii) the
ones whose values comprehend different orders of magnitude (TSDM). We thus analyzed
the proportion of time series with such properties in each dataset and ensured that the
sampling respected those proportions. The new datasets comprised 903 of type (i) and 1097
of type (ii) time series for the M4CD, and 512 type (i) and 1488 type (ii) time series for the
KWWTFCD. We provide further details on the original and reduced dataset in Table 1, and
describe the target values distribution in Figure 3.

Figure 3. Target values distribution. (A) describes values for M4CD, while (B) describes values for KWWTFCD.
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Table 1. Descriptive data for the M4CD and KWWTFCD datasets. TSDM is used as an abbreviation for time series with
values of different orders of magnitude, while TS abbreviates time series.

Dataset
Original Reduced Dataset Test Window

# TS % TSDM #TS # TSDM TS Datapoints # Instances Mean(Target) Std(Target)
M4CD 47,983 55 2000 1097 45 90,000 0.6598 0.4036 12

KWWTFCD 145,063 74 2000 1488 56 112,000 0.4782 0.3442 14

To describe the time series, we created a set of features, presented in Table 2. We
considered three types of features: (i) the features that describe the values observed for a
given time series (e.g., minimum, mean, median values, along with the standard deviation),
(ii) the features that describe the time series shape (e.g., skew, kurtosis, the number of
peaks we observed, and the number of values above the mean), and (iii) the features that
describe the context close to the forecasted value (e.g., last observed value—which can
be used as a näive forecast). We compute thirty-three features for each dataset. For the
global models, we do not perform feature selection, given that in all cases, we observe the
number of features satisfies the Equation (2), as suggested in [125]. For the local machine
learning models, we perform feature selection selecting top K features based on their
mutual information [126].

k ≤
√

N (2)

k represents the maximum number of features used to train a model to avoid overfitting. N
represents the number of data instances available in the train set. The equation is based on
research done by [125].

Several kinds of preprocessing have been tried for GTSMLFMs in the scientific lit-
erature. Smyl [127] applied on the fly preprocessing to remove level and seasonality
components. Rabanser et al. [128] found that binning proved to be useful in almost all the
cases they analyzed. Duncan et al. [13] understands that differences in magnitudes and
variances can be removed, either by standardizing the time series or using dimensionless
dependent variables. Hewamalage et al. [129] describe applying a local normalization,
deseasonalization, and log transformation to the features. Finally, Salinas et al. [27] de-
scribes scaling the features by their average value. In our case, we opted to scale the values
of a feature vector between zero and one by dividing the entries by the maximum value
observed in the period of interest. Such scaling forced most feature values to a standard
interval between zero and one, helping the model learn similar patterns, regardless of the
original time series magnitudes. To further ease the learning process to the model, we
scaled the target values too.

Table 2. Description of features we created for each dataset. We used n = 3, 5, 7, 12.

Feature Data Type Description

min_n Double Minimum value in rolling window of last n observations.

mean_n Double Mean of values in rolling window of last n observations.

std_n Double Standard deviation for values in rolling window of last n observations.

median_n Double Median value in rolling window of last n observations.

skew_n Double Skew value in rolling window of last n observations.

kurt_n Double Kurtosis value in rolling window of last n observations.

peaks_n Integer Count the number of peaks for a rolling window of last n observations.

above_mean_n Double Count the number of datapoints above the mean, for a rolling window of last n observations.
The value is normalized by windows length.

n − 1 Double Last observed target value, normalized by maximum value observed in time window n = 12.
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Outlier detection was performed considering a time series comprised of the original
time series data points up to the start of the forecasting horizon and then adding the
forecasted value, since we only performed one step ahead forecasts (see Figure 4). Doing so
enables us to use multiple anomaly detection approaches to evaluate aspects under which
a particular value can be considered an outlier within the time series.

Figure 4. Diagram describing the data that we provide to build the time series context for anomaly detection.

6. Experiments, Results, and Analysis

To validate the architecture and methodology described in Sections 3 and 4, we con-
ducted a series of experiments (summarized in Table 3) comparing four models (described
in Table 4) on the reduced version of two open datasets presented in Section 5. We built our
local and global forecasting model with a gradient boosted machine regressor (GBMR) [117],
considering that all but one of the top five solutions of the M5 forecasting competition
were based on it [6]. We configured the GBMR model to be deterministic, have a maximum
depth of five, and at most a hundred estimators. All GBMR models were instantiated with
the same random seed (using the value 744) and an L2 loss. For every time series, we also
created two simple local statistical models: a simple moving average, based on the last
three points of data, and a näive forecast, providing a forecast based on the last observed
value. On top of the models we described, we built an additional model, which considered
the predictions issued by the GM(GBMR) model, and used the nïve model to issue fallback
predictions when detecting an anomalous prediction was given by the global model. We
opted to use a näive model as fallback, since it is considered a baseline model in most of
timeseries literature. In addition, the näive model is cheap to compute, and requires no
previous knowledge regarding specific timeseries, making it a more scalable solution. We
evaluated the models performing a nested cross-validation [130] over the last twelve data
points (a year of data monthly) for M4CD and the last fourteen data points (two weeks of
data daily) for KWWTFCD.

To evaluate the experiments, we considered three groups of metrics. First, we used
MASE [10] to measure the model’s performance. The MASE metric provides a magnitude
agnostic estimate of the forecasting precision achieved by the model, comparing the
model’s performance against a nïve forecast. We measured the MASE values for the
MA(3), GM(GBMR), GM(GBMR)+näive, and LM(GBMR) models. Second, we assessed
the anomalies detected in the test set. We measured (i) how many GM(GBMR) predictions
were considered anomalous when the target values were not (GM(GBMR) vs. Target
discrepancy column in Table 5); (ii) how many target values were identified as anomalous
(Target column in Table 5); (iii) how many GM(GBMR) predictions were identified as
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anomalous, and their overlap regarding the GM(GBMR) column under Anomalies in test in
Table 5); and (iv) how many GM(GBMR)+näive predictions were identified as anomalous,
and their overlap regarding the GM(GBMR)+näive column under Anomalies in test in
Table 5). Finally, we measured how many instances were erased from the train set based
on their similarity to feature vectors producing anomalous forecasts. Through these sets
of metrics, we could assess the model’s performance when changing the experimental
conditions, understand if the detected outliers correspond to true or false positives, and
how successfully does the global model behave in such cases, and if there is any correlation
between the number of train instances removed and the global model’s performance.

Table 3. Description of the experiments that we performed.

Experiment Description

Experiment 1 Compare the performance of GFM and LFM.

Experiment 2 Remove instances similar to the cases where the forecast was considered anomalous.
The similarity of the train instances is measured on relevant features of the forecast feature vector.

Experiment 3 Remove only instances similar to the cases where the fallback was considered anomalous.
The similarity of the train instances is measured on relevant features of the forecast feature vector.

Experiment 4 Remove instances similar to the cases where the forecast was considered anomalous.
The similarity of the train instances is measured on relevant features of the forecast feature vector and target value.

Experiment 5 Remove only instances similar to the cases where the fallback was considered anomalous.
The similarity of the train instances is measured on relevant features of the forecast feature vector and target value.

Table 4. Description of the models we evaluated through the experiments that we performed.

Model name Description

MA(3) Moving average over last three time steps.

näive Last time step actual is used as the forecast value.

GM(GBMR) Global model built with GBMR.

LM(GBMR) Local model built with GBMR.

GM(GBMR)+näive Forecasts are issued from GM(GBMR), except when the forecasted value is considered anomalous. In such cases,
it falls back to a näive forecast.

Table 5. Results obtained for the experiments. For columns GM(GBMR) and GM(GBMR)+näive under anomalies in test,
we use the following convention to present the results: A/B (C), where A denotes the number of datapoints considered
anomalies both, in the prediction and effective target value; B denotes the number of forecasts issued by the model that
were considered anomalous; and C provides the ratio between A and B. ETI is used as an abbreviation for erased train
instances. TD is used as an abbreviation for target discrepancy.

MASE Anomalies in test ETIExperiment Dataset MA(3) GM(GBMR) GM(GBMR)+näive LM(GBMR) GM(GBMR) vs. TD Target GM(GBMR) GM(GBMR)+näive # ETI Ratio ETI
M4CD 1.8473 0.7387 0.7644 4.3261 304 4337 1553/1857 (0.84) 1555/2249 (0.69) NA NAExperiment 1 KWWTFCD 1.4871 0.6828 0.7216 1.0360 407 2750 991/1398 (0.71) 924/1916 (0.48) NA NA
M4CD 1.8473 0.7392 3.0213 4.3261 290 4337 1567/1857 (0.84) 1555/2249 (0.69) 1857 0.0281Experiment 2 KWWTFCD 1.4871 0.6832 1.5915 1.0360 374 2714 919/1293 (0.71) 869/1808 (0.48) 1293 0.0154
M4CD 1.8473 0.7361 3.0228 4.3261 283 4337 1588/1871 (0.85) 1555/2249 (0.69) 1365 0.0207Experiment 3 KWWTFCD 1.4871 0.6829 1.5912 1.0360 375 2714 925/1300 (0.71) 869/1808 (0.48) 813 0.0097
M4CD 1.8473 0.7392 3.0213 4.3261 290 4337 1567/1857 (0.84) 1555/2249 (0.69) 1857 0.0281Experiment 4 KWWTFCD 1.4871 0.6832 1.5915 1.0360 374 2714 919/1293 (0.71) 869/1808 (0.48) 1293 0.0154
M4CD 1.8473 0.7361 3.0229 4.3261 283 4337 1588/1871 (0.85) 1555/2249 (0.69) 1365 0.0207Experiment 5 KWWTFCD 1.4871 0.6828 1.5911 1.0360 374 2714 925/1299 (0.71) 869/1808 (0.48) 813 0.0097

6.1. Premise Validation (Experiment 1)

We devoted the first experiment to validate the premise of this work: that the
global model outperformed the local ones (GM(GBMR) vs. MA(3) and LM(GBMR) in
Experiment 1), and even the GM(GBMR)+näive, showing that the fallback to the näive
forecast did not provide the expected performance improvements. This was confirmed
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in the rest of the experiments. Our intuition behind the result is that fallback forecasts re-
placing the original prediction in false positives issued by the anomaly detector (for which
the GM(GBMR) model would have a better prediction) degrade the overall performance
and lead to suboptimal results. We then performed four additional experiments to under-
stand if removing instances from the train set similar to the reference vector generating an
anomalous forecast could improve the performance of the global model.

It must be noted that the anomaly detection is run on forecasted values. Thus, while
anomalies can be subjective, we consider that objective criteria can be established to
identify suspicious data points (or forecasts) that meet those criteria, and are most likely to
be considered outliers (or anomalous).

6.2. Dealing with Anomalous GTSMLFM Forecasts (Experiment 2 and Experiment 4)

Once the GTSMLFM was trained, we proceeded to identify outliers produced by the
GTSMLFM using an ensemble of time series anomaly detectors (COPOD [131], ABOD [132],
and KNN [133]), and considering a given forecast anomalous only when all the detectors
agreed it should be considered as such. Next, we used the LIME [75] to compute features
relevance for each anomalous forecast.

The most similar instances between the feature vector generating an anomalous
prediction and data available in the training set were obtained, computing the cosine
distance over a subset of the five most relevant features to each prediction. In Experiment 2
and Experiment 4, we computed such similarity against the data instances in the train set
for all GTSMLFM anomalous forecasts. For Experiment 2, we considered a vector built
with the most relevant features to a specific forecast, while in Experiment 4, we enlarged
that vector with the target value for the train set instances and the predicted value for the
reference vector. The intuition behind including such value in the vector is that instances
most likely influence the model with similar input values and teach a target value close to
the observed prediction.

While we experimented with multiple similarity thresholds, we finally adopted a
threshold of 0.9999999, for which, in most cases, just a handful of train instances were
identified as similar to the feature vectors producing anomalous forecasts. However, due
to some exceptional cases resulting in a relatively high number of similar instances despite
the tight threshold, we decided to provide an additional bounding criterion, collecting,
at most, ten top train instances for each anomalous forecast. This limit was established
considering the relationship between the size of the test set, the number of anomalies, and
an upper bound to the number of instances to be removed. While such a procedure helped
us identify and remove instances that distorted the GTSMLFM’s training, future work will
develop a better procedure to determine the parameters and identify such instances.

When analyzing the results, we observed, in both cases, that the model’s performance
decayed (MASE measurements for GM(GBMR) and GM(GBMR)+näive), while the discrep-
ancy between GM(GBMR) predictions and target values that were considered anomalous
reduced, indicating a better adjustment to the real data behavior for unexpected values.
While the MASE improvement was slight, it must be noted that such improvement was
consistent and thus is improbable that it could be attributed to models’ variance. Further-
more, we expect that the forecast improvements are minor in terms of MASE: reducing the
number of anomalies across a test set of 24,000 records for dataset M4CD, and 28,000 for
dataset KWWTFCD, should not have a substantial impact on the overall MASE. While the
MASE is indicative of the overall models’ forecast adjustment, the improvement regarding
anomalous forecasts should be considered in terms of a reduction of the target discrepancy
(the model better adjusts to the observed target values in the test set). We observe that
the number of anomalous forecasts is reduced in both cases, showing that the new model
better adjusts to the time series behavior.
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6.3. Dealing with Anomalous Fallback Forecasts (Experiment 3 and Experiment 5)

Assuming that more data is beneficial to global model performance and that the näive
forecast can provide a reasonable estimate when the GM(GBMR) issues an anomalous
forecast, we conducted two additional experiments (Experiment 3 and Experiment 5),
removing only the train instances that were similar to feature vectors for which both, the
GM(GBMR) and the näive forecast provided an anomalous forecast. For Experiment 5, we
enlarged the reference vector with the predicted value (or the target value for the vectors
in the train set). In both experiments, we observed an improved MASE score regarding
Experiment 2 and Experiment 4 and a reduced discrepancy between values considered
anomalous for GM(GBMR) predictions and target values. In particular, we found that
the best results for all metrics in both datasets were obtained for Experiment 5, reducing
outliers discrepancy regarding the original model for at least seven percent in both datasets.

From the results that we obtained, we consider the vector structure used to measure
the similarity between the instances (using the most relevant features either with the target
(or predicted) value or not), did not influence the results. We confirmed that improving
the global model performance is possible by removing particular data instances from the
train set. When searching for such instances, it is crucial to ensure that the least possible
data is removed. Since the M4CD dataset comprises a wide variety of time series and the
same architecture and methodology were used to replicate the findings on the KWWTFCD
dataset, we expect that they can be generalized to other domains. Moreover, though the
research was applied to time series datasets, we consider that the findings can be ported to
regression problems in general, due to how we formulated the forecasting problem.

6.4. Dashboard

To inform the user when and why a given forecast should be trusted, we built a
dashboard (see Figure 5). The dashboard has six sections, each of which provides specific
information to the user. At the top of the dashboard (Figure 5A), we provide information
regarding the time series identifier, the dataset they belong to, the forecast date and
value, if considered an outlier, and the most relevant features to that particular forecast.
We then created a line plot of the time series, where the last value corresponds to the
forecast (Figure 5B). We use a gray dashed vertical line (see the Figure 5(B2) arrow)
to indicate the start of the forecasting horizon, and a red dashed vertical line (see the
Figure 5(B3) arrow) to highlight the occurrence of an anomalous forecast. We provide
a short explanation regarding the criteria applied to the forecast to determine if it is
anomalous or not (Figure 5C).

Given that the machine learning models that we consider assume manually crafted
features, insights regarding the time dimension can be conveyed only through the features
and their metadata. Inspired by related work [91,93], we map features metadata regarding
the time dimension and compute how strongly that the referenced time windows and
points-in-time are from the most relevant features to a particular forecast overlay. Based on
that information and the values of the time series data points within each range considered,
we overlayed a heatmap to the time series line plot, showing how influential those data
points are to the forecast. In particular, in Figure 5(B1), we show a heatmap with a heat
scale ranging from yellow (low relevance) to red (high relevance). The relevance heatmap’s
area is determined by the time windows of the relevant features and the values of the data
points that fall within the aforementioned time window.

In Figure 5D, we display a set of training instances that probably influenced the
forecast (prototype local explanations), followed by two counterfactual examples: a set of
instances that would result in a non-anomalous forecast (Figure 5E). We created our utility
code to compute the counterfactual examples (see algorithm’s pseudocode in Listing 1). To
compute them, we restricted the values search to the most significant features identified
by LIME and ensured that the values were plausible. To decide whether there was a
significant change in the forecasted value when computing counterfactual examples, we
created a feature vector with the mean values of all the features, except for the meaningful
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ones identified through LIME, which received values of their own by ninety thousand
values from a normal distribution. The normal distribution was parameterized with a
mean equal to the mean of past time series values, and a standard deviation equal to three
times the standard deviation measured in the past for that same time series. We then used
the GTSMLFM to issue a forecast and the anomaly detector to determine if the proposed
sample instance qualified as an outlier or not, and randomly selected a subset of them to
show them to the user.

Listing 1: Algorithm used to compute counterfactual examples.

# X_train: dataset train instances
# feature_vector: feature vector used to issue the forecast
# relevant_features : list of relevant features to the given forecast
# model: forecasting model
# anomaly_detector: some anomaly detector
# n_samples: number of samples to draw from the Normal distribution
given X_train, feature_vector, relevant_features , model, anomaly_detector
synthetic_samples = new dictionary()

for each feature in relevant_features :
feature_mean = mean(X_train[feature])
feature_std = standard_deviation(X_train[feature])
feature_perturbed_values = normal(feature_mean, 3*feature_std, n_samples)
synthetic_samples[feature]=feature_perturbed_values

# create new dataset, merging data from non relevant features, and perturbed ones
new_dataset = create_dataset(X_train, synthetic_samples)

counterfactual_examples = new list()
for each feature_vector in new_dataset:

y_pred = model.predict(feature_vector)
if not anomaly_detector.is_anomaly(y_pred):

counterfactual_examples.append(feature_vector)
return counterfactual_examples

The last dashboard square is devoted to providing a set of values expected to make
a better forecast (Figure 5F). To obtain them, we drew ten thousand values following
a normal distribution, with a mean equal to the mean of past time series values and a
standard deviation equal to three times the standard deviation measured in the past for
that same time series. The values were then filtered by performing the same anomaly
detection procedure as for the GTSMLFM forecasts, keeping only those not considered
anomalous. Figure 5F displays just a subset of them: the minimum, median, and maximum
values, and additional four random samples drawn from them.

In this work, we used a particular selection of models and algorithms to create the
forecasts, detect anomalies, and craft the explanations. However, given the architecture’s
modular structure, these can be replaced as black boxes, impacting the quality of the
content displayed in the dashboard.



Appl. Sci. 2021, 11, 9243 16 of 22

Figure 5. Dashboard screenshot. We highlight different areas devoted to explaining a given forecast, providing a context
within the time series, indicating the most relevant features to the forecast, train instances that most likely influenced the
forecast, counterfactual examples, and alternative values expected to make a good forecast.

7. Limitations and Improvement Opportunities

We identify two significant limitations of the research described above. It must first
be noted that, while the methodology and dashboard that we developed are generic, they
target global time series models constrained to machine learning algorithms whose input
features are intelligible to the human. Furthermore, many of the explanations assume the
features convey a particular meaning to the user—which is, in our view, a criterion that
handcrafted features can only meet. Due to this limitation, we consider this approach is
not suitable for deep learning models. In addition, given how the features are framed for
such machine learning models, insights regarding the time dimension can be conveyed
through the features and their metadata. Second, the current approach to selecting train
data instances similar to the data instances creating the anomalous forecast requires some
tuning to find an appropriate instances’ similarity threshold and set proper constraints
towards the maximum number of instances to consider for each case. While this could be
replaced by an automatic procedure searching for the best similarity measure, threshold,
and instances’ limit, such a procedure would come at a high cost, since it would require
computing the similarities across all instances for each run. Further research is required to
understand better alternative procedures to identify similar train data instances that drive
the forecast towards an anomalous value.

From experience that we obtained through the experiments and results described
above, we identified improvement opportunities. Following research done by [122], finding
the most influential instances in the train set for an anomalous forecast can be done using
influence functions. Other possible enhancements would be to use a more stable model to
estimate feature relevance for each prediction. In particular, we could replace LIME for
DLIME, since LIME is not deterministic, and changes in feature ranking computations can
affect the instance selection based on the similarity to the detected anomalous forecasts.
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Another improvement can be made regarding the anomaly detection module. Reducing
the number of false positives correlates to the number of instances removed from the train
set. Furthermore, removing only instances similar to the ones where the global model and
fallback provide anomalous forecasts has been shown to improve the performance of the
model trained without such instances. Following this intuition, we can use our current
anomaly detector for unsupervised anomalies labeling. By labeling instances as anomalous
only when the current anomaly detector predicts the actual value is not anomalous when
the forecast was, we can later train more precise supervised machine learning models to
detect outliers.

8. Conclusions

In this work, we developed a modular architecture, a methodology, and a dashboard,
that provide insights when a GTSMLFM forecast can be trusted or not and the reasons
behind anomalous forecasts. The architecture, methodology, and dashboard support the de-
velopment and engineering of GTSMLFMs, providing means to enhance their performance.
We evaluated our approach through a series of experiments conducted on a reduced ver-
sion of two publicly available datasets and measuring the performance improvements of
the GTSMLFM when following the methodology described in Section 4. Our research con-
firmed that removing particular instances from the train set can lead to a better GTSMLFM
performance and compared several approaches to achieve the best outcome.

As future work, we envision extending the current application to support explainable
anomaly detection algorithms and include a semantic model to enrich the explainability
of any anomaly detection model. Such a semantic model can provide additional insights
based on domain knowledge regarding the inner workings of the anomaly detection model
and the data of a particular time series and forecast. Finally, we would like to explore
different policies to deal with problematic train instances. In particular, we are interested
in studying if replacing the values of a subset of features of interest with some imputation
criteria can be an effective alternative to removing such data instances. Such a technique
would retain the advantages of keeping all the data to train a global model, while removing
patterns that create outlier forecasts. Moreover, to avoid losing valuable information in the
noisy instances, we could leverage generative adversarial sampling to enrich the dataset
with synthetic train instances that resemble noisy ones. Such enrichment could help the
model better learn the decision boundaries, increasing the overall model’s performance.
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AF Anomalous Forecast
COF Connectivity based Outlier Factor
ETI Erased Train Instances
GBMR Gradient Boosted Machine Regressor
GFM Global Forecasting Model
GTSMLFM Global Time Series Machine Learning Forecasting Model
INFLO Influenced Outlierness
kNN n-Nearest Neighbor
KWWTFCD Kaggle Wikipedia Web Traffic Forecasting Competition Dataset
LFM Local Forecasting Model
LOF Local Outlier Factor
M4CD M4 Competition Dataset
MASE Mean Absolute Scaled Error
ODIN Outlier Detection using Indegree Number
ROAR RemOve And Retrain
TD Target Discrepancy
TS Time Series
TSDM Time Series with Different Magnitude values
XAI Explainable Artificial Intelligence
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