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Abstract: H-VAWTs or straight blades VAWTs are the most common turbine architecture employed
for small VAWTs. The manufacture of straight, constant chord blades, coupled with the transport
advantages, make this choice technologically simpler, compared to curved (eggbeater) type or
curved-bent (Gorlov) type, allowing a large selection of materials, and design solutions. Recently, the
strategies to accomplish the task of zero-emission buildings identified wind energy exploitation in
the urban environment as one of the most promising. Micro and mini wind turbines installed on
buildings (BAWT—building-augmented wind turbines) are considered the candidate technology
after that of photovoltaic panels; under certain conditions, these technologies can be combined to
obtain the maximum natural resources exploitation in the urban environment. VAWT, compared
to HAWT, would ideally perform better in the fast-changing, turbulent winds, typical of the built
environment. Additionally, its 3D shape favors a better architectonic integration with the volumes of
the building. Nevertheless, despite these claimed advantages, this architecture did still not come to
the expected fruition and experience, which revealed that the stochastic nature of the wind resource
in the built environment determines a quite challenging context, reflecting not only the structural
endurance, but also the operations and the annual energy production. These site characteristics stress
the detrimental effect of the high polar inertia of this architecture hampering, be it a reduction in
the acceleration and deceleration capability of the rotor, the required adaptation of the rotational
speed to the varying wind conditions, or compromising any form of robust control. This leads
to poor aerodynamic performance and potential structural damages. This paper contributes to
mitigating the issue of the high rotor polar inertia of the H-VAWT without affecting other essential
design requirements (strength, performances, needs of smooth control). The work identifies the
design parameters governing the rotor acceleration and deceleration and develops a rational design
procedure aimed at improving the H-VAWT control and performance.

Keywords: VAWT; turbine inertia; small wind turbine

1. Introduction

According to the rational classification of the rotor architectures introduced by G.
Darrieus in 1930 [1], VAWTs’ concept of base torque generation on the aerodynamic lift
principle was subjected to intense theoretical and experimental development during the
1970s and 1980s [2–4]. The concept was initially intended for inland installation of small
to medium size units, up to 500 kW [5]. While in the U.S.A., the preferred rotor adopted
the troposkein blade shape (also popularly named eggbeater rotors), many prototypes,
especially in the U.K. and Europe, moved to H-type [6]. According to this design, the
straight blades offered the possibility to adopt various control mechanisms, such as pitch
control or blade reefing systems. After a period of latency, only recently VAWTs gained
a renewed interest toward two completely different turbine scales and application fields:
the very small sizes (up to about 10 kW), driven at the beginning of the 2000s from
the potential applications in urban environments [7–9], and the giant offshore turbines
concepts of the 2010s (up to 30 MW) by several feasibility studies [10–15], and UE granted
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projects [16]. In the urban field, fluid-dynamic limitation due to the wake interaction
between the turbine and the building [7] restricts the size to the order of about 10 kW,
limiting rotors to a maximum diameter of about 5–6 m [8]. Concerning distributed wind
applications in suburban or rural areas, the adoption of rotors on the top of towers to
intercept higher winds poses, again, a limitation on the maximum size of the H-Darrieus
turbine caused by the complex structural issues of the rotor-arms-tower connection, and
thus, the consequent development remained in the area of very small size turbines. An H-
VAWT 200 kW wooden tower prototype has been running discontinuously since 2010 at the
University of Uppsala [17], hampered by rotor-tower resonance. This area of application
inherited a lack of suitable theoretical and numerical design tools for the design, and a
considerable number of projects have a very long commercial latency period, proving the
complex design path, and many problems of unreliability and underperformance have been
reported for commercial models. All this is to say that H-VAWTs, despite some attractive
features, still suffer from some shortcomings, which partly can be handled with a better
knowledge of fluid dynamics and structural dynamics. Small straight blades VAWTs are
characterized by intrinsically high polar inertia, due to the peripheral arrangements of the
blades concerning the rotating shaft. This feature determines a beneficial flywheel effect on
the drive train, smoothing down torque oscillations induced by the complex aerodynamics
of the rotor. On the other side, high inertia rotors suffer from huge response times, and
the acceleration/deceleration rate is far from the required one under the presence of wind
unsteadiness, wind gusts, and wind drops. This behavior results in a large idling time,
which is felt to be one of the leading causes of the poor performance claimed for these wind
energy conversion systems in gusty environments, as urban sites are. It was proved [18]
that the power reduction caused by the inertia of wind turbines changed proportionally
with their natural time constants. Additionally, the frequency of the wind speed variation
and the average of the absolute value of the rate of wind speed change demonstrated to
play an important role about the output power: in fact, when the wind speed varies rapidly,
the above two factors of the wind speed increase as well, determining a greater reduction
in wind turbines power output.

Many works have been devoted to understanding the factors that influence such
behavior and the mitigation effects, although the papers analyzed the partial design
characteristics, such as blade chord, number of blades, rotor solidity, and rotor aspect ratio,
as well as the parametric effect of these single variables on turbine inertia [19–26].

More comprehensive work was undertaken by Hara et al. [27], who investigated the
response of a straight-bladed VAWT to pulsating winds. The phase delay between the
rotational speed and the wind variation was experimentally and numerically analyzed.
The results show a constant value by changing the moment of inertia, the wind cycle, and
the wind amplitude. The phase delay resulted to be approximately π/2 when the wind
amplitude was large. The experimental evidence of the rate of change in the rotational
speed suggested a relation between the rotational speed width and the pulsating wind
amplitude. The efficiency of the H-VAWT in a pulsating wind with unvarying amplitude
stayed almost constant under both changes in the moment of inertia and the wind cycle,
but a decrease was recorded when the wind amplitude was large.

Nguyen and Metzger [28] combining measured wind data and blade element mo-
mentum (BEM) simulations, investigating an H-VAWT response capability in turbulent
winds. Even though the energy production adopting an ideal tip speed ratio controller
resulted in being much higher than that obtained with a fixed angular speed, a marked
efficiency drop was registered when the rotor was no longer capable of closely tracking
the gusts. The same authors [29] also investigated different VAWT architectures (acting on
height-to-diameter aspect ratio, blade airfoil shape, rotor solidity, and moment of inertia) to
determine the best configuration to maximize the energy harvest from urban gusty winds,
showing that the optimal power coefficient versus tip speed ratio curve is not necessarily
the one exhibiting the highest peak, but rather the broadest shape. Such works indicate
that not all of the parameters are of identical importance for a successful final product.



Appl. Sci. 2021, 11, 9222 3 of 20

Some of them (such as the choice of airfoils, supporting strut configuration, shape, solidity,
and the material) are more sensitive and critical than others.

As is evident from the preceding review, most of the works pointed to the effect
of a single or a few design parameters, without linking them in a unique and rational
design path.

The long in-field experience collected by the author over about 15 years of tests in
open areas and wind tunnels [30] recognized the high polar inertia of the rotor as the
most detrimental characteristic of small VAWTs, leading to a severe drop in output energy
expectation and structural failure. This issue can only partially be alleviated by the control
strategy. Based on these studies, this paper proposes a design procedure aimed to improve
the control of small H-VAWTs without affecting essential design requirements (strength,
performances, needs of smooth control). The procedure can be easily extended to other
VAWT architectures. This approach considers all principal parameters involved in the
turbine design. Section 2 provides the background to analyze the factors influencing the
dynamic behavior of the H-VAWT. Due to the relevance of polar inertia in the present
discussion, Section 2 introduces an analytical model to evaluate and compare the inertial
properties of H-VAWT and HAWT rotors. The effect of polar inertia on rotor dynamics is
then explained as a response to unsteadiness. The relative gust tracking capability, through
the introduction of the wind tracking index, is commented on. Section 3 discusses how
to maximize the dynamic characteristics of the turbine by separating the effect of single
groups of variables, according to a well-known general approach introduced by Ashby [31],
here applied to wind turbine design. Section 4 discusses the results of the procedure, and
Section 5 concludes the work with some design indications and recommendations.

2. Background
2.1. Inertial Properties of the Rotors

Generally speaking, the momentum of inertia of wind turbines rotors is much larger
than that of the other components of the power train, so the contribution of the latter
can be neglected for a first step dynamic analysis approach. The moment of inertia of
the rotor consists essentially of the sum of that of the blades and that due to the hub
(or to the spokes, in the case of a VAWT). A schematic and general representation of the
geometric configuration of the blades of horizontal and vertical axis turbines, useful for
an approximate but sufficiently accurate calculation of the moment of inertia, is given in
Figure 1. Note that, in general, LB = kb · H, where 0 ≤ kb ≤ 1, depending on the arm to the
blade connection point.

Figure 1. Simplified schemes of wind turbine rotors for HAWT with rectangular (a) and triangular
(b) blade planform, as well as for H-VAWT (c).

The moment of inertia with respect to the O’ axis is given by the following:

I′ = I + md2 (1)
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where I′ is the moment of inertia concerning the generic axis O’, I is the moment of inertia
concerning the O axis (parallel to O’ ) that crosses the blade center of gravity, and m is the
mass of the body. Typically, the blade of a HAWT has a morphology falling in between
a tip tapered and constant chord that can be assimilated to a rectangle and a triangle,
respectively (Figure 1a,b).

The moment of inertia of a rectangular shaped blade I′R of mass mR is is equal to
the following:

I′R = IR + mR

(
R
2

)2
=

1
12

mRR2 + mR

(
R
2

)2
=

1
3

mRR2

On the other hand, the moment of inertia of a triangular shaped blade I′T with mass
mT is equal to the following:

I′T = IT + mT

(
R
3

)2
=

1
18

mT R2 + mT

(
R
3

)2
=

1
6

mT R2

Assuming that the density of the blade material is the same, the moment of inertia of a
constant-chord blade is double that of a variable-tapered, triangle-shaped one. Commercial
blades with a length less than 10 m, where the width of the spar-cap box and the skin do
not vary along the blade, show the following main relationships for the inertia, mass, and
blade length [32]:

I′ = kImBR2

where kI ranges from 0.21 to 0.22 [33] (≈ 1/5 to 2/9), figures that well agree with the
outcome of the above analytical model.

Focusing on H-Darrieus VAWTs, the moment of inertia is equal to the sum of that of
the blades support arms IS (spokes) and one of the blades IB in the following formula (see
Figure 1c):

I′H = IS + IB

Assuming both blades and support arms have a constant chord c, they can be assimi-
lated to rectangular bodies, and the moment of inertia results in the following:

I′H =
1
3

mSR2 +
1

12
mBc2 + mB(R)2

Introducing the definition of rotor solidity σ [34],

σ =
NBcH
2RH

=
NBc
2R

and substituting the value of c from the previous relation (assuming mS = mB), the
following holds:

I′H =

(
4
3
+

1
3

σ2

N2
B

)
mBR2

The term
1
3

σ2

N2
B

is much smaller than 1, and thus, we have the following:

I′H ≈
4
3

mBR2

It should be noted that the mass of a VAWT blade is, for structural reasons, equal to
5 ÷ 10 times that of a HAWT of the same radius. This means that, at least when smaller
sizes are considered, the inertia of an H-VAWT (with the same number of blades and swept
area, and considering rotors having different aspect ratios) is from ten (for relatively large
swept areas) to hundred times (for small swept areas) higher than the HAWTs counterparts.
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Such a result is confirmed by the plotted data of some commercial VAWTs in Figure 2, and
compared to HAWTs of a similar diameter (left) and rotor swept area (right).

Figure 2. Moments of inertia of (H-type) commercial/prototype VAWTs and HAWT, according to
diameter (left) and rotor swept area (right).

It has to be pointed out that the former data are nevertheless hard to be retrieved from
published literature, as can be seen from the scarcity of data listed in Table A1.

2.2. Response to Aerodynamic Unsteadiness

The capability of the turbine to react promptly to rapidly changing incoming wind
conditions depends on both the time scale of the air velocity fluctuations and the response
characteristics of the turbine itself. VAWTs generate a highly unsteady aerodynamic envi-
ronment. The incident air velocity is not constant in both intensity and direction, resulting
in varying chordwise and normal blade velocity components [34,35] . Besides this intrinsic
unsteadiness induced from VAWT kinematics, even in steady-state flow, another source
is given by the vortexes generated by the blade-to-tower and blade-to-blade interaction.
An additional unsteadiness is provided by the wind shear, the natural turbulence, and the
gusts. This complex flow field reflects the periodic and random variation of driving and
normal blade forces and pitching moments. With concern for instance to the typical opera-
tional context of a small wind turbine within the urban environment, both flow distortions
and turbulence are created by natural and anthropic elements, such as trees, buildings,
etc. [7,35]. Even though just a few works have investigated the impact of turbulence on
small wind energy conversion systems [36,37], it is recognized that the turbulence spectrum
in the urban roughness sub-layer is characterized by a peak between 10−1 Hz and 1 Hz,
thereby determining a characteristic time scale on the order of seconds [38]. Several charac-
teristic times can be identified for a small wind turbine, governing the transient process
between two steady-state operating conditions. They can be related to the relaxation of
the boundary layer around the blades (leading to a time constant on the order of 10−2 to
10−3 s [39]), as well as the one of the rotor wake (where a time constant on the order of
0.1 to 1 s can be inferred, see again [39]). The inertial response of the turbine appears to
be one (or even two) orders of magnitude higher than those related to the aerodynamic
phenomena described above (being on the order of tens of seconds, or even a minute;
see [18]), especially in the case of VAWTs.

2.3. Gusts Tracking

The theme of VAWTs rotor gust tracking capability was approached analytically in
a previous work by the author [39], where the relationships between inertia and rotor
radius, inferred from datasheets of commercial and prototype turbines, were investigated.
As shown in Figure 2, H-VAWTs inertia is, at least for small sizes, more than one order
of magnitude higher than that of HAWTs for the very same diameter or swept area: as
a consequence, VAWTs response times are much greater than those of their horizontal-
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axis counterparts, especially at low wind speeds, prompting a severe limitation to the
efficient adoption of vertical axis rotor architectures within urban sites, which are generally
characterized by a low wind potential, as well as rapidly varying wind conditions. Being
that the present study is a natural continuation of the above-discussed work, its main
features and results are here summarized; the complete model is fully detailed in [39].

To test the capability of a turbine to effectively adapt its rotational speed to satisfy a
prescribed control strategy, two parameters were introduced and compared: the required
rotor acceleration (RRA, defined as the acceleration required by the rotor to track a given
gust) and the available rotor acceleration (ARA, defined as the maximum angular accel-
eration achieved when the rotor is free to accelerate under that gust). The required rotor
acceleration (RRA) derives from the differentiation of the equation expressing the optimum
tip speed ratio.

λopt =
ΩR
V∞

Therefore, for a given rotor radius, we have the following:

RRA = Ω̇ =
λopt

R
∂V∞

∂t
=

λopt

R
V̇∞ (2)

where Ω̇ is the rotor acceleration/deceleration, λopt is the design tip speed ratio that should
be kept constant during normal operation to operate at maximum power coefficient, and
V̇∞ is the gust acceleration.

The available rotor acceleration (ARA) is defined on the basis of the rotor’s allowable
angular acceleration given by the mechanical balance of the power train as follows:

NB I′Ω̇ ' Qaero −Qgen (3)

Under the (conservative) hypothesis that the resistant torque Qgen = 0, the acceleration
of the rotor is equal to the following:

ARA = Ω̇ =
Qaero

NB I′

where NB is the number of rotor blades, I′ is the single blade inertia according to Equation (1),
and the aerodynamic torque is Qaero defined as follows [33]:

Qaero =
ρa ADV∞

3CP,MAX(λ)

2Ω
. (4)

Moving from the definition of the latter parameters, a further synthetic index, the wind
tracking index (WTI, defined as the ratio between the ARA and the RRA) was introduced
to assess the capability of the system to effectively track wind fluctuations:

WTI =
ARA
RRA

. (5)

The condition that the available rotor acceleration is higher than the required one,
or ARA > RRA, implies that the condition WTI >1 has to be satisfied. It can be easily
drawn that the WTI, even if not capable of quantifying the exact amount of annual energy
lost, due to the retarded response of the turbine, can be used to obtain an indication
about the suitability of a given turbine architecture to adapt to given site characteristics.
In the following, the maximization of this parameter is used to propose an H-VAWT
design criterion.

Figure 3a shows the record of gust cumulative probability occurrence sampled at
the experimental test field of the University of Trento [9,40,41]. The curve derives from
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the interpolation experimental data. About 90% of the gusts presents an acceleration
rate less than 2.5 m/s2. From this evidence, three typical wind accelerations—0.6 m/s2

(Figure 3b), 0.9 m/s2 (Figure 3c), and 1.2 m/s2 (Figure 3d)—are selected to evaluate
representative WTIs of a collection of commercial wind turbines having different rotor
diameters, computed for different unperturbed wind speeds. It can be easily drawn that
small H-type Darrieus VAWTs are dramatically penalized, compared to their horizontal-
axis counterparts, at least for low wind speeds, not actually exceeding a maximum WTI
of about 0.6 for average-high gustiness. The larger the wind gust, the lower the WTI,
indicating an increased difficulty of the turbine to accelerate/decelerate.

Figure 3. Cumulative gust probability of urban sites (a) and WTI as a function of the rotor radius,
and three typical wind acceleration rates for some commercial HAWTs and H-type Darrieus VAWTs
(b) V̇∞ = 0.6 [m/s2], (c) V̇∞ = 0.9 [m/s2], (d) V̇∞ = 1.20 [m/s2]), for different initial wind speeds
V0 = 5 [m/s], V0 = 8 [m/s], V0 = 9 [m/s].

2.4. Acceleration/Deceleration Capability

The above-described difference in inertial properties between HAWT and VAWT,
combined with the different adopted tip speed ratios, allow to draw some consideration
about the different acceleration/deceleration capacity of the VAWTs, compared to HAWTs.

The ratio between the angular accelerations of the two architectures, considering the
relative rotor inertias (assuming the same number of blades), and the ranges of the design
tip speed ratios (λHAWT = 6÷ 9, λH−VAWT = 2÷ 3), is therefore equal to the following for

slow running, small size turbines (
I′H−VAWT

I′HAWT
= 300):

Ω̇H−VAWT

Ω̇HAWT
=

λHAWT
λH−VAWT

I′HAWT
I′H−VAWT

≈ 1
100
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and equal to the following for fast running, medium size turbines (
I′H−VAWT

I′HAWT
= 30):

Ω̇H−VAWT

Ω̇HAWT
=

λHAWT
λH−VAWT

I′HAWT
I′H−VAWT

≈ 1
10

clearly showing an intrinsic poor accelerating/decelerating capability of the H-type vertical-
axis architecture, compared to the case of HAWTs.

3. Wind Tracking Index Maximization Procedure

Moving from the definition of the wind tracking index introduced in Section 2.3,
a discussion can be promoted to draw some indications about the potential improvement
of the design philosophy of VAWTs, aimed to operate in a gusty, typically low wind speed
environment, such as, for instance, the urban one. This discussion deals with the issue of
turbine acceleration/deceleration and disregards the analysis of the self-aligning capability
of the machine. In fact, unlike their horizontal-axis counterparts, VAWTs do not need
rotor orientation systems, as they are inherently panemone, which theoretically implies
a better ability to gather energy in gusty environments with frequent changes in wind
directions. The goal of the proposed analysis is to discuss a design procedure aimed to
obtain better reaction capability in the operational range between cut-in and cut-out wind
speeds, without entering in the discussion of self-starting behavior.

The model is based on the well-known approach introduced by Ashby [31], which
guides the designer throughout an educated process to the general purpose of an optimized
project. Such an approach identifies both the performance to be maximized (or minimized)
and equations for the variables set as design constraints (i.e., maximum allowable deflection,
and limit mechanical resistance). The performance and constraints form a set of equations
that, through substitutions and analytical manipulations, lead to a single performance
equation of the following form:

P = f1(F1) · f2(F2) · .... fn(Fn)

or
∆P
P

=
∆ f1

f1
+

∆ f2

f2
...... +

∆ fn

fn

where fi are separate functions of groups of parameters Fi, called performance metrics,
describing functional requirements, geometric data, material properties and so on. When
the groups are separable and independent, maximization (or minimization) of the perfor-
mance can be obtained by maximizing (or minimizing) singularly any group Fi appearing
in the equation.

For the present case, the maximization of the WTI performance starts from a suitable
expression of such a parameter:

WTI = Qaero
R

NB I′λoptV̇∞
(6)

=
1
2

NBρacHCTV2
∞

R2

NB I′λoptV̇∞
(7)

=
3
4

ρaV2
∞

V̇∞

CT
λopt

cH
mB

(8)

Introducing the rotor solidity for an H-VAWT (σ =
NBcH
2RH

), Equation (8) can be
rewritten as follows:

WTI =
3
4
(AD)

ρaV2
∞

V̇∞

(
CT

λopt

) (
1

mB

) (
σ

NB

)
(9)
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being AD = 2RH. The solidity and the tip speed ratio are related to a general equation of
the form σ = αλ

−β
opt, with α and β constants. Figure 4 shows a collection of σ− λopt data for

current and past commercial H-VAWTs, from which the constants α and β can be deduced
as best fit of an exponential low.

Figure 4. Solidity vs. tip speed ratio for a collection of VAWTs.

Therefore, Equation (9) becomes the following:

WTI =
3
4
(AD)

ρaV2
∞

V̇∞

 αCT

NBλ
β+1
opt

 ( 1
mB

)
(10)

To include the blade material properties in Equation (10), the blade mass equation can
be written as follows:

mB = ρB AB H (11)

To maximize WTI, the mass cannot be as small as desired without compromising the
blade structural integrity. It is seen clearly from Figure 1 that the H-VAWT blade is loaded
mainly along the radial direction [42]. Therefore, a constraint has to be set on maximum
blade bending induced stresses [43]: the maximum mechanical stress σm occurs at that
point ym of the surface of the blade section placed at the maximum distance from the
neutral axis (see Figure 5). The following constraint can, therefore, be set as the following:

Figure 5. Blade structural representation.

σm =
Mbym

J
=

Mb
W

<
σadm
σf

(12)
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where Mb is the bending moment, J is the surface momentum of inertia of the blade
section, W is the modulus of resistance σadm is the failure strength of the material, and σf is
the suitable safety factor. Failure occurs if the local stress exceeds σadm (which is chosen
according to the main failure option of the turbine, i.e., ultimate, fatigue, or buckling).

According to Ashby [31], the blade section has a strength efficiency that depends on
its shape, and can be measured by the parameter Φ f as follows:

Φ f =
W
W0

where W0 is the section modulus of a reference square section having the same sectional
area AB:

W0 =
b3

6
=

A3/2
B
6

Thus the strength efficiency becomes the following:

Φ f =
6W
A3/2

B

This parameter is independent of the scale and other parameters and, according
to Ashby, can range from 1 to about 10 depending on the shape of the resisting spar
of the blade (see Figure 6). By incorporating the parameter Φ f , Equation (12) becomes
the following:

Figure 6. The second moment of area I, plotted against section area A (according to Ashby [31]).

6
(

Ff
2
3 LB

)
A3/2

B Φ f
<

σadm
σf

(13)
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The ratio 2
3 appearing in Equation (13) is the point of application of the equivalent

pressure center on the blade considered a beam of length LB (see Figure 1), subjected to a
bending force Ff [44].

For the present analysis, a reasonable approximation can be made by using the
expression of the aerodynamic load as a formal bending force:

Ff =
1
2

ρacLBCNV2
∞ (14)

With specific concern to H-VAWTs, depending on both turbine size and tip speed
ratio, the magnitude of the centrifugal forces can be higher than the aerodynamic actions.
The centrifugal loads are caused by the rotation, and the bending loads are generated
by the distance from the blade to the arm connecting point. Therefore, in the designing
of H-VAWT, the bending strength is mainly considered [45]. This occurrence can be
taken into consideration by setting the blade normal coefficient as being magnified by a
further coefficient kC, higher than one, accounting for the additional forces caused by the
centrifugal load, that is, for the zero pitch angle as follows:

C′N = kC CN

The representation of the normal and tangential force coefficients is shown in Figure 7.
By the introduction of the constraint given by the relationship of Equation (13), the maxi-
mum allowable blade mass is given by the following:

Figure 7. Representation of the blade normal CN and tangential CT coefficients.

mB = K1

(
1
H

)1/3
(

Ff

Φ f

)2/3 (
ρB

σ2/3
adm

)
σ2/3

f (15)

Finally, by substitution of the latter set of equation, the WTI becomes the following:

WTI = K2
ρ1/3

a V2/3
∞

V̇∞

DH
c2/3H7/3

(
Φ f

)2/3 1
NB

1

λ
(β+1)
opt

CT

C′2/3
N

σ2/3
adm
ρB

1

σ2/3
f

(16)

where K1 and K2 are numerical constants collecting all figures. It is convenient now to
group the variables into homogeneous indexes. Rearranging the latter equation, with the
help of the relationship between solidity and tip speed ratio, one obtains the following:

WTI = K3

(
ρ1/3

a V2/3
∞

V̇∞

)
︸ ︷︷ ︸

E

(
Φ f

)2/3
(

1
D

)(
1

NB

)(
1

AR4/3

)
︸ ︷︷ ︸

G

(
CT

C′2/3
N

) 1

λ
(1+β)/3
opt


︸ ︷︷ ︸

F

(
σ2/3

adm
ρB

) 1

σ2/3
f


︸ ︷︷ ︸

M

(17)
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where K3 is a numerical constant resembling all previous constants. WTI is thus split by
convenience into 4 groups, named E (environment), G (geometry), F (functional) and M
(material). σf is grouped within index M because any given material and manufacturing
technology determines a specified safety factor.

It should here be emphasized that the previous equation is one of the possible arrange-
ments of the relationship between the variables. Other formulations can be inferred by
proper manipulation of the auxiliary equations.

4. Discussion

The inspection of Equation (17) enables some observations. First of all, from the
physical point of view, the equations appear consistent: the environment index E shows
that higher air density and stronger wind speeds increase the accelerating capability of
the turbine, such a result also being achieved if the average gustiness of the site is low.
Of course, as the definition of WTI is pseudo-static, the effect of the turbulence intensity
cannot be considered in this analysis.

As far as the geometric index G is concerned (Equation (17)), small diameters deter-
mine a dramatic reduction in the inertia, with a beneficial effect on the rotor acceleration
capability. The same goal is obtained by reducing the blade number, which is responsible
for a linear reduction in the rotor inertia (for instance, by a factor of 1/3 if, from the initial
3 blades design choice, one blade is suppressed). Additionally, the adoption of a struc-
turally efficient blade section, implying a substantial reduction of the blade mass required
to perform the goal, has the consequence of increasing, by an order of magnitude, the factor
Φ f (see Figure 6).

The functional design parameter index F shows that an increase in the ratio of the
tangent to normal coefficients produces higher torque, thus boosting the acceleration of
the rotor. An analogous result is achieved through the reduction of the design tip speed
ratio, which implies a higher design solidity and therefore, a higher aerodynamic torque.
This outcome aligns with the conclusions of Milborrow [44], stating that, assuming a wind
intensity and a given number of blades, the rotor torque is inversely proportional to the
tip speed ratio, and thus, a lower tip speed ratio enables a better acceleration capability.
Furthermore, lower tip speed ratios produce a decrease in the rotational speed and thus,
alleviate the structural stress (which is principally due to centrifugal forces).

Finally, the material index M shows that, if the constraint of blade strength has to be sat-

isfied, the parameter of reference is
σ2/3

adm
ρB

. A typical strength-density chart of most materials

is given in Figure 8, where also different σ to ρ relationships are superimposed. Therefore,
the selection of high resistance to low-density materials is recommended. Additionally, a
proper material property testing campaign is essential to reduce the safety factors.

The Ashby approach requires all functional groups to be independent for a rigorous
analysis. When the groups are separable, as they frequently are, the optimal choice of mate-
rial becomes independent of the details of the design. This statement has to be discussed in
Equation (17) to assess the strength of the assumption of the reciprocal independence of the
indexes. The procedure is summarized in the matrix of Table 1. Trivially, the geometrical,
functional, and material indices cannot impact the environmental one, so they are mutually
independent. The material selection does not impact the functional parameter; under
the hypothesis that any geometry can be manufactured with any material or material
technology, the dependence of G on M can be neglected. The discussion involves the inter-
dependency of the functional and geometrical parameters and should answer the question
of whether a maximization of G (or F ) can be pursued by a contemporary maximization of
F (or G ).



Appl. Sci. 2021, 11, 9222 13 of 20

Figure 8. Materials strength [MPa] versus density [kg/m3], elaboration from Ashby [31].

Table 1. Matrix of reciprocal independence of the performance indexes. o—no dependence, x—
possible dependence.

E G F M
↓ ↓ ↓ ↓

E→ - o o o
G→ o - x o
F→ o x - o
M→ o o o -

To discuss the design dependence of G and F, let us analyze the function G = f (F) for
a collection of VAWT data retrieved in the open literature and from personal communication
of single manufactures, plotted in Figure 9, with the full tabled data listed in Table A1. The
data refer to either prototypes and commercials VAWTs operated or produced from the
1970s to today.

As shown in Figure 9 left, it is apparent that there is no correlation between the two
parameters G and F. In addition, the designers’ choice of F appears to be independent of D
(see Figure 9 right), at least for small sizes. The G and F indexes can be, therefore, chosen
independently of each other, or maximized contemporarily by the designer to obtain a
specific goal to improve the acceleration of the rotor in gusty conditions.

The goal of improving the acceleration/deceleration capabilities of VAWTs, i.e., possi-
bly achieving or even exceeding the threshold WTI = 1 (see Figure 3), implies the need to
increase the current values of WTI by 2 to 20 times when turbines operating in low wind
sites are concerned. This goal can be partially pursued by a combination of design options,
as discussed in the following.
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Figure 9. (left): G = f (F), k = (1+ β)/3, CT
C′2/3

N
assumed constant for any turbine model, (right): F = f(D).

4.1. Variation of the E (Environment) Index

Since this index is formed by climatic parameters, the E (environment) index suggests
that H-VAWT siting should avoid high elevation (low air density), low velocity, and high
gusty locations. These last requirements discard urban sites [9]; such parameters are,
however, not negotiable design variables.

4.2. Variation of the G (Geometry) Index

The index G collects several parameters as the rotor diameter D and its aspect ratio
AR. These are typical input parameters derived from early design considerations. The
diameter can be deduced from the choice of a given swept area AD = DH, which is a direct
consequence of the target AEP of the turbine; once AD and AR are defined, the diameter
can be deduced as follows:

D2 =
AD
AR

It is evident from the analysis of this index that low diameter VAWTs determine a drastic
decrease in the inertia, but of course, the AEP is also correspondingly limited by adopting
a reduced rotor aspect ratio [5]). Therefore, the target design considerations set this index
as fixed and not negotiable.

The number of the blade could be reduced, in principle, from the standard numbers
(four or five) to three, or two, or even one, but this could lead to an increase in the torque
ripple that may be unacceptable, both from the mechanical and the electrical point of
view. Additionally, the noise emission can be affected by the blade reduction. Moreover, a
reduction in the blade number can determine a reduction in the solidity: only if the chord
length is increased by the corresponding ratio of blades reduction, there is no alteration.
It follows, for instance, that by reducing from three to two blades, the WTI will increase by
a factor of 1.5.

The adoption of a well-designed internal spar can allow maximum increments from
12/3 = 1 of full square sections to 102/3 ≈ 4.64, or even 1002/3 ≈ 21.64 of well-designed,
structurally optimized open sections, indicating the need for an advanced structural design,
possibly carried out with FEM tools. Squared or circular full sections are adopted only in
very simple low technology projects and, typically, good designs already start from spar
caps and shear web. In composite blades, the inner shear web connection is manufactured
either with the spar caps built as part of the shell (and a separate shear web bonded between
them) or by building the shear webs and spar caps together as a box spar (and thus glued
into the shell). Alternatively, the shear web is directly extruded (in aluminum blades) or
pultruded (in reinforced plastic blades). As a consequence, the room for improvement of
WTI by operating on a spar and shell-type can in the order of about 4 to 5 times. Good
knowledge of the material properties and the fabrication process is essential to reduce the
safety factors, with a beneficial effect on WTI. This goal can be pursued by specific tests to
characterize the safety factors to reduce the general guidelines given by the IEC norms [46],
which can be reduced by a factor of about two, determining an increase in WTI of about
1.6 times.



Appl. Sci. 2021, 11, 9222 15 of 20

4.3. Variation of the F (Functional) Index

Such an index would suggest some freedom of operation. The quest for high-
performing aerodynamic profiles is beneficial behind the specific scope of obtaining a
high WTI. A larger blade chord operates at a higher Reynolds numbers, providing a higher
averaged lift-to-drag coefficient and CT/CN coefficient. The resulting lower blade aspect
ratio AR could, however, partially (or totally) offset this gain, this condition being depen-
dent on the original rotor aspect ratio. Alteration of the original value of the tip speed ratio
λ is a far more complex parameter to be discussed, due to its global impact on the design.
Such discussion can be made with the help of Figure 10, where a typical outcome of a
double disk, multiple stream tubes BEM run is shown: if the original solidity is maintained,
the effect of the reduction of the tip speed ratio from the optimal one λopt (providing the
maximum power coefficient) will depend on the original rotor solidity σ. If the latter is
low, the efficiency changes only slightly, as the CP − λ curve tends to be rather flat around
its maximum. At a higher design solidity, the curve becomes more edged, and small
reductions in λ determine a larger drop in CP. If a contextual variation of the solidity is
decided, by reducing the number of blades, a larger drop of CP is expected. Nevertheless,
as the exponent of λ in Equation (17) is given by k = (1 + β)/3 with β ≈ 2, a reduction of
50% in λ (for instance from 4 to 2) will lead to a maximum increase in WIT by a factor of
about 2 times.

Figure 10. Effect of the tip speed ratio on the power coefficient at different solidities (AR = 5, D = 2 m,
c = 0.1 m).

4.4. Variation of the M (Material) Index

Limiting the present analysis to the materials currently adopted in commercial wind
turbines, Table 2 collects the M index for glass fiber reinforced polymer (GFRP, blue dot
in Figure 8), carbon fiber reinforced polymer (CFRP, green dot), aluminum alloy (yellow
dot) and micro-laminar wood. As can be seen from Figure 8, CFRP is the lightest material
for a resistant and stiff blade. The here proposed analysis shows, however, that changing
the blade material from an aluminum alloy to GFRP will lead to an increase in the WTI by
a factor of fewer than 2 times, while the adoption of CFRP will determine an increase of
about 3 times.

Table 2. Material and shape selection for a light and resistant beam.

Material œadm æB Index M
[MPa] [Mg/m3] [Pa2/3/g/m3]

GFRP 200 1.8 19.0
CFRP 600 1.6 44.5
Aluminum alloy 200 2.7 12.7
Microlaminar wood 32 0.5 20.2
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5. Conclusions

Experimental and analytical evidence show that the inertia of small H-VAWTs is orders
of magnitude higher than HAWTs counterparts of comparable size. The consequence is
that the acceleration/deceleration capability of an H-Darrieus VAWTs away from cut-in
and cut-out wind speeds is partially hampered since the characteristics time of the rotor
is much higher than the characteristic time of the gusts. This issue inhibits and makes
partially ineffective any turbine control strategy, leading to an insufficient energy harvest
and potential structural issues. It was demonstrated that the wind tracking index (WTI)
is a highly informative parameter to understand the dynamic behavior of a wind turbine
rotor. Its maximization improves the gust tracking capability of the turbine. To be more
specific with concern to H-VAWT, a rise of a factor of about 2 to 5 times for the low
gusting site and of about 10 to 20 times for a moderate-high gusting site is necessary
to provide an acceptable acceleration/deceleration capability. This goal is accomplished
by adopting a multi-front design tool. A rational approach is given by the well-known
Ashby method, which was demonstrated and adopted in the paper. Its application limits
designers’ subjective judgments and the adoption of irrelevant alternatives. This approach
consists of expressing the design objective, in the present case, the WTI, by independent
performance indexes, namely the E (environment), the G (geometry), the F (functional)
and the M (material) indexes, with respect to some constraints (dimensions, stiffness,
strength, etc.). The WTI maximization can be pursued by the maximization of one or more
of such indexes. The analysis allowed us to conclude that, generally speaking, the H-VAWT
accelerating capability results in being penalized under the condition of rotors of relatively
large diameters installed in moderate to high gusty urban environments. Mitigation of
this setback can be achieved by a specific design approach providing a well-designed
blade spar, leading to a WTI improvement of about 5 times. The accurate characterization
of blade materials and fabrication can further add a gain of about 1.6 times. Besides
high-performing aerodynamics, which is always beneficial, halving the tip speed ratio
leads to a gain of about 2 times. This latter choice should be analyzed under the light of
considerations on turbine control and other aerodynamic issues. Finally, moving from
simple materials, such as wood or aluminum, to composite materials (GFRP or CFRP) will
increase the wind tracking capability from 2 times to 3 times, depending on the original
material adopted. The combination of such design choices is strongly suggested to improve
the performance of small H-VAWTs.

The adoption of variable geometry (blade pitch, and variable diameter) could, in prin-
ciple, be beneficial to alleviate the long idling times of such rotors, but more investigation
is needed in this area in view also of the mechanical complexity and endurance of the blade
pitching mechanism as well as the extensible/collapsible arms or blades.

As a general statement, it is clear that, besides the beneficial effect during the starting
phase (not addressed in the paper), control systems adopting the variable rotational speed
become partly (or totally) ineffective concerning the goal of tracking the optimum power
if the WTI parameter remains below one. This means that the actual rotational speed
history experienced from a VAWT could differ substantially from the one computed in
the design phase. As the fatigue damage depends on the duty cycles accumulated, this
could be eventually considered an explanation of the premature and unexpected failure of
several VAWTs.
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Abbreviations
The following abbreviations are used in this manuscript:

AB blade section area [m2]
AD rotor swept area [m2]
AEP Annual Energy Production
AR rotor aspect ratio H/D
ARA available rotor acceleration [m/s2]
b blade section dimension [m]
c blade chord length [m]
CN blade normal force coefficient [-]
CP power coefficient [-]
CT blade tangent force coefficient [-]
D rotor diameter [m]
E environmental index or parameter
F functional index or parameter
Ff blade aerodynamic bending force [N]
G geometrical index or parameter
H rotor height [m]
HAWT Horizontal Axis Wind Turbine
H-VAWT Straight-blades Vertical Axis Wind Turbine
I’ single blade inertia respect to the axis of rotation [kgm2]
LB blade length [m]
NB number of blades [-]
M material index or parameter
mb blade mass [kg]
Mb blade bending moment [Nm]
kc normal force coefficient magnification factor [-]
K1, K2, K3 numerical constants [-]
Qaero aerodynamic torque [Nm]
Qgen electric generator torque [Nm]
R radius [m]
RRA required rotor acceleration [m/s2]
P performance
t time [s]
V0 initial wind speed [m/s]
V∞ free stream wind speed [m/s]
V̇∞ free stream wind acceleration [m/s2]
VAWT Vertical Axis Wind Turbine
W blade section modulus [m3]
WTI wind tracking index [-]
α constant
β constant
Φ f section strength efficiency
λ tip speed ratio [-] ΩR/V∞
λopt optimum tip speed ratio [-]
Ω angular rotor speed [rad/s]
Ω̇ angular rotor acceleration [rad/s2]
ρa air density [kg/m3]
ρB blade density [kg/m3]
σ rotor solidity [-]
σadm allowable mechanical stress [Pa]
σf material safety factor [-]
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Appendix A. Collection of Data of Commercial and Prototype H-VAWTs

Table A1. VAWT database.

Parameter Unit [27] [47] [48] [48] [48] [48] [48] [48] [49] [50] [51] [6] [52] [53] [54] [16] [55]

Diameter D m 0.6 1.78 3.30 4.60 7.00 8.00 8.50 11.00 2.00 17.70 1.03 25 2.50 1.03 8.00 26 6
Radius R m 0.3 0.89 1.65 2.30 3.50 4.00 4.25 5.50 1 8.85 0.515 12.5 1.25 0.515 4 13 3

Blade length LB m 0.47 2.49 2.20 2.50 5.70 4.30 5.80 12.00 3.46 12.8 1.456 18 3 1 4.8 24 5
Rotor height H m 0.47 3.74 2.20 2.50 5.70 4.30 5.8 12 3 12.8 1.456 18 3 1 2.4 24 5
Swept area AD m2 0.28 4.44 7.26 11.50 39.90 34.40 49.3 132.00 6 227 1.50 450 7.5 1.03 19.2 624 30
Rated power kW - 0.7 3.00 6.00 10.00 20.00 20.00 30 - 45 0.20 130 - - 10 200 12

Rated wind speed m/s 9.75 11.40 14.00 14.00 14.00 14.00 12.36 11.2 13 9 10 11 8 12 12 12 12
Rated rot. speed Ω rpm 620.5 320 144.00 100.00 87.85 60.00 50.00 47.64 372 33.5 200 27 183 - 86 33 127
Rotor inertia NB I′ kg m2 0.1 18 404 1600 5630 12,000 15,800 23,000 - - 1.5 - - - - - -
Blades number NB - 4 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3

Cp max - - 0.32 0.32 0.31 0.338 0.338 0.34 - 0.385 0.3 - 0.3 - 0.475 - - 0.40
Solidity σ - 0.5 0.25 0.745 0.457 0.300 0.263 0.247 0.273 0.173 0.117 0.25 0.100 0.480 - 0.300 0.096 0.374
Rated λ - 2 2.62 1.78 1.72 2.30 1.80 1.80 2.45 3.00 3.45 2.8 3.21 1.6 2.33 3.01 3.74 3
Chord c m 0.075 0.15 0.82 0.70 0.70 0.70 0.70 1.00 0.1 0.69 0.085 1.25 0.40 0.09 0.40 0.83 0.25

I/R2̂ kg - - 49 101 153 250 292 253 - - 8 - - - - - -
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