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Abstract: The proposed work aims to acquire the maximum number of non-linear assemblies with
closer assembly tolerance specifications by mating the different bins’ components. Before that,
the components are classified based on the range of tolerance values and grouped into different
bins. Further, the manufacturing process of the components is selected from the given and known
alternative processes. It is incredibly tedious to obtain the best combinations of bins and the best
process together. Hence, a novel approach using the combination of the univariate search method and
the harmony search algorithm is proposed in this work. Overrunning clutch assembly is taken as an
example. The components of overrunning clutch assembly are manufactured with a wide tolerance
value using the best process selected from the given alternatives by the univariate search method.
Further, the manufactured components are grouped into three to nine bins. A combination of the
best bins is obtained for the various assembly specifications by implementing the harmony search
algorithm. The efficacy of the proposed method is demonstrated by showing 24.9% of cost-savings
while making overrunning clutch assembly compared with the existing method. The efficacy of the
proposed method is demonstrated by showing 24.9% of cost-savings while making overrunning
clutch assembly compared with the existing method. The results show that the contribution of the
proposed novel methodology is legitimate in solving selective assembly problems.

Keywords: selective assembly; overrunning clutch assembly; univariate search method; harmony
search algorithm

1. Introduction

Product quality is the focus of any manufacturing process. In general, two or more
components are assembled to create an assembly. The quality of the assembly depends on
the quality of the components, which affects the product’s functionality. Tolerance plays an
essential role in the component’s quality, deciding the fit between the mating parts. The
components manufactured with closer tolerance make the precise assembly more suitable
for functional requirements. Selective assembly is one of the feasible methods for making
precise assemblies with lower manufacturing costs. The complete elimination or reduction
of secondary operations by forming wide-tolerance components is the reason for lower
manufacturing costs. In selective assembly, the components are grouped as bins based
on the uniform grouping method, the equal probability method, or the uniform tolerance
method, for example. According to the best bin combinations, the precise assemblies
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are made by mating the components randomly selected from the corresponding bins.
Most of the research on linear/radial assembly have mainly focused on minimizing the
objectives, namely, clearance variation or surplus parts. Research works focusing on
non-linear assembly are seldom found. Moreover, in the existing literature, the tolerance
of the components is usually considered for obtaining the best bin combinations rather
than the dimension of components. Since different combinations of bins are possible, this
problem environment can be treated as an NP-hard problem. Selection of process for
making components from the given alternative processes also plays a vital role in further
reducing the product’s manufacturing cost.

2. Related Research

The literature relevant to the proposed work has been categorized as selective assembly
and the harmony search algorithm. The literature related to both topics is detailed below.

2.1. Selective Assembly

Kern (2003) [1] proposed an approach for selecting assembly by considering variations
in the dimensional distributions. Further, the author developed closed-form equations for
the different techniques of selective assembly. Mease et al. (2004) [2] introduced a method
to classify the components into various classes based on the dimensional variations. The
assembly was made by pairing the selected components from the different classes. Further,
the absolute and squared error loss functions were studied to select the optimum method.
Matsuura et al. (2008) [3] explored a method to minimize clearance variation when pairing
the components with less variance for making an assembly. Kwon et al. (2009) [4] studied
the effectiveness of optimal binning strategies based on the squared error loss function by
considering similar normal distributions of the dimensions of two different components.
Matsuura et al. (2011) [5] developed the optimal mean shift to reduce surplus components
while making selective assembly. The equal width concept was used for grouping the
components into different bins. Three shifted means method was used for the fabrication
of components.

Yue et al. (2014) [6] proposed a genetic algorithm to minimize the variation in clearance
while mating the components available in the selective groups to manufacture hole and
shaft assemblies. Babu and Asha (2014) [7] introduced a customized artificial immune
system algorithm for mating the components available in selective groups to minimize
assembly clearance variation. Further, they applied Taguchi’s loss function to identify the
deviation from the mean. The count of selective groups was also one of the important
concerns in the proposed work. Ju and Li (2014) [8] solved selective assembly problems
using a two-stage decomposition procedure. A two-component assembly system with
unreliable Bernoulli machines and limited inventories was considered. The effectiveness of
the proposed method was analyzed analytically.

Xu et al. (2014) [9] applied a new method with the combination of discarding and bin-
ning theorems to minimize the components’ variations while making the selective assembly
of a hard disk drive. The utilization rate of the components was high with regard to the
number of assemblies made using the newly proposed method. Lu and Fei (2015) [10] pro-
posed a grouping method in selective assembly to increase the success rate of manufacturing
the assemblies and reducing the surplus parts. A genetic algorithm with a 2D chromosome
structure was used for this purpose. The effectiveness of the proposed method was studied
based on solving three different cases. Manickam and De (2015) [11] developed a genetic
algorithm to identify the better combination of groups containing the components to create
the maximum number of assemblies with less total cost. The small number of components
with wider tolerance was made available in the individual groups. This was the uniqueness
of the presented work. The model was developed using MATLAB software.

Babu and Asha (2015) [12] evaluated the losses in making assemblies by applying
the symmetrical interval-based Taguchi loss function. Further, the dual objectives, namely,
minimum clearance variation and minimum losses in making assemblies, were considered
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to identify the better combination of the parts’ groups using the sheep flock heredity
algorithm. Ju et al. (2016) [13] studied the performance of the selective assembly system
using Bernoulli machine reliability models. For this study, the assemblies made through
two components with different qualities were considered. The two-stage decomposition
procedure was applied to evaluate the effectiveness of the proposed models analytically.
Malaichamy et al. (2016A) [14] developed software capable of applying all kinds of selective
assembly methods to identify suitable solutions with the least possible time. For instance,
equal area and width methods were used to minimize variation and scrap in selective
assembly. The random assembly method was inbuilt in the software to select the best
method for minimizing the manufacturing cost of the assembly. Since the software was
developed using an optional programming language, changes to the input data were
extremely easy, and, in no time, the result could be viewed graphically.

Malaichamy et al. (2016B) [15] introduced a software approach to help engineers to
visualize the tolerance cost curve for a given process or a good combination of processes in
no time. The tolerance cost was calculated using the reciprocal power cost model. The best
process could be selected in this work from the given alternative processes for the known
tolerance value. A simulated annealing algorithm was implemented to compute the best
bin number and its combinations with almost nil surplus parts for the given dimensional
distribution of components of a shaft housing assembly. Compared with random assembly,
a good number of surplus parts were reduced by implementing an equal width selective
assembly method. Liu and Liu (2017) [16] discussed the remanufacturing of the engine
through the selective assembly concept. Remanufacturing is a sustainable strategy in which
the group numbers and range of components in each group are not kept constant. The
assembly accuracy was greatly increased using the proposed strategy. Chu et al. (2018) [17]
developed a method for manufacturing gear reducers using a novel strategy called GA-
based selective assembly. The backlash of the gear reducer was the major concern in this
work to verify the meeting of assembly requirements.

2.2. Harmony Search Algorithm

Geem et al. (2001) [18] described the harmony search optimization algorithm’s fea-
tures, robustness, simplicity, and search efficiency in solving engineering problems. Geem
et al. (2002) [19] proposed a harmony search optimization algorithm to solve the prob-
lems associated with pipe network design. Lee and Geem (2004) [20] described a novel
structural optimization algorithm using the harmony search method. The effectiveness of
the proposed algorithm was verified by identifying the solutions to different truss prob-
lems. Lee and Geem (2005) [21] solved different engineering optimization problems that
included minimizing mathematical functions and optimizing structural problems using a
harmonic-search-based method. Flow demand and low head were considered objectives in
this work. Wang et al. (2009) [22] analyzed the harmony search algorithm’s effectiveness
with the colonal selection algorithm. The colonal search method was used to increase the
harmony memory members in the harmony search method.

From the literature survey, it is clear that research works have been very limited in
the manufacturing of non-linear assemblies with a closer assembly tolerance specification.
Further, the usage of the harmony search algorithm for solving selective assembly problems
is seldom found. The problem environment is discussed in the next section.

3. Problem Environment

In selective assembly, parts are manufactured with wider tolerance, measured, and
partitioned into groups, and assemblies are made by assembling the components within
the random combination of groups. Manufacturing tolerance, assembly specification, and
the number of groups are the three main factors that play important roles in controlling
surplus parts that affect the product’s manufacturing cost. After parts are manufactured, it
is tedious to obtain the best combination of groups for different assembly specifications. It
is laborious work to compute the numbers of closer assembly for each bin number from
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the manufactured components. Alternative process selection for making components also
makes the problem highly complicated. The problems described above are challenging
to process/design engineers and reduce implementation in real situations. Moreover,
the components involved in making a non-linear assembly require the individual mating
of dimensions for each assembly. Compared to making linear assembly, this required
additional computation effort is tedious.

4. Solution Methodology

The proposed problem environment can be solved in three stages. In the first stage,
the best process for manufacturing each component of an assembly is obtained from the al-
ternative processes using the univariate search method. In the second stage, 1000 simulated
dimensions of each component are generated using MATLAB for the different combina-
tions of alternative processes obtained from the first stage. Further, the components are
partitioned into different bin numbers according to the equal area method, which is one
of the techniques used in the selective assembly method. In the last stage, the harmony
search algorithm is implemented to obtain the best bin combinations. Then, the non-linear
assemblies are made by mating the components according to the best bin combinations
with almost nil surplus parts. To show the effectiveness of the proposed method, the
manufacturing cost of assemblies made both from the random assembly [23] and selective
assembly are compared. This three-stage approach is explained in a detailed way in the
numerical illustration section.

5. Numerical Illustration

Overrunning clutch assembly (OCA), dealt with by Ganesan et al. (2001) [23], shown
in Figure 1, is considered an example product to show the efficiency of the proposed
method. It consists of a hub, four rollers, and a cage. The nominal dimensions and their
allocated tolerance; the minimum, maximum process tolerances; and the tolerance cost
function constants of alternative processes of each component are listed in Table 1. The
critical dimension Y is determined using Equation (1), and the accepted value of Y is
assumed to be 7.0124 ± 2◦. Equation (2) represents the reciprocal tolerance cost function
to calculate the component’s tolerance cost. The cost function constants are taken from
Ganesan et al. (2001) [23]. The cost of assembly based on allocated and maximum process
tolerances is computed using Equations (3) and (4), respectively, and listed in Table 2.
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where
X1 —Dimension of the hub in mm
X2 and X3 —Dimension of the rollers in mm
X4 —Dimension of the cage in mm
Y —Critical dimension in degrees
Ai —Fixed cost of the ith component in $
Bi —Cost function constants of the ith component
ti —ith component’s tolerance in mm
Ci —Cost of the ith component in $
tai, tmi —ith component’s allocated and maximum tolerance in mm
Ca, Cm —Cost of assembly in $ based on tai and tmin
nc —Number of components
i —Component number index

Table 1. Manufacturing details of overrunning clutch assembly.

C.No.
Nominal

Dimension
(Di) (mm)

tai
(mm) Ps P.No. Ai Bi tmin (mm) tmax (mm)

X1 55.29 0.179806 3
P1 10.0 0.015 0.015 0.08

P2 5.0 0.500 0.060 0.15

P3 3.5 0.750 0.120 0.25

X2 22.86 0.165358 2
P1 8.0 0.250 0.020 0.15

P2 3.0 0.650 0.080 0.30

X3 22.86 0.120132 1
P1 2.5 0.300 0.040 0.20

P2 5.0 0.045 0.120 0.25

X4 101.69 0.200581 3
P1 4.0 0.560 0.080 0.12

P2 6.0 0.160 0.150 0.25

P3 0.5 0.880 0.200 0.40

C.No.—component name; P.No.—process number.

Table 2. Manufacturing cost of overrunning clutch assembly for tai, tmin, and tmax.

C.No. Cai ($) P.No. Cmin ($) Cmax ($)

X1 7.67
P1 11.00 10.19

P2 13.33 8.33

P3 9.75 6.50

X2 6.93
P1 20.50 9.67

P2 11.13 5.17

X3 5.00
P1 10.00 4.00

P2 5.38 5.18

X4 4.89
P1 11.00 8.67

P2 7.07 6.64

P3 4.90 2.70
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5.1. Stage I

The selection of the best process for each component from the given alternative
processes using the univariate search method is illustrated in Figure 2. It is understood
from Figure 2 that the minimum manufacturing cost of $18.37 can be achieved through
making the components X1, X2, X3, and X4 using process combinations (3213) P3, P2, P1,
and P3, respectively, which is nearly 24.98% less compared with the $24.49 reported in
the existing method dealt by Ganesan et al. (2001). It is also understood that the process
combinations of 2213 and 1213 for components X1, X2, X3, and X4, respectively, can yield
17.52% and 9.92% savings in manufacturing cost. However, in a real situation, the savings
may vary slightly because of surplus parts present in the selective assembly method.
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is produced by the P1 process; TC1113 = $26.56 indicates that components X1, X2, X3, and X4 are manufactured using
processes P1, P1, P1, and P3, respectively, and the total cost to manufacture the same will be $26.56.

5.2. Stage II

As discussed in Section 4, 1000 random values have been generated for each com-
ponent according to the mean (µi) and standard deviation (σi) presented in Table 3. The
dimensional distribution of 1000 components of X1, X2, X3, and X4 was generated using
the normrnd (C.No.) function in MATLAB.
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Table 3. Mean and standard deviation of components for different process combinations.

C.No. µi (mm)
PC1–1213 PC2–2213 PC3–3213

P.No. tmi (mm) σi = tmi/3 P.No. tmi (mm) σi = tmi/3 P.No. tmi (mm) σi = tmi/3

X1 55.29 P1 0.08 0.02667 P2 0.15 0.05 P3 0.25 0.08333
X2 22.86 P2 0.3 0.1 P2 0.3 0.1 P2 0.3 0.1
X3 22.86 P1 0.25 0.08333 P1 0.25 0.08333 P1 0.25 0.08333
X4 101.69 P3 0.4 0.13333 P3 0.4 0.13333 P3 0.4 0.13333

P.No.—process number; PC1—1st process combinations for components X1, X2, X3, and X4; µi—mean dimension of the components;
tmi—tolerance of the ith component; σi—standard deviation of the ith component.

5.3. Stage III—Implementation of HSA

The harmony search algorithm (HSA) is a meta-heuristic algorithm, and it works based
on the identification of good harmony by musicians through a continuous improvisation
process. The HSA has the following advantages: (i) quick convergence, (ii) easy to adapt,
and (iii) the least computational time. Further, from the literature survey, it is observed
that the HSA has outperformed in solving complex optimization problems. Hence, the
HSA has been used in this work. Table 4 presents the different terms used in the HSA, its
equivalent term in both optimization problems and the present work formulation, and its
range of values and examples. The schematic diagram shown in Figure 3 illustrates the
implementation of the HSA to obtain the best bin combinations. The technical terms and
their meanings used in Figure 3 are presented in Table 5. For demonstration purposes, the
components are partitioned into five bins. The step-by-step procedure is given below.

Table 4. Representation of variables in HSA.

HSA Parameters
Equivalent Term in

Optimization
Problem

Equivalent Term in
Present Work Example

Musical Instrument Decision Variable No. of components X1, X2, X3, and X4
Pitch Range Value Range Number of bins 5

Harmony A Solution Vector A combination of bins
for each component

(X1) 13245
(X2) 43251
(X3) 42135
(X4) 52143

Aesthetics Objective Function Number of accepted
assemblies 985

Practice Iteration No. of iterations 150

Experience Memory Matrix Storing of the best
solution

Harmony Memory
Size

Size of Solution
Vector

No. of initial
solutions 20

HMCR
(0.7–0.99)

Harmony Memory
Considering Rate 0.7 0.7

PAR Pitch Adjusting Rate 0.3 0.3
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Table 5. Technical terms and their meanings.

Terms Meaning

Trimming Remove the components which do not satisfy LLi ≤ di ≤ ULi

Partitioning Arranging the components in ascending order based on its di and placing an
equal number of components in each bin starting from bin number 1 to nb

Mating

Selecting one component (X1, X2, X3, and X4) randomly from the bin based on
the bin combination of cbi and making an assembly. Check the assembly’s

specification (within LSL and USL); if it meets the requirement, then treat it as
good assembly (NoA); otherwise, treat it as a surplus part

normrnd Matlab function will generate the required number of normally distributed
random numbers based on the given mean and standard deviation value

randperm (nb) Matlab function will generate a permutation combination for the given bin
number nb

Step 1: A random combination of bins for each component for the size of harmony mem-
ory 10 is generated (listed in Table 6).

Step 2: The corresponding bin’s components are randomly matched with other compo-
nents for each harmony number, and the assembly is produced. If the assembly meets
the given specification limit, it is accepted as an assembly; otherwise, it is treated as
a surplus part. This will be carried out until the component exists in each bin. The
accepted assemblies are counted and listed in Table 6 as NoA.

Step 3: Table 7 represents the arrangements of harmony, from maximum NoA to minimum
NoA. Table 8 illustrates the best bin combination that will produce maximum NoA in
the first iteration.

Table 6. Initial harmony memory.

H.No.(k) cbX1 cbX2 cbX3 cbX4 NoAk

1 2 5 1 4 3 2 5 3 1 4 5 3 4 1 2 3 1 2 4 5 308
2 4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649
3 4 2 1 5 3 1 5 2 3 4 3 4 2 5 1 3 1 5 4 2 407
4 4 3 1 5 2 3 2 4 5 1 5 2 3 4 1 3 5 2 4 1 508
5 1 5 4 3 2 1 3 4 5 2 3 2 4 5 1 2 4 1 3 5 326
6 2 1 3 4 5 3 2 4 5 1 3 1 5 2 4 3 5 2 4 1 557
7 5 2 3 1 4 2 5 3 1 4 1 2 3 4 5 1 5 4 2 3 354
8 1 2 4 3 5 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 397
9 2 3 1 4 5 3 1 2 5 4 2 5 1 4 3 5 4 2 1 3 212

10 4 3 1 2 5 4 5 3 2 1 3 2 1 4 5 3 2 4 5 1 458
H.No.—harmony numbers; cbX1, cbX2, cbX3, and cbX4 are the combinations of bins for X1, X2, X3, and X4
components.

Table 7. Harmonies after sorting based on NoA.

H.No.(k) cbX1 cbX2 cbX3 cbX4 NoAk

1 4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649
2 2 1 3 4 5 3 2 4 5 1 3 1 5 2 4 3 5 2 4 1 557
3 4 3 1 5 2 3 2 4 5 1 5 2 3 4 1 3 5 2 4 1 508
4 4 3 1 2 5 4 5 3 2 1 3 2 1 4 5 3 2 4 5 1 458
5 4 2 1 5 3 1 5 2 3 4 3 4 2 5 1 3 1 5 4 2 407
6 1 2 4 3 5 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 397
7 5 2 3 1 4 2 5 3 1 4 1 2 3 4 5 1 5 4 2 3 354
8 1 5 4 3 2 1 3 4 5 2 3 2 4 5 1 2 4 1 3 5 326
9 2 5 1 4 3 2 5 3 1 4 5 3 4 1 2 3 1 2 4 5 308

10 2 3 1 4 5 3 1 2 5 4 2 5 1 4 3 5 4 2 1 3 212
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Table 8. Best combination of bins for the first iteration.

bcbitr
NoAitr

cbX1 cbX2 cbX3 cbX4

4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649

Step 4: A random number less than 1 is generated for each component of each harmony
number (presented in Table 9 as RHMCR).

Step 5: If this number is less than or equal to HMCR, then a random number between
1 and HMS (rcb) is generated, and others are assumed to be zero. This is presented
in Table 9.

Table 9. RHMCR and rcb values.

H.No.
RHMCR rcb

X1 X2 X3 X4 rcbX1 rcbX2 rcbX3 rcbX4

1 0.0697 0.6581 0.1267 0.0176 1 6 7 7
2 0.1398 0.9349 0.9424 0.3936 8 0 0 1
3 0.4975 0.3145 0.218 0.8001 1 9 3 0
4 0.0639 0.7984 0.1875 0.442 7 0 3 4
5 0.9388 0.0765 0.605 0.1321 0 8 1 1
6 0.2711 0.4453 0.7794 0.9148 9 3 0 0
7 0.6946 0.413 0.216 0.0049 1 6 6 1
8 0.0204 0.9048 0.0267 0.7212 1 0 8 0
9 0.0013 0.4189 0.1216 0.8414 1 6 1 0
10 0.6254 0.8232 0.0301 0.6189 2 0 8 7

RHMCR—a random number decides either to accept or not accept the selection of the existing tune/bin combina-
tion of components for improvisation; rcb—a random number generated between 1 and hms for each variable.

Step 6: The cbX1, cbX2, cbX3, and cbX4 values corresponding to rcbX1, rcbX2, rcbX, and rcbX4
are taken from Table 6 and listed in Table 10. If the value of rcb is zero, then the
corresponding harmony’s cbx value is considered.

Table 10. Harmony after HMCR.

H.No.(k) cbX1 cbX2 cbX3 cbX4

1′ 4 2 1 5 3 1 3 5 2 4 1 2 3 4 5 1 5 4 2 3
2′ 1 5 4 3 2 3 2 4 5 1 3 1 5 2 4 5 3 4 2 1
3′ 4 2 1 5 3 2 5 3 1 4 5 2 3 4 1 3 5 2 4 1
4′ 5 2 3 1 4 4 5 3 2 1 5 2 3 4 1 3 2 4 5 1
5′ 4 2 1 5 3 1 3 4 5 2 4 2 5 3 1 5 3 4 2 1
6′ 2 5 1 4 3 3 2 4 5 1 5 2 4 3 1 5 3 4 2 1
7′ 4 2 1 5 3 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1
8′ 4 2 1 5 3 1 3 4 5 2 3 2 4 5 1 2 4 1 3 5
9′ 4 2 1 5 3 1 3 5 2 4 4 2 5 3 1 3 1 2 4 5

10′ 2 1 3 4 5 3 2 4 5 1 3 2 4 5 1 1 5 4 2 3

Step 7: A random number (RPAR) less than 1 is generated for each value of RHMCR,
which is not equal to zero and is less than the HMCR value (listed in Table 11).

Step 8: Two random numbers, r1 and r2, within bin numbers, are generated for each value
of RPAR, which is not equal to zero (presented in Table 11).

Step 9: New harmony, i.e., cbX1, cbX2, cbX3, and cbX4, is obtained wherever the bin is
located within their bin combinations, according to r1 and r2 (presented in Table 12).

Step 10: Then, NoAs are obtained by mating the components randomly corresponding to
the bin combinations given in cbX1, cbX2, cbX3, and cbX4 (listed in Table 12).

Step 11:The selection and selected harmonies for the next iteration are presented in
Tables 13 and 14.

Step 12: The steps from 4 to 11 are repeated to the specified number of iterations.
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Step 13: The above steps, from 1 to 12, can be repeated for various bin numbers, starting
from 3 to 9. Figures 4 and 5 represent the iteration number vs. NoA and the number
of bin vs. NoA for various bin numbers.

Step 14: By changing the product specification, starting from ±0.25◦ to ±2◦, the above
steps from 1 to 13 can be repeated.

Table 11. RPAR, r1, and r2 values.

H.No.
RPAR r1 r2

X1 X2 X3 X4 r1X1 r1X2 r1X3 r1X4 r2X1 r2X2 r2X3 r2X4

1′ 0.0917 0.0738 0.4457 0.8808 3 1 0 0 1 2 0 0
2′ 0.2529 0 0 0.6409 1 0 0 0 3 0 0 0
3′ 0.5235 0.009 0.344 0 0 1 0 0 0 4 0 0
4′ 0.6034 0 0.3208 0.6256 0 0 0 0 0 0 0 0
5′ 0 0.1307 0.599 0.4411 0 2 0 0 0 2 0 0
6′ 0.5166 0.4696 0 0 0 0 0 0 0 0 0 0
7′ 0.5402 0.5435 0.8627 0.7751 0 0 0 0 0 0 0 0
8′ 0.3204 0 0.7643 0 0 0 0 0 0 0 0 0
9′ 0.1678 0.277 0.0321 0 1 3 1 0 3 3 3 0

10′ 0.2417 0 0.8962 0.4639 4 0 0 0 1 0 0 0
RPAR—a random number decides the pitch adjustment (interchanging bin numbers within the component);
r1 and r2—two random numbers within the bin number (nb) to interchange the bin number to generate a new bin
combination for a component.

Table 12. Harmony after HMCR and PAR.

H.No.
After HMCR and PAR

NoA
cb1X1 cb1X2 cb1X3 cb1X4

1′ 1 2 4 5 3 3 1 5 2 4 1 2 3 4 5 1 5 4 2 3 709
2′ 4 5 1 3 2 2 5 4 3 1 4 1 5 3 2 5 3 4 2 1 608
3′ 4 2 1 5 3 1 5 3 2 4 5 2 3 4 1 3 4 1 5 2 671
4′ 5 2 3 1 4 1 5 2 3 4 5 2 3 4 1 3 2 4 5 1 555
5′ 2 1 5 3 4 1 3 4 5 2 4 2 5 3 1 5 3 4 2 1 503
6′ 2 5 1 4 3 3 2 4 5 1 2 1 5 4 3 1 3 5 2 4 312
7′ 4 2 1 5 3 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 519
8′ 4 2 1 5 3 2 4 5 3 1 3 2 4 5 1 5 3 4 2 1 404
9′ 1 2 4 5 3 1 3 5 2 4 5 2 4 3 1 3 2 5 1 4 460

10′ 4 1 3 2 5 1 4 3 5 2 3 2 4 5 1 1 5 4 2 3 549

Table 13. Selection of harmonies for next iteration.

Before Sorting After Sorting
SHMNo.

HMNo. NoA HMNo. NoA

1 649 1′ 709 1”
2 557 2′ 671 2”
3 508 1 649 3”
4 458 3′ 608 4”
5 407 2 557 5”
6 397 4′ 555 6”
7 354 5′ 549 7”
8 326 6′ 519 8”
9 308 3 508 9”
10 212 7′ 503 10”
1′ 709 8′ 460 NS
2′ 671 4 458 NS
3′ 608 5 407 NS
4′ 555 9′ 404 NS
5′ 549 6 397 NS
6′ 519 7 354 NS
7′ 503 8 326 NS
8′ 460 10′ 312 NS
9′ 404 9 308 NS

10′ 312 10 212 NS
NS—not selected; SHMNo.—selected harmonies for next iteration.
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Table 14. Selected harmonies for next iteration.

IHMno HMNo X1 X2 X3 X4 NoA

1′′ 1′ 1 2 4 5 3 3 1 5 2 4 1 2 3 4 5 1 5 4 2 3 709
2′′ 2′ 4 2 1 5 3 1 5 3 2 4 5 2 3 4 1 3 4 1 5 2 671
3′′ 1 4 2 1 5 3 4 2 5 1 3 4 2 5 3 1 5 3 4 2 1 649
4′′ 3′ 4 5 1 3 2 2 5 4 3 1 4 1 5 3 2 5 3 4 2 1 608
5′′ 2 2 1 3 4 5 3 2 4 5 1 3 1 5 2 4 3 5 2 4 1 557
6′′ 4′ 5 2 3 1 4 1 5 2 3 4 5 2 3 4 1 3 2 4 5 1 555
7′′ 5′ 4 1 3 2 5 1 4 3 5 2 3 2 4 5 1 1 5 4 2 3 549
8′′ 6′ 4 2 1 5 3 1 3 5 2 4 5 2 4 3 1 5 3 4 2 1 519
9′′ 3 4 3 1 5 2 3 2 4 5 1 5 2 3 4 1 3 5 2 4 1 508
10′′ 7′ 2 1 5 3 4 1 3 4 5 2 4 2 5 3 1 5 3 4 2 1 503
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6. Results and Discussion

An attempt has been made to make assemblies by considering the number of bins/
partitions, up to 9. Figure 6 reveals that in the equal area method for making non-linear
assemblies, it is possible to make 996 assemblies out of 1000 components by partitioning
them into 3 bins for the assembly specification of ±2◦. It is also understood that while
increasing the partition number, there may be a 5.8% (938 assemblies) drop in producing the
number of assemblies for the same assembly specification. In the meantime, the number of
assemblies is reduced for the same 1000 components of X1, X2, X3, and X4 while reducing
the assembly specification for the same partition number (equal to 3). The assemblies are
reduced from 996 to 392 for the assembly specification of ±2◦ to ±0.5◦.
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Figures 7–9 represent the number of assemblies produced for various assembly specifi-
cations while changing the partition number for the same set of 1000 components produced
based on process combination 3213. A similarity can be observed from the above figures.
Except in three bin partitions, all other partitions of components and matching components
according to the best bin combinations obtained through the HSA produced almost a very
close number of assemblies for various assembly specifications. Figure 10 indicates that
maximum assemblies are produced for various assembly specifications and process com-
binations while partitioning the components into three bins. The assembly specification
value after ±1◦ in all the process combinations could produce an almost equal number of
assemblies for bin number three. Table 15 represents the best bin combinations and their
maximum number of assemblies for various process combinations.
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Table 15. Best bin combinations for various assembly specifications and process combinations.

AS
PC3–3213 PC2–2213 PC1–1213

X1 X2 X3 X4 NoA X1 X2 X3 X4 NoA X1 X2 X3 X4 NoA

±0.5◦ 1 2 3 2 3 1 2 3 1 1 3 2 674 3 2 1 1 2 3 2 3 1 1 2 3 658 2 1 3 3 2 1 3 1 2 3 1 2 681
±1◦ 1 2 3 3 2 1 2 3 1 2 3 1 967 1 3 2 3 1 2 2 1 3 2 1 3 985 2 1 3 2 1 3 3 2 1 3 1 2 994
±1.5◦ 1 2 3 3 2 1 2 3 1 2 3 1 996 2 1 3 2 3 1 2 3 1 2 3 1 996 2 1 3 3 2 1 3 2 1 3 2 1 999
±2◦ 1 3 2 2 1 3 2 3 1 1 3 2 996 2 1 3 1 2 3 3 2 1 2 1 3 996 1 3 2 1 3 2 1 3 2 1 3 2 999

AS—assembly specification.

7. Conclusions

This paper addresses a novel methodology by combining the univariate search method
and the harmony search algorithm in selective assembly for making non-linear assemblies
for various assembly specifications. The best processes for the different components of the
assembly are selected from the known alternative processes using the univariate search
method, and these components are grouped into 3 to 9 bins. Further, the best bin combina-
tions for making assemblies to reduce manufacturing cost are obtained through the harmony
search algorithm. In this work, the component’s dimensions are directly considered for
making assemblies from the best bin combinations rather than considering tolerances, as
in the existing method. The proposed method is demonstrated on a non-linear overrun-
ning clutch assembly and has proved its efficiency by saving 24.9% of manufacturing cost
compared with the existing method for the best process combination of 3213.
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