
applied  
sciences

Article

Visual-Saliency-Based Abnormality Detection for MRI Brain
Images—Alzheimer’s Disease Analysis

A. Diana Andrushia 1 , K. Martin Sagayam 1, Hien Dang 2,3,* , Marc Pomplun 3 and Lien Quach 4

����������
�������

Citation: Andrushia, A.D.;

Sagayam, K.M.; Dang, H.;

Pomplun, M.; Quach, L.

Visual-Saliency-Based Abnormality

Detection for MRI Brain

Images—Alzheimer’s Disease

Analysis. Appl. Sci. 2021, 11, 9199.

https://doi.org/10.3390/

app11199199

Academic Editors: Cecilia Di Ruberto,

Alessandro Stefano, Albert Comelli,

Andrea Loddo and Lorenzo Putzu

Received: 18 August 2021

Accepted: 29 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electronics and Communication Engineering, Karunya Institute of Science and Technology,
Coimbatore 641114, India; andrushia@gmail.com (A.D.A.); martinsagayam.k@gmail.com (K.M.S.)

2 Faculty of Computer Science and Engineering, Thuyloi University, Hanoi 100000, Vietnam
3 Department of Computer Science, University of Massachusetts, Boston, MA 02125, USA;

marc.pomplun@umb.edu
4 Providence VA Medical Center, Providence, RI 02908, USA; lien.quach@va.gov
* Correspondence: hiendt@tlu.edu.vn

Abstract: In recent years, medical image analysis has played a vital role in detecting diseases in
their early stages. Medical images are rapidly becoming available for various applications to solve
human problems. Therefore, complex medical features are needed to develop a diagnostic system
for physicians to provide better treatment. Traditional methods of abnormality detection suffer
from misidentification of abnormal regions in the given data. Visual-saliency detection methods are
used to locate abnormalities to improve the accuracy of the proposed work. This study explores the
role of a visual saliency map in the classification of Alzheimer’s disease (AD). Bottom-up saliency
corresponds to image features, whereas top-down saliency uses domain knowledge in magnetic
resonance imaging (MRI) brain images. The novelty of the proposed method lies in the use of an
elliptical local binary pattern descriptor for low-level MRI characterization. Ellipse-like topologies
help to obtain feature information from different orientations. Extensively directional features at
different orientations cover the micro patterns. The brain regions of the Alzheimer’s disease stages
were classified from the saliency maps. Multiple-kernel learning (MKL) and simple and efficient MKL
(SEMKL) were used to classify Alzheimer’s disease from normal controls. The proposed method used
the OASIS dataset and experimental results were compared with eight state-of-the-art methods. The
proposed visual saliency-based abnormality detection produces reliable results in terms of accuracy,
sensitivity, specificity, and f-measure.

Keywords: visual saliency; MRI brain images; classification; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD) is the most common cause of progressive dementia in
older adults [1]. AD can present as mental disorder, memory loss, language problem, or
unpredictable behaviors. It occurs due to the death of neurons in different parts of the
brain, and then throughout all of the areas of the brain at the final stage of AD. Brain tissue
shrinks significantly. This disease generally occurs in older patients at an average age
of 65 years and varies from individual to individual [2]. AD is not yet curable. Disease
severity can increase for ten years after the diagnosis. The causes and reasons for the
disease are still unknown to the medical community. Current treatment methods help
manage symptoms in patients with AD. However, no treatment is available to completely
cure the disease even though several medicines have been approved and tested recently.

Worldwide, more than 44 million people suffer from AD. This number will increase
to more than 76 million by 2030 [3]. To diagnose Alzheimer’s disease in its early stages,
proper medical images need to be studied.

Positron emission tomography (PET) magnetic resonance imaging (MRI), structural
magnetic resonance imaging (SMRI), functional MRI (fMRI), and diffusion tensor imaging
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can indicate the biomarkers for human neuroimaging data [4–7]. MRI is fully non-invasive
and is available worldwide. The mini-mental state examination (MMSE) is conducted by
physicians to determine the impairment of patients with Alzheimer’s disease [8]. However,
as part of automatic detection, image-based analysis is needed to correctly classify the
stages of AD. MRI images clearly show the soft tissues of the brain. The temporal and
parietal lobes of the brain can be seen clearly visualized on MRI. Changes in these lobes
result in cognitive impairments in humans. The physician’s diagnosis is fully based on
visual observation of the MRI. Interpretation of the MRI may vary from person to person.
Therefore, an automatic diagnosis system is needed to assist physicians in making correct
decisions about the disease. Most studies on Alzheimer’s disease have used MRI images
for analysis. In these four proposed methods, MRI images were used for Alzheimer’s
disease analysis. Figure 1 shows MRI images of a healthy person and a person suffering
from dementia.
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Several classification methods for AD have recently been reported. Calhoun et al. and
Guo et al. reviewed Alzheimer’s disease classification based on MRI data [9,10]. Joint
regression and classification [11] and weighted multi-modality-based classification [12]
are mainly used to classify the disease. Two sets of strategies were applied in the brain
morphometric analysis. Voxel-based morphometry and deformation-based morphometry
are the two approaches currently used by the research community. In addition, machine-
learning methods are used for the classification of Alzheimer’s disease [13]. Support vector
machine (SVM)-based Alzheimer’s disease classification is mainly used by researchers.
In this method, the SVM extracts high-dimensional features from MRI data and builds
classification models to classify the disease. However, it mainly relies on the manual
outlining of brain structures [14].

Lattice-independent component analysis and dendritic computing classifiers are used
to perform MRI image classification of Alzheimer’s patients and normal patients [15]. Bi-
nary classifiers and single-neuron lattice models are used to perform the classification [16].
Initially, the disease-related features in the brain images are extracted by voxel morphome-
try analysis, and then a manifold-based semi-supervised learning framework is used to
classify the disease [17]. Gray-level histogram-based MRI classification are also performed
to identify anatomical changes in the hippocampus and thalamus regions [18].

Recently, deep-learning-based methods have been developed in the areas of computer
vision, image understanding, natural language processing, etc. Deep-learning methods
have also been used in medical image analyses. Prior feature selection is not required, and
the input data can be optimally inferred [19]. This is one of the significant differences be-
tween deep-learning-based methods and other state-of-the-art machine learning methods.

In addition, visual saliency-based methods have recently been used for the analysis
and classification of Alzheimer’s disease. Visual saliency maps play a vital role in the
fields of computer vision and cognitive science. Automatic image analysis methods were
inspired by researchers because the visual perception of radiologists was utilized by the
saliency map to extract relevant disease regions [20]. Many algorithms and methods have
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been developed for visual saliency detection. Important and unimportant regions are seg-
regated to perform image compression [21], segmentation [22], etc. By incorporating visual
saliency analysis, the overall performance of the system is high with respect to performance
metrics [23]. Many neurodegenerative diseases have very challenging image patterns that
are not captured by region of interest (ROI) calculations and are time-consuming. The dis-
crimination between mild and severe AD is challenging in the automatic diagnosis process.

In general, AD analysis is carried out with respect to the two datasets, ADNI and
OASIS. Many literature reviews have been conducted on MRI image analysis for both
datasets. The proposed method used the OASIS dataset for the experimental investi-
gation. Alzheimer’s disease classification methods depend on personal clinical and de-
mographic data. Four categories were used to analyze the AD classification using the
proposed method.

The proposed method highlights the importance of saliency maps in AD analysis.
Initially, the input MRI images were preprocessed using a statistical parametric mapping
tool. Multiscale decomposition was performed using a wavelet transform. Wavelet de-
composition was performed to obtain the essential features for saliency-map generation.
Bottom-up and top-down saliency maps were obtained to obtain the final saliency map.
Bottom-up saliency depends on the image features of the MRI. It is computed using the
edge, texture, and orientation characteristics of the MRI images. An elliptical local binary
pattern descriptor was leveraged to find low-level orientation characteristics. Top-down
saliency uses the domain knowledge of the input.

Simple multiple-kernel learning (MKL) and simple and efficient MKL(SEMKL) were
utilized to classify Alzheimer’s disease and normal patients. The experimental results
showed reliable results in the performance metrics of accuracy, sensitivity, specificity,
and f-measure. The results were compared with eight state-of-the-art methods that used
the OASIS dataset for experimental analysis. The novelty of the proposed method lies
in the use of an elliptical local binary pattern descriptor in the bottom-up saliency and
usage of MKL and SEMKL for Alzheimer’s disease classification. Section 2 presents the
proposed methodology, and this subsection presents the bottom-up and top-down saliency
maps in detail. Section 3 presents the experimental results, performance metrics, and
comparisons. Section 4 presents a discussion of the proposed method. The final section
concludes the paper.

2. Proposed Methodology

A block diagram of the proposed method is shown in Figure 2. The major steps of
the framework are wavelet decomposition, saliency map generation, and Alzheimer’s
disease classification.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 16 
 

 

In addition, visual saliency-based methods have recently been used for the analysis 

and classification of Alzheimer’s disease. Visual saliency maps play a vital role in the 

fields of computer vision and cognitive science. Automatic image analysis methods were 

inspired by researchers because the visual perception of radiologists was utilized by the 

saliency map to extract relevant disease regions [20]. Many algorithms and methods have 

been developed for visual saliency detection. Important and unimportant regions are seg-

regated to perform image compression [21], segmentation [22], etc. By incorporating vis-

ual saliency analysis, the overall performance of the system is high with respect to perfor-

mance metrics [23]. Many neurodegenerative diseases have very challenging image pat-

terns that are not captured by region of interest (ROI) calculations and are time-consum-

ing. The discrimination between mild and severe AD is challenging in the automatic di-

agnosis process. 

In general, AD analysis is carried out with respect to the two datasets, ADNI and 

OASIS. Many literature reviews have been conducted on MRI image analysis for both 

datasets. The proposed method used the OASIS dataset for the experimental investiga-

tion. Alzheimer’s disease classification methods depend on personal clinical and demo-

graphic data. Four categories were used to analyze the AD classification using the pro-

posed method. 

The proposed method highlights the importance of saliency maps in AD analysis. 

Initially, the input MRI images were preprocessed using a statistical parametric mapping 

tool. Multiscale decomposition was performed using a wavelet transform. Wavelet de-

composition was performed to obtain the essential features for saliency-map generation. 

Bottom-up and top-down saliency maps were obtained to obtain the final saliency map. 

Bottom-up saliency depends on the image features of the MRI. It is computed using the 

edge, texture, and orientation characteristics of the MRI images. An elliptical local binary 

pattern descriptor was leveraged to find low-level orientation characteristics. Top-down 

saliency uses the domain knowledge of the input. 

Simple multiple-kernel learning (MKL) and simple and efficient MKL(SEMKL) were 

utilized to classify Alzheimer’s disease and normal patients. The experimental results 

showed reliable results in the performance metrics of accuracy, sensitivity, specificity, and 

f-measure. The results were compared with eight state-of-the-art methods that used the 

OASIS dataset for experimental analysis. The novelty of the proposed method lies in the 

use of an elliptical local binary pattern descriptor in the bottom-up saliency and usage of 

MKL and SEMKL for Alzheimer’s disease classification. Section 2 presents the proposed 

methodology, and this subsection presents the bottom-up and top-down saliency maps in 

detail. Section 3 presents the experimental results, performance metrics, and comparisons. 

Section 4 presents a discussion of the proposed method. The final section concludes the 

paper. 

2. Proposed Methodology 

A block diagram of the proposed method is shown in Figure 2. The major steps of 

the framework are wavelet decomposition, saliency map generation, and Alzheimer’s dis-

ease classification. 

 

Figure 2. Block diagram of proposed visual saliency-based AD classification. Figure 2. Block diagram of proposed visual saliency-based AD classification.

Figure 2 shows an overall block diagram of the proposed visual saliency-based
Alzheimer’s disease classification. The proposed system framework consists of two impor-
tant sections—saliency map generation and AD classification.
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2.1. Pre-Processing

MRI images have different resolutions with respect to modern technology acquisition
systems. In earlier days, MRI images had a pixel depth of 8. Currently, some image
acquisition machines use a 16-bit form. To obtain a common platform, all images were
scaled down to their 8-bit form. Therefore, the highest intensity value was taken as 1. The
pre-processed image will help to obtain a correct classification and generate more accurate
results. MRI images were pre-processed using SPM8. Statistical parametric mapping (SPM)
is a tool that runs in MATLAB. It operates on a right-handed brain coordinate system.
The T1-weighted structural images of each participant were automatically segmented into
gray matter (g), white matter (m), and cerebrospinal fluid (c) by applying a mixture model
cluster analysis. This ensures the construction of a spatially extended statistical process
for inputs. Bias correction was not required during segmentation. After performing the
normalization process, the MRI images were smoothed with a Gaussian filter that was
applied through the VBM 8 toolbox [24].

2.2. Wavelet Decomposition

Wavelet transforms are a powerful mathematical tool for image analysis. They provide
simultaneous information about the image characteristics of frequency and time localiza-
tion. Therefore, they are very helpful for classification tasks. Wavelet transformation
produces results with less computation and no implementation complexity [25].

The input images m(x, y) are decomposed into multiresolution sub-bands using a
wavelet transform. The decomposed input images are represented as follows:

m(x, y)→ (m0m(x, y), ε1(x, y), ε2(x, y), ε3(x, y) . . . . . . ..) (1)

where m0m(x, y) is the low-frequency component approximation, and
(ε1(x, y), ε2(x, y), ε3(x, y) . . . . . . ..) is the high-frequency component approximation. Unlike
orthogonal cases, biorthogonal wavelet scaling functions are synthesizable. Biorthogonal
wavelets were chosen with respect to the input MR images. They were also used to analyze
the low-frequency images well. In the proposed method, a biorthogonal 9/7 wavelet filter
was utilized for the decomposition. The MRI images were decomposed at different levels
using wavelet analysis. A lower decomposition level provides less information, and a
higher decomposition level provides more information to the classification unit. However,
overfitting is a major concern when selecting the decomposition level. A five-level decom-
position level was used in this method to prevent overfitting issues. The MRI axial view
image obtained after wavelet decomposition is shown in Figure 3.
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Figure 3. (a) Wavelet decomposition of MRI image, (b) input image, (c) lower frequency component,
and (d) higher frequency component.

Wavelets divide the input images into different frequency components. The 3D volume
of the MRI data is decomposed into multi-resolution sub-bands at different levels.
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2.3. Generation of Saliency Maps

Visual saliency maps were generated from the input MRI images. In the proposed
method, two saliency maps are combined to obtain the final saliency maps. The multi-scale
analysis of the image characteristics was examined by the bottom-up phase. The low-level
characteristics of input, such as intensity, orientation, and contrast, are considered for
bottom-up saliency map construction. Top-down phases focus on high-level knowledge
of the input. The properties of tissues are considered in the construction of the top-down
saliency maps.

The extraction of feature maps from the input is the initial step in saliency computation.
The intensity, orientation, and contrast are commonly used features for saliency calculations.
Orientation filters like a Gabor resemble the visual cortex with respect to a particular
field [20]. The corresponding feature maps were calculated at different scales.

The major steps which are involved in the saliency computations are as follows:

Input: 3D MRI brain volume with M = MADP + MNP
MADP is the Alzheimer’s disease pattern, MNP is the normal pattern.

Step 1: Find the bottom-up and top-down saliency map;
Step 2: Compute saliency map;
Step 3: Classification of AD and non-AD interpretation.

2.3.1. Top-Down Saliency Maps (ST)

In practice, a physician with some expertise can find the most atrophic brain areas in
MRI images. According to neurodegeneration cell pattern, many brain areas are responsible
for AD. Hence, the visual assessment of MRI images depends solely on brain shrinkage.
This is accounted for in terms of tissue property variations.

In MRI analysis, brain deterioration is viewed as a variation of tissues in the gray
matter or white matter. Tissue density variations in cell degeneration are the major differ-
ences between normal and Alzheimer’s disease brains. If cell density is reduced, it reflects
the reduced volume in the structure of gray matter and white matter. This top-down
knowledge was added to the saliency map. Loss of hippocampal volume differentiates
the brain of a person suffering from Alzheimer’s disease from the brain of a normal per-
son [26,27]. Normally, top-down saliency maps incorporate high-level knowledge denoted
by brain MR volumes. Each MRI consisted of three tissues—gray matter, white matter, and
cerebrospinal fluid.

To obtain the domain knowledge of each tissue, initially, a probability map was
generated. A Gaussian distribution cluster analysis was used to segment the tissues. This
was identified through the voxel intensity distribution of the brain tissue. This represents
the distribution of tissues in the brain, which is calculated using a statistical parametric
mapping approach. Probability map values range from 0 to 1. These maps highlight the
spatial distribution of brain tissues. The intensity is proportional to the tissue volume
before warping.

The probability map of a voxel at (x, y) is m0m(x, y). It belongs to the set = {g, m, c}
and it is represented by set = P(m(x, y)/set). If P(m(x, y)/g) is the probability of a voxel
being gray matter [28].

Steps for estimating the top-down saliency map (ST)

1. Build probability map;
2. m0m(x, y)← T(m0m(id)) f or all id;
3. Regularize into a fixed range (0 . . . .1);
4. If probability (g)> = 0.5 then
5. ST ← m0m(x, y)
6. else
7. ST ← 0 ;
8. end i f ST ← ST × δ .
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Top-down saliency maps mostly depend on domain knowledge. According to the
top-down saliency map construction steps, the saliency map is calculated by considering
only visible voxels (the probability of gray matter being greater than 0.5). In the proposed
method, top-down saliency was generated to identify whether the gray matter tissues of
patients with AD varied from those of normal control patients. This is achieved through the
rejection of irrelevant features from both cases. Min- max-margin discrimination is used to
classify features between two classes, namely, the Alzheimer’s disease class and the normal
control class [20]. It is an optimization task to classify each feature in the brain volume.

2.3.2. Bottom-Up Saliency Maps (SB)

Bottom-up visual saliency maps rely on image features, such as color, edges, orienta-
tion, and textures. They mostly resemble the visual pattern of a physician. In this method,
a bottom-up saliency map is derived from the cues of edges, orientation, and textures [28].
Edge cues are used to locate sudden changes in pixel intensity in MRI images, which
portray discontinuities in white matter and gray matter tissues. Sobel and Canny edge
detection are leveraged in the proposed method.

Elliptical Local Binary Pattern

An elliptical local binary pattern descriptor (ELBPD) [29] was used to analyze the
textural features of the MRI images. Ellipse-like topologies help obtain feature information
from different orientations. To distinguish potential objects, a circular neighborhood was
added to the texture descriptor. In elliptical local binary patterns, each center pixel (Xcp,Ycp)
and neighboring pixels (N) are located on an ellipse with radius distances r1 and r2. It is
given by,

ELBPD
N,r1,r2

(
Xcp, Ycp

)
=

N

∑
i=1

s
(

pi
N,r1,r2 − pcp

)
2i−1 (2)

where the ith neighboring pixel is (Xcp,Ycp) is calculated as follows:

Astep = 2· π
N

(3)

xi = xcp + r1·cos
(
(i− 1)·Astep

)
(4)

yi = ycp − r2·sin((i− 1)·Astep
)

(5)

ELBPD descriptors were used to extract more specific features from MRI images.
They add additional directional features at different orientations that cover the micro
patterns [29] where pcp is the gray level of the input image. This ensured that no pixels
were omitted in accordance with the brain tissues. Gabor filters were utilized to highlight
orientation features. These are linear filters. The orientation and frequency representations
of Gabor filters are similar to those of humans. The real and imaginary components of the
Gabor filter are given as:

G(x, y : δ, θ, ϑ, τ, γ) = e−(
x2+y2γ2

2τ2 )ei( 2πx
δ +ϑ) (6)

where δ denotes the wavelength of the sinusoidal factor, θ represents the orientation of
Gabor functions, ϑ represents phase offset, τ is the standard deviation of Gaussian envelope,
and γ represents the spatial aspect ratio.

The real and imaginary parts of the Gabor filter traveled in the orthogonal directions.
Gabor filters with 0◦, 45◦, 90◦, 135◦ orientations were considered to represent directional fea-
tures. These features were obtained by convolving Gabor filters with different orientation
angles with brain volume. Figure 4 shows the Gabor filter for different orientations in the
MRI images. The edge, texture, and orientation features were obtained from multiple-scale
MRI images and kept in separate feature maps. Finally, all feature maps were combined to
obtain the final saliency map.
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Bottom-up saliency maps are obtained by taking the geometric mean of the feature maps.

SB =
1
2
(Maed + MaLBPD + MGOrB) (7)

where Maed—edge feature map, MaLBPD—texture feature map, MGOrB is the orientation
feature map.

2.3.3. Final Saliency Map

There are two different approaches to combining visual saliency maps. Max and
average are the two methods used to perform feature integration. The max approach is
used to identify regions that are salient in any of the components. The average method was
used to obtain high saliency values for both components [30]. The final saliency map is a
combination of the bottom-up and top-down saliency maps. The saliency map estimation
provides details regarding the AD.

FSOV =
√

STSB (8)

2.4. Multiple-Kernel Learning (MKL)

Multiple-kernel learning algorithms aim to discover the best combination of kernels to
form the best classifier. Recently, different algorithms have been presented for forming two
classes. The initial wrapper methods solve the MKL problem by handling a single SVM
problem for a specific kernel weight. The second set of MKL algorithms uses optimization
methods that reduce the number of computations. These methods use kernels that are larger
than the wrapper methods. Basic multiple-kernel learning was discussed in [31] for simple
classification problems. In the proposed method, a simple MKL and a simple and efficient
MKL (SEMKL) [32] are used. The MKL method provides ordering for important features
that are useful for classification tasks. Several studies have used MKL to classify genomic
data and remote sensing data, and even though it is used for different classifications, it is
an underestimated tool for Alzheimer’s disease analysis. This study aims to use the MKL
methodology by highlighting its unique benefits.

The saliency maps contain information for classifying the AD and normal controls.
Nevertheless, all parts do not have useful information for classification. Some regions
have to be concentrated more for classification, whereas other regions are not highly
concentrated. To analyze AD well, there is a mandate to reduce the size of the salient
feature space. The Fisher discriminant ratio (FR) was used to characterize the classes. As it
is a two-class classification problem, two means and two variances are obtained from the
saliency map.

FR =
(m1 −m2)

2

v1
2 + v22 (9)

where mi and vi
2 are the mean and variance of the saliency maps, respectively. The

FR value was calculated for each voxel of the volume. The FR value was taken as the
threshold. If it is less than the threshold then more voxels can be selected. It also reduces
the computational burden of voxel selection in the preliminary stage. It is used to select
the most discriminative regions of the saliency map, which are used to segregate the
disease images and normal control images. The classification performance was analyzed
by varying the FR value.

The simple MKL uses a sub-gradient descent to fetch the direction that has the most
improvement. Subsequently, a line search was used to catch the finest set of weights. The
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line search increases computational complexity; therefore, the SEMKL was used. The
SEMKL dramatically decreases the number of computations by using a set of kernels
derived from the Cauchy–Schwarz inequality. Prioritization of features and kernels is a
prime consideration when choosing MKL algorithms. Kernel prioritization is important
for overcoming the problems associated with MKL. The kernels can classify the data and
provide boundaries [33].

The saliency maps provide a source of information on the location of the discriminative
variations in the MRI images. They are the main source of differentiation between AD and
normal diseases. In this method, multiple-kernel learning is used to classify the inputs [34].
The kernel matrices are of size M ×M. A histogram intersection kernel is used to compute
the similarity in the saliency maps. The kernel matrix is calculated between two saliency
maps SM, SM′.

KM
(
SM, SM′

)
=

m

∑
i=1

min
(
SM, SM′

)
(10)

The multiple-kernel methods have higher classification accuracies than single-kernel
methods [33]. Simple MKL adopts a gradient descent on the support vector machine
objective value and updates the kernel weights iteratively.

In addition, with multiple kernels, a single kernel was also calculated for each projec-
tion. All single kernels were summed using the weighted average method.

KM
(
SM, SM′

)
=

3

∑
j=1

wqkq
(
SM, SM′

)
(11)

where kq is the histogram intersection kernel with ‘q’ projection and wq is the weight of the
q projection. The decision parameter equation is given by Equation (12).

t(u) =
l

∑
i=1

aiK(m, mi) + bi (12)

where ai and bi are the coefficients that can be obtained from the input data. Multiple-kernel
learning simultaneously determines the optimized coefficients for ai and wq.

Steps of MKL:

Step 1: Initialize the range of kernels for MKL and SEMKL;
Step 2: Compute the basic kernel matrixes using Equation (10);
Step 3: Solve the projective direction according to Equation (11);
Step 4: Using the projective direction ‘w’, combine the basic kernels;
Step 5: Utilizing the combined kernel, the classification problem is approached via SVM.

The outcomes of the proposed classification results were compared with those of
state-of-the-art methods. The results section emphasizes the experimental results using
performance metrics.

3. Results
3.1. Dataset

The experiment was conducted using the Open Access Series of Imaging Studies
(OASIS) dataset. The OASIS database consists of brain MRI images [35–37]. These image
data were collected from MRI scans, diagnostic tests, and demographic data. Cross-
sectional MRI and longitudinal MRI data are available in the OASIS dataset. MRI images
were from 416 subjects between 18 and 96 years of age. The subjects were of both genders,
and all were right-handed. A 1.5 T vision scanner was used to capture images from each
subject. The MRI image acquisition details included the orientation of the sagittal plane
and a flip angle of 10◦. For this method, we randomly selected 200 subjects with complete
demographic, clinical, or derived anatomic volume information [18]. One hundred patients
were diagnosed with AD, and the other half were healthy subjects. The entropy-based
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sorting mechanism was used to obtain the most informative 32 images from the axial plane.
Hence, 6400 images were used for training, of which 3200 images were AD and the other
3200 images were healthy. Figure 5 shows sample images from the OASIS dataset with AD
and normal patient images. The red circles highlight the variations in AD images. Table 1
provides additional information about the subjects.
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Table 1. Subject demographics and dementia status.

Condition Numbers Gender Socioeconomic Status
Age MMSE CDR

Range Mean Range Mean 0 0.5 1 2

AD 100 M/F 2.94 66–96 78.08 15–30 24 0 31 17 1
Normal 100 M/F 2.88 65–94 77.77 26–30 28.96 49 0 0 0

All images were analyzed and diagnosed as AD and normal control images. The socio-
economic status ranged from 1 (highest) to 5 (lowest). The Mini-Mental State Examination
and Clinical Dementia Rating (CDR) were the medical parameters used to examine the
images. MMSE scores ranged from 0 (worst) to 30 (best). All brain images consisted of
176 slices. Every single-slice MRI was represented by 176 × 208 pixels. Five categories
of stages were taken by considering age group, clinical dementia rating (CDR), gender
(F/M), and severity of disease. The CDR is a dementia staging factor that provides ratings
to each subject.

Division 1: Age 60–80, CDR=1, 7/6, 86 images, 20 D, 66 N;
Division 2: Age 60–96, CDR=1, 7/6, 126 images, 28 D, 98 N;
Division 3: Age 60–80, CDR= 0.5, 21/30, 136 images, 70 D, 66 N;
Division 4: Age 90–96, CDR= {2,1,0.5}, 198 images, 100 D, 98 N.

where D is the Alzheimer’s disease image and N is the normal patient image. If the CDR is
0.5, the disease is very mild. If CDR is 1, then Alzheimer’s disease is mild and if CDR is 2,
then Alzheimer’s disease is moderate.

AD classification performance depends on clinical and demographic data with respect
to patients [33]. It is very difficult to discriminate between patients with very mild AD and
those with normal conditions. Four categories were used to analyze the classification of
AD. Figures 6 and 7 also show such difficulties by viewing two types—Alzheimer’s disease
patients and normal patients. In structural images, differentiating between the two types is
difficult. The proposed method-based saliency maps exhibit slight variations, which can
help in classification tasks.
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3.2. Training and Testing

The parameter tuning of the proposed method is described in this section. The experi-
mental investigations were carried out using MATLAB R2013, MathWorks, USA. A total
of 75% of the input was used for training and 25% for testing. Cross-validation was used
to determine the parameters that yielded the highest accuracy. Typically, the combination
of kernels provides better results for classification tasks than a single kernel. The MKL
is employed with cross-validation to identify which kernel is most suitable for classifica-
tion, thereby producing good performance. Different k-fold scenarios (K = 3, 4, or 6) were
adopted to select the training and testing data. Accuracy, sensitivity, and specificity were
evaluated. The 6-fold cross-validation was performed to obtain better performance metrics.
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3.3. Quantitative Analysis

In general, classification problems are evaluated using the performance metrics of
accuracy, sensitivity, specificity, and F-measure. The proposed saliency-based, multiple-
kernel learning classification is also quantified by the performance metrics of Accuracy (A),
Sensitivity (S), Specificity (SP), and F-measure (Fm).

Accuracy (A) =
(TP + TN)

(TP + TN + FP + FN)
(13)

Sensitivity (S) =
(TP)

(TP + FN)
(14)

Speci f icity (SP) =
(TP + TN)

(TP + TN + FP + FN)
(15)

F measure (Fm) =
(2TP)

(2TP + FN + FP)
(16)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
Table 2 presents the individual stage performance metrics.

Table 2. Performance metrics of the proposed approach.

Accuracy (A) Sensitivity (S) Specificity (SP) F-Measure (Fm)

Division 1 91.18 88.21 89.34 90.91
Division 2 88.26 86.15 87.33 87.81
Division 3 87.54 85.78 86.13 86.91
Division 4 84.23 82.91 83.21 84.12

From Table 2, it is ca be seen that the performance of elderly subjects decreased with
mild Alzheimer’s disease. A comparative analysis was performed using state-of-the-art
methods using the same OASIS dataset.

A comparative analysis was performed using the methods of Toews et al. [38],
Andrea R et al. [39], Yang et al. [40], and Chyzhyk et al. [16,17]. The feature-based mor-
phometry of Toews et al. [38], independent component analysis (ICA) of Yang et al. [40],
and the support vector machine of Andrea et al. [39] were used in the comparative analysis.
All of these methods use the OASIS dataset with four different groups. An equal error
rate was used to classify diseases. ICA and SVM were used in [40]. In this method, the
performance metrics are calculated using different formulae that are not in the standard
definition formulae. The comparison method of Andrea et al. [39] used a saliency map
and SVM for disease classification. The average error rate was 0.725, and the average
accuracy was 74.54%. The proposed method is also compared with the recent literature
involving with wavelet-transform-based feature detection. Jha et al. [41] used an extreme
learning machine and dual-tree for concepts for AD classification. Zhang et al. [42] and
Feng et al. [43] used wavelet entropy, particle swarm optimization, and neural network
classifiers. The proposed method produced reliable results in the performance metrics of
accuracy(A), sensitivity(S), specificity (SP), and F-measure (Fm).

The importance of the visual saliency map in AD classification is discussed and evalu-
ated in the present study. Eight state-of-the-art methods for AD classification were used
for the comparison. Visual saliency analysis and MKL were the most critical techniques
adopted in the present study. The robustness of the proposed method is shown with respect
to the performance metric scores.

4. Discussion

Computer-aided detection has attracted significant attention for brain image analysis.
This is possible with advancements in machine learning and computational intelligence
techniques. The proposed method deals with visual saliency-based Alzheimer’s disease
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analysis. This was accomplished using a saliency analysis of MRI images. Bottom-up and
top-down information streams achieve the precise detection of AD and normal patients.
Bottom-up saliency highlights the regions that are associated with AD diagnosis. This
was obtained from different multiscale features. The major focus is on the construction of
bottom-up saliency maps. An elliptical local binary pattern descriptor (ELBPD) was used
to analyze the texture features of the MRI images. Ellipse-like topologies help to obtain
feature information from different orientations. To distinguish potential objects, a circular
neighborhood was added to the texture descriptor.

The top-down saliency map uses the domain knowledge of the MRI brain images.
It adaptively chooses meaningful information. The entire saliency strategy allows the
identification of structural regions that can be quantitatively related to AD detection.
Information from the VBM is usually used for the statistical identification of different
categories. The SPM8 tool was used to pre-process the MRI images. The pre-processed
image will help to obtain a correct classification and generate more accurate results. The
obtained saliency maps consisted of information for detecting AD and normal patients.
None of the parts of the saliency map did not contain relevant information for detecting AD.
To analyze AD well, the feature space size was reduced using the Fisher discriminant ratio.
The MKL and SEMKL methods were adopted to discriminate between AD classes. MKL
does not suffer from overfitting. The final decision was based on the weighted average of
the SVM models. The kernel weights in MKL which are the most prominent in the classifier,
were used to identify the data sources well.

The proposed study was conducted using the Open Access Series of Imaging Studies
(OASIS) dataset. The present investigation involved extensive validation and parameter
studies. Different factors are involved in bottom-up and top-down saliency, which are
assessed based on the classification accuracy. This allows us to check the influence of
different visual features and image scales on the final detection between AD and normal
classes. The effective version of the proposed method attained an equivalent performance
to that of state-of-the-art comparison methods in the Table 3. The comparison between
the Chyzhyk et al. [16] method and the proposed method showed an average increment
of 9.4% in accuracy and other performance metric calculations. Chyzhyk et al. [16] used
dendritic computing to implement binary classifiers. Single-neuron lattice models were
used to compute classification. With respect to performance metrics, the proposed method
outperformed the methods of Yang et al. [40] and Andrea et al. [39]. The primary reason
was the inclusion of elliptical local binary descriptors in the saliency map computations.
The results of the proposed method were compared with eight state-of-the-art methods
and produced 89.12% classification accuracy.

Table 3. Comparative analysis of proposed and state-of-the art methods.

Approach Accuracy (A) Sensitivity (S) Specificity (SP) F-Measure (Fm)

Toews et al. [38] 71.45 67.54 72.65 73.56
Yang et al. [40] 67.15 62.65 73.11 69.13

Chyzhyk et al. [16] 69 81 56 70.12
Chyzhyk et al. [17] 74.25 96 52.5 74.89
Andrea R et al. [39] 67.68 72 63.27 68.01

Feng J et al. [43] 86.4 82.11 89.91 –
Jha et al. [41] 78.48 75.35 79.98 –

Zhang et al. [42] 72.86 69.55 75.49 –
Proposed 89.12 86.71 87.31 88.93

The proposed approach identifies the most relevant information for AD detection
using saliency maps. These maps were derived from the orientation features, specifically
at 0◦, 45◦, 90◦, 135◦ and at different scales. The results show that the learning techniques
used herein can separate the feature space that is related to AD and normal. The major
contributions of this work include the use of an elliptical local binary pattern descrip-
tor in the bottom-up saliency map computation and the use of MKL techniques in the



Appl. Sci. 2021, 11, 9199 13 of 15

classification. The major concern of many machine learning techniques is the overfitting
problem. To address this issue, the proposed method uses MKL. It does not suffer from
overfitting because the final decision is based on the weighted average of the SVM models.
The state-of-the-art comparison methods have overfitting issues.

This study incorporated extensive validation and performance metrics. The input
images were analyzed and experimented under different divisions. Many parameters
were added to the top-down and bottom-up saliency. This information was assessed via
classification accuracy. With an adequate and exhaustive evaluation, the present study can
be effectively used to detect AD in normal patients. It identifies the influence of visual
features on the final discrimination between normal and AD inputs. The major strengths
of the present study are (i) the use of visual saliency analysis in AD detection, (ii) larger
categories, (iii) rigorous validation using cross-validation, and (iv) comparable results. A
limitation of the research is that subjects under 65 years of age were not included due
to their high discrimination because this would be beyond the scope of this study and
requires vast standardization procedures. The current work can be extended by improving
the current system by using physician gaze tracking.

5. Conclusions

This study presents a computer-vision-based abnormality detection method for AD
analysis. This demonstrates the importance of visual saliency in the classification of AD.
Bottom-up and top-down saliency maps are derived from image features and domain
knowledge. An elliptical local binary pattern descriptor was introduced to obtain low-level
MRI characterization. This includes additional directional features at different orientations
that cover the micro patterns. The proposed method applies MKL and SEMKL to classify
AD from normal patients. The experiment was conducted using four categories of input
from the OASIS dataset and achieved an accuracy of 89.12%. The results highlight a
significant improvement compared to state-of-the-art methods. The proposed computer
vision method can help physicians evaluate their diagnosis effectively and extract useful
information quickly.
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