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Featured Application: This study implemented deep learning methods to the task of segmen-
tation of various brain lesions, facilitating the treatment planning process of neurosurgery and
radiation oncology.

Abstract: Semantic segmentation of medical images with deep learning models is rapidly being
developed. In this study, we benchmarked state-of-the-art deep learning segmentation algorithms on
our clinical stereotactic radiosurgery dataset. The dataset consists of 1688 patients with various brain
lesions (pituitary tumors, meningioma, schwannoma, brain metastases, arteriovenous malformation,
and trigeminal neuralgia), and we divided the dataset into a training set (1557 patients) and test set
(131 patients). This study demonstrates the strengths and weaknesses of deep-learning algorithms in
a fairly practical scenario. We compared the model performances concerning their sampling method,
model architecture, and the choice of loss functions, identifying suitable settings for their applications
and shedding light on the possible improvements. Evidence from this study led us to conclude that
deep learning could be promising in assisting the segmentation of brain lesions even if the training
dataset was of high heterogeneity in lesion types and sizes.

Keywords: deep learning; image segmentation; brain tumors; radiosurgery; magnetic resonance imaging

1. Introduction

Stereotactic radiosurgery (SRS) is a treatment modality using ionizing radiation, fo-
cusing on precisely selected areas of tissue. It is usually delivered in a single session, but
the radiation dose can also be fractionated. Targeting accuracy and anatomic precision are
critical to successful SRS, but are historically secondary concerns in other types of radiation
therapy [1]. Undoubtedly, as technology evolves, standards in this area will have to change.
Nevertheless, when root mean square errors can be reduced to approximately 1 mm, a
threshold of surgical possibilities is reached both in the brain and throughout the rest of
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the body. As the ACR-ASTRO guidelines suggest, a targeting accuracy is approximately
1 mm [2–4]. Although SRS can be performed in many parts of the body, it is best known
to treat intracranial lesions. The common indications for intracranial SRS include many
different types of brain tumors, vascular malformations (including arteriovenous malfor-
mation, AVM), and functional diseases such as trigeminal neuralgia (TN). Brain metastases,
vestibular schwannomas, meningiomas, and pituitary adenomas are common tumor types
treated by SRS.

Before the delivery of SRS to the target (e.g., a brain tumor), detailed treatment
planning with precise contouring of the target is conducted by a neurosurgeon or a radiation
oncologist. The contouring is performed on computed tomography (CT) or magnetic
resonance images (MRI). Sometimes, both CT and MRI are used, depending on the devices
and diseases. Normal organs or tissues sensitive to radiation are also contoured so that
radiation dose and risk of injury can be estimated. These normal organs are called critical
organs or organs at risk (OARs). In terms of image analysis, “precise” segmentation of
targets and OARs is mandatory for SRS treatment planning. In current clinical practice,
the segmentation is performed by professional personnel. The manual contouring process
is time-consuming and prone to substantial inter-practitioner variability, even amongst
experts, and may lead to large variation in care quality. Several pieces of research suggest
computer assistance [5–10]. We expect an AI-based assistive tool could improve tumor
detection, shorten mean contouring time, and increase inter-clinician agreement [11].

As convolutional neural networks (CNNs), the dominant deep learning models, are
leading the breakthrough in computer vision recently, they also dominate MRI segmenta-
tion tasks. Havaei et al. (2017) proposed the idea of using a deep learning model to perform
brain tumor segmentation tasks on MRI images [12]. They pointed out that both local and
global representations are essential to produce better results, and this intuition was later
realized in various ways. Kamnitsas et al. (2017) later perfected this idea and achieved
state-of-the-art performance with a two-path model [13]. On the other hand, U-Net was
first proposed for the cell tracking task [14], but then became widely used in many other
segmentation tasks [15,16]. In MICCAI BraTS 2017 competition [17], most participants
used U-Net variants, as the winner [18] simply ensembled three kinds of the most common
deep learning models, namely FCN (fully convolutional network) [19], V-Net [20], and
DeepMedic [13]. Other than deep learning, some studies on brain cancer segmentation took
advantage of fuzzy c-means clustering [21–23], cellular automata [24], random walker [8],
and so on [5,7,25,26]. However, they are not deep learning by not possessing over two
hidden layers and will not be further discussed.

However, few studies apply deep learning methods to the actual SRS datasets. Unlike
the BraTS competitions, real applicable models may need to handle much more diversity
rather than a single type of disease. Liu et al. (2017) proposed a modification of DeepMedic
that outperformed its parent method in segmentation during SRS treatment planning
by adding a subpath, with a dice score reaching 0.67 in a cohort of 240 patients [27].
Lu et al. (2019) ensembled two neural networks, namely 3D U-Net and DeepMedic,
which were trained with different hyper-parameters so that one neural network focused
on small metastases with high sensitivity while the other one addressed overall tumor
segmentation with high specificity, yielding a good performance on segmentation within
305 patients, with a median dice score of 0.74 [28]. Fong et al. (2019) trained the convoluted
neural network with multiplanar slices, reducing false-positive predictions and yielding
a dice score of 0.77 on the 248-patient dataset while maintaining competent 80% isodose
coverage [29]. Lu et al. (2021) implemented deep learning in the treatment planning
process, decreasing the plethora of time consumed during the planning process as well
as enhancing the prediction overlap with ground truth significantly especially in the
subgroup of non-experts. However, the cohort size was rather small [11]. Heterogeneity
could have been considered a major problem for machine learning decades ago; however,
it should be considered a real-world situation. A heterogeneous dataset could help the
generalizability and transferability of trained models [11,23,25,30–32]. However, in the
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previously-mentioned studies, small sample sizes were important contributors to the
lack of confidence to infer the generalization of deep-learning models in clinical practices
with heterogeneous lesion types. For the technology to achieve satisfactory performance,
we explored the behavior of deep-learning models in a realistic scenario. Therefore, we
collected a relatively large dataset with 1688 patients and analyzed the performance of
models with various types of settings and architectures. More specifically, we benchmarked
the performance of different segmentation models previously proposed for other tasks
and also compared the effectiveness of various sampling methods and the choice of loss
functions. We used the BRATS dataset to evaluate whether our implementations of deep
learning models were correct and comparable to their original implementations.

2. Materials and Methods
2.1. Dataset
2.1.1. NTUH (National Taiwan University Hospital) Dataset

The data were extracted from a medical center in northern Taiwan. The SRS device
used was CyberKnife (Accuray, Sunnyvale, CA, USA) and commenced operation in January
2008. In the decade until December 2017, there were 2578 treatment courses completed in
2411 patients. Among these, 2036 treatment courses of 1921 patients were intracranial.

We only selected patients undergoing first SRS with contrast-enhanced T1-weighted
(T1+C) MRI images available. Finally, there were 1688 patients included in our dataset.
Their data were randomly divided into training and test sets (Table 1). However, because
treatment targets for patients with trigeminal neuralgia are neither tumor nor vascular
malformation, their data were all assigned to the training set.

Table 1. Clinical diagnoses of 1688 patients in the final dataset.

Types of Brain Lesions Train Test

Metastases 504 53
Meningioma 314 29
Schwannoma 305 20

Pituitary tumor 147 8
Arteriovenous malformation 80 6

Trigeminal neuralgia 38 0
Other tumors 169 15

Total 1557 131

For each patient, the target was extracted from the treatment planning system together
with axial T1+C MRI. Most of the time, the targets were contoured by a neurosurgeon
and then reviewed by a radiation oncologist. Occasionally only one radiation oncologist
contoured the targets without review by another physician. An image volume could contain
more than one target, particularly in patients with brain metastases. NTUH volumes were
registered to CT volumes before contouring, with tumor contours stored in CT coordinates.
We had to make an inverse transformation to put the tumor labels in MRI coordinates. In
other words, volumes were resampled on a common voxel grid instead of directly cropped
on grids of different voxel numbers. The images were retrieved from DICOM format and
saved in NIfTI-1 data format, where names, birth dates, and geographic data were removed.
After registration and de-identification, these image/label pairs were used for the training
and evaluation of deep neural networks. The images were presented in native axial slices,
with 1–2 mm slice thicknesses. The number of slices varied from 30 to 233 since the slices
did not necessarily cover the full cranial regions, instead, they could only include the region
of interest. The in-plane resolution was usually 512 × 512, and the smallest resolution was
197 × 197. The field of view in the x–y plane was usually 300 mm, ranging from 200 to
350 mm. The pixel size was mostly 0.5859 × 0.5859 mm2 and was 1.1719 × 1.1719 mm2 for
some images with lower resolution.
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There were a total of 2568 distinct targets in these 1688 image sets. The target volumes
ranged from 20 to 72,646 mm3, with a median of 1236 mm3 and a mean of 3696 ± 6637 mm3.
In 1013 image sets, there was only one target. The number of targets may reach up to 34 in
a single image set.

2.1.2. BraTS Dataset

The BraTS 2015 dataset is a standard benchmark dataset for MRI segmentation tasks.
It includes 220 multi-modal scans of patients with high-grade glioma (HGG) and 54 with
low-grade glioma (LGG). T1-weighted, contrast-enhanced T1+C, T2-weighted, and FLAIR
images are available. The data had a common dimension of 240 × 240 × 155 with 1 mm3

resolution. The annotation contains five classes: 0 for background, 1 for necrotic core (NC),
2 for edema (OE), 3 for non-enhancing core, and 4 for enhancing core. The evaluation
follows the rules of the competition by merging the predictions into three sets: whole
tumor (classes 1,2,3,4), core (classes 1,3,4), and enhancing core (class 4). The train to test
ratio was 10:1 in each of the experiments we conducted.

2.2. Preprocessing

The raw data of the NTUH dataset contains images of different resolutions and fields
of view (FOVs). We first used the skull stripping function of Brain-Suite [33] to locate
the brain, then utilized the information possessed by the brain masks for centration and
cropping of the MRI to make sure the images contain fewer extracranial areas. Brain-Suite
was used only to locate the brain center for better cropping. Everything from the scalp
to skull remained on the cropped images for reasons that some of our lesions may locate
extra-axially. The final input images size was 200× 200× 200 mm3. Finally, we normalized
them by the z-scores.

Images in the BraTS dataset were already registered, cropped, and normalized with
bias field corrections. We only normalized the data by the z-scores for every pulse sequence
(T1, T2, T1+C, FLAIR).

2.3. Data Augmentation

To perform a fair comparison of the model architectures, we established the follow-
ing standard data augmentation in the training phase. For 2D models, we performed
data augmentation with translation, rotation, shear, zoom, brightness, and elastic distor-
tion [15]. For 3D models, since data augmentation did not yield higher performances of
segmentation in the preliminary experiment we performed, we did not perform any type
of data augmentation.

2.4. Deep Learning Models

The design of the models we employed could be found online [34]. We will discuss
the rationale and the architecture below.

2.4.1. DeconvNet

DeconvNet is an architecture adopted from VGG16, a 16-layered CNN by the Visual
Geometry Group, and is rather simple to implement [35]. The objective of this design is to
overcome the limitations of FCN, which cannot detect objects that are bigger or smaller
than a specific size. In this case, the object may be fragmented or mislabeled. Furthermore,
FCN only uses one convolution transpose layer to construct its output, so the output loses
much detail. As a consequence, DeconvNet uses several layers of transpose-convolution
and up-pooling.

The model can be divided into two parts: the encoder and the decoder, which are
formed by convolution and deconvolution operations, respectively. It is worth noting that
we replaced the max-pooling and up-sampling operations by setting the stride of Conv and
Deconv to 2 in our implementation. This is inspired by the recent proposition of generative
adversarial networks.
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2.4.2. DeepMedic

DeepMedic is another kind of 3D CNN [13]. It is special for taking two inputs, high
resolution, and low resolution. This design seeks to balance fine structures and high-level
information. High-resolution inputs for DeepMedic are patches from our preprocessed
data. Low-resolution inputs are downsampled using 3D average pooling from each corre-
sponding high-resolution patch. Both inputs go through a series of convolution layers with
skip connection, and then it constructs the output by fusing the features of both pathways.
This is a state-of-the-art model, and we expect the model to perform well on segmentation
of brain lesions based on previous benchmarks [27,36–38].

2.4.3. PSPNet

Pyramid scene parsing network, or PSPNet, is a state-of-the-art model in scene pars-
ing tasks [39]. We included it because it is also suitable for our segmentation task. The
PSPNet utilizes the high-level representations extracted by a pretrained network, and a
novel design of the pyramid pooling module serves as a backend to predict the segmenta-
tions. The pyramid pooling modules pool the extracted feature maps to obtain features
of different scales. The pretrained model is typically a ResNet trained on an ImageNet
dataset [39]. However, on an MRI dataset, the features are not transferable due to the large
consistency and the absence of common pretrained models to process MRI images. In our
implementation, we randomly initialized the ResNet backend and also removed the deep
supervision loss.

2.4.4. U-Net

U-Net tries to improve the fine structure of segmentations and increase the amount
of context used [14]. Traditionally, when a certain amount of pooling is required, if one
is intending to train with large patches, it unfortunately degrades the performance such
as in FCN and DeconvNet. Hence, the U-Net model utilizes skip connections to forward
the unpooled features, thus the model can utilize the information of various scales. In our
implementation, we abandoned the max-pooling and up-sampling operations for the same
reason as in DeconvNet.

2.4.5. V-Net

V-Net is the adaption of U-Net for 3-dimensional data to capture the relationships in
consecutive slices, which were omitted in the 2D models, addressing contiguity problems
and yielding better results in the segmentation of various 3D images [20]. It replaces the
convolution and pooling operations with 3D versions.

2.5. Sampling Method

Batch samplers were defined in the source code (see Supplementary Material) [40].
We had four batch sampler designs for our models to experiment with the most efficient
and accurate settings. We tried each kind of sampling method for each model in our pre-
liminary experiment, but only those sampling methods that did not cause much overfitting,
excessive memory consumption, or lower performance than other sampling methods were
benchmarked.

2.5.1. Two Dimensional

For two-dimensional models, we split the MRI data slice by slice and performed
predictions separately. This may result in noises along the sliced axis due to the loss of
spatial contiguity information.

2.5.2. Three Dimensional

For three-dimensional models, the basic strategy is to feed the whole brain image
data directly. In the preliminary experiment, three-dimensional patch resulted in high
memory consumption when we employed the DeepMedic. Thus, we did not perform a
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three-dimensional patch for the DeepMedic. Furthermore, while we experimented with
this setting on the BraTS2015 dataset, we found it caused overfitting, and we suspect that
this is because many of the voxels are irrelevant and redundant for the prediction. Thus,
we added two more three-dimensional sampling methods described below.

2.5.3. Uniform Patch

To reduce the redundant voxels and save memory usage, we sampled small patches
within the brain regions. While inferencing, we simply reassembled the patch predictions
together. The patch size used was 152 × 128 × 128. Worth noting, for the DeepMedic,
uniform patch resulted in generally lower performance in segmentation, sensitivity, and
precision compared with the center patch. Hence this method was not employed when
training the DeepMedic.

2.5.4. Center Patch

It has been suggested that patches containing foreground regions are crucial to the
training [35]. We thus deployed this sampling strategy, which guarantees at least one
foreground voxel in the patch. The patch size was default to 64 × 64 × 64. However,
we could set the patch size to 96 × 96 × 96 or the same as the size of the uniform patch
when we applied the sampling method. When we experimented with the settings in the
preliminary test, center patch sizes lower than 190 × 190 would result in tremendously low
segmentation performance for V-Net in the NTUH dataset, so this sampling method was
not used in the formal benchmark analysis.

2.6. Hyperparameters

We used fixed optimizer settings across all experiments. The optimizer chosen was
Adam. The learning rate was initially 1 × 10−4, with step decay of factor 0.1 at 50 and
70 epochs. Patch-wise methods were inferenced with patches cropped without overlap
and excessive boundaries were filled with zero paddings. Samples were generated on the
fly in a patch-wise method.

2.7. Loss Functions

Class imbalance is a major problem in most tumor segmentation problems, and it is
even more severe in our task compared to the BraTS glioma dataset because of small target
volumes. The imbalance would most likely lead the model to a trivial solution, which
predicts all voxels as background. There are several ways to deal with this problem by
modifying the loss function.

2.7.1. Weighted Cross-Entropy

Re-weighting the sparse class is the most common solution to the class imbalance
problem. In this study, we set the class weights inversely proportional to the ratio of the
class. In particular:

C = −
M

∑
c=1

goclog(poc)

rc
(1)

where M is the number of classes and rc is the ratio of class c in the whole volume/dataset
(as an implementation choice); goc is the ground-truth label of a voxel; and poc is the
predicted label probability of a voxel of class c.

2.7.2. Soft-Dice

Milletari et al. (2016) suggest using the differentiable version of the dice score, namely
soft-dice, directly as the objective due to its resistibility to class imbalance [20]. It is fairly
natural to use this loss function because the dice score is the most common evaluation
metric in related tasks. There are two implementations of the soft-dice loss function.
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Regarding the cardinality of sets, one can perform summation directly or with squaring.
In particular:

D1 =
2 ∑N

i pigi

∑N
i p2

i + ∑N
i g2

i
or D2 =

2 ∑N
i pigi

∑N
i pi + ∑N

i gi
(2)

where pi is the predicted label probability and gi is the ground-truth label. We found the
two versions producing almost identical performances. In this study, we refer to the second
version as the soft-dice loss function.

2.8. Evaluation Metrics
2.8.1. Dice Score (Hard Dice)

Dice score is the standard metric for evaluating segmentation results. It is defined as

D =
2|X ∩Y|
|X|+ |Y| (3)

where X and Y are the sets of predicted and labeled lesion voxels.
The previously mentioned soft-dice loss is a modified differentiable version of the

dice score. We, therefore, refer to the dice score metric as hard-dice to distinguish the two.

2.8.2. Precision and Sensitivity

Precision and sensitivity (also known as recall) are standard metrics of binary classifi-
cation, which is a more general scheme for segmentation. Precision quantifies the volume
ratio of correctly predicted lesion voxels (TP) to all predicted lesion voxels (TP + FP). It is
defined as

Precision =
TP

TP + FP
(4)

Sensitivity quantifies the volume ratio of correctly predicted lesion voxels (TP) to all
labeled lesion voxels (TP + FN). It is defined as

Sensitivity =
TP

TP + FN
(5)

2.9. Experiments

In all our experiments, the training and testing were conducted under a 10:1 train-
test ratio.

2.9.1. Performances of Models on Segmentation of Brain Lesions in NTUH Dataset

We first experimented with the performances of different models on the segmentation
of brain tumors after training with various brain lesions. Different batch samplers and
loss functions were employed based on the models used. The hard dice, precision, and
sensitivity were the outcomes we were interested in. The higher dice score, precision, and
sensitivity were deemed as better segmentation performance.

2.9.2. Performances of Models on Segmentation of Brain Tumors in BraTS Dataset

To compare the variables contributing to the performances of the models trained
with the NTUH dataset, we experimented with the segmentation of the brain tumors in
the BraTS dataset. We trained our models with either 4-channel or only T1+C inputs to
compare the performances of the models trained with the same imaging modality in the
NTUH dataset. During training, the labels encompassed either five classes or only tumor
cores. The segmentation performances were measured using the hard dice. The evaluation
was based on predictions of the tumor cores.
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3. Results

Three cases from the NTUH dataset showing representative results of different models
were shown in Tables 2–4. The overall dice scores of these networks on the NTUH dataset
ranged from 0.33 (DeepMedic) to 0.51 (V-Net). Table 5 shows the detailed performance of
each network tested with the NTUH dataset.

Table 2. Predictions with low dice scores.

Ground truth DeconvNet DeepMedic
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On the NTUH datasets, the performance was also affected by the types of lesions.
As shown in Figure 1, we obtained better results for brain metastases, meningiomas, and
schwannomas, while all models performed poorly on pituitary tumors, AVMs, and other
tumor types. Detailed tables are attached as Appendix A, Appendix B, Appendix C.
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Table 5. Performance of different models on the NTUH dataset.

Model Numbers of
Parameters

Batch
Samplers Loss Function Precision Sensitivity Hard Dice

DeconvNet 12,544,324 two_dim Cross-entropy minus
log(soft-dice) 0.46 0.48 0.43

U-Net 34,524,034 two_dim Cross-entropy minus
log(soft-dice) 0.48 0.48 0.43

PSPNet 28,280,773 two_dim Cross-entropy minus
log(soft-dice) 0.47 0.48 0.43

V-Net 8,232,274 uniform_patch3d Cross-entropy minus
log(soft-dice) 0.39 0.54 0.41

V-Net 8,232,274 three_dim Cross-entropy 0.2 0.56 0.25

V-Net 8,232,274 three_dim Cross-entropy minus
log(soft-dice) 0.48 0.51 0.46

V-Net dropout
0.1 8,232,274 three_dim Cross-entropy minus

log(soft-dice) 0.47 0.66 0.51

DeepMedic 1,301,478 center_patch3d Cross-entropy minus
log(soft-dice) 0.36 0.43 0.35

DeepMedic 1,301,478 center_patch3d Cross-entropy 0.37 0.43 0.33
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As shown in Figure 2, lesions with smaller target volumes introduce lower average
dice performance for each deep-learning model. V-Net, the best-performing model in
the current study, obtained a fairly satisfactory dice score when lesion size exceeded the
median size of all targets.
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To compare the performances of different models trained with one-channel input on
the segmentation of brain lesions, we performed another experiment in which models
were trained with just T1+C input with tumor core labels of the BraTS dataset. The
evaluation was based on prediction of the tumor cores. As shown in Figure 3, V-Net had
the highest Dice score when trained with 4-channel input with 5-class labels. Interestingly,
all models performed better in this circumstance than when trained with only T1+C images.
Of note, V-Net and PSPNet could not yield comparable results when trained with only
T1+C images, implying that they are more sensitive to the change from multimodal to
single modality inputs. While the models trained with one-channel inputs yielded lower
performances in segmentation, they still performed better than their counterparts trained
with the NTUH dataset.
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Because of the nature of PSPNet and DeepMedic, they took a significantly longer time
for inference, as shown in Table 6. V-Net had the least number of parameters and the
shortest inference time. We also found that adding dropouts in V-Net further improved its
performance, which we have noted in the table with 0.1 being the dropout rate.

Table 6. Inference time on our hardware and parameters of different networks.

V-Net
Dropout 0.1 DeconvNet U-Net PSPNet DeepMedic

Inference time
(minutes:seconds) 02:51 04:00 04:01 14:43 17:73

Number of
parameters 8.23M 12.5M 34.5M 28.3M 13M

4. Discussion
4.1. Segmentation Performance: NTUH vs. BraTS Dataset

The performance on our radiosurgery dataset was inferior to that on BraTS. Many
factors might lead to such a result. First of all, the tumor volumes in the NTUH dataset
are typically smaller than those in BraTS 2015. On average, the tumor occupied 1.23% of
the whole image volume in the BraTS dataset, but only 0.145% in ours. It should also be
noted that a significant portion of our dataset contained multiple targets, which is much
less likely for glioma patients (BraTS). The lesions in NTUH dataset are thus more difficult
to detect.

Moreover, there is significant heterogeneity in our dataset. To evaluate whether our
model could achieve similar segmentation performance under a more realistic scenario, we
used the dataset containing cranial lesions of various pathology, which is different from
the BraTS dataset with only glioma cases. In a strict sense, we also have some images of
non-neoplastic diseases such as AVM. Additionally, some of the tumors are extra-axial
(outside the brain parenchyma) and may even extend extracranially, so we cannot perform
skull stripping like BraTS. Due to the heterogeneity of tumor types and sites, we may need
a much larger dataset to reach similar performance.

Our results indicated that better performance was correlated with more training
samples (as in metastases, meningioma, and schwannoma, Figure 2) and larger lesion
dimensions (Figure 3). We also report the effect of input channels (of BraTS) in this revision.

Another reason is that we only used one image set (T1+C) to predict instead of four
sequences used in the BraTS dataset. Less information might lead to deteriorated performance.
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It is also worth mentioning that our dataset is quite imbalanced disease-wise. From
the performance of the models we trained, we could observe that this imbalance resulted in
serious bias issues for minority patients. We found it quite difficult to train a model by the
traditional soft-dice loss or cross-entropy loss. Using the weighted cross-entropy loss gave
us a 0.25 dice score, while our modification of subtracting a log-soft-dice term improved
the dice score to 0.40. Such difference may result from tumor size since tumors in our
dataset were of fewer voxels on average. In addition to the data variety, the weighted cross-
entropy function could be very unstable and thus harmful to the optimization. Empirically,
we found that the model will most likely fail in 10 epochs and predict nothing but the
background for all inputs. By adding another term with the dice score, the new loss
function provides better guidance to the model, and we could empirically observe the
significant improvements.

We added images of trigeminal neuralgia in the training set as negative samples, in
which there was no real space-occupying lesion. We did not expect the machine to learn
how to identify trigeminal neuralgia. Instead, it can be considered that images of trigeminal
neuralgia are examples of the heterogeneity of real clinical datasets. This artificial impurity
was meant to mimic the systematic bias that could occur in a larger and unpurified dataset
to infer the availability of deep learning models.

Although the targets in our dataset were defined and contoured by experienced
clinicians, it should be noted that they were the targets we wanted to treat. Therefore, in
very few cases, not every lesion detected by human experts was labeled. For example, a
patient with brain metastases may also have a small meningioma, which may be stable and
will not be labeled and treated by radiosurgery. If an algorithm detects that meningioma is
this rare, decreased precision and dice score can be expected. However, from the clinical
experience of our expert neurosurgeons and radiation oncologists, the rate of intentionally
ignored meningiomas and pituitary adenomas was estimated around 1%. This estimation
was in parallel with the reported prevalence of intracranial incidentaloma. On the other
hand, the estimated rate for ignored brain metastases was much higher (5%), because our
clinical experts might decide not to treat small lesions (less than 5–10 mm or visible only on
one axial slice) in patients with multiple brain metastases [41,42]. As a result, this should
not impede the training due to its rarity, and most meningiomas were labeled.

4.2. Performance on Different Types of Tumor

We can see that these models performed better for brain metastases, meningiomas,
and schwannomas, where there were more than 300 cases each. They performed best for
schwannomas, probably because most of these are vestibular ones, whose locations are
always around internal auditory meatus.

On the other hand, these models performed poorly for pituitary tumors, AVMs, and
other tumor types. Besides the relatively small number of cases for training, pituitary
tumors and AVMs are not always readily visible for humans using only the T1+C series.
For example, dynamic contrast-enhanced MRI may be required to visualize pituitary
tumors. AVMs are sometimes not visible even using time-of-flight (TOF) MRI, so computed
tomography angiography and/or digital subtraction angiography may be required for
target contouring.

4.3. Comparison between Deep Learning Models

With respect to the input format, there are two classes of model architectures. The 2D
model predicts tumors in just one slice and completely discards the information along the
z-axis, while the 3D model utilizes the full information on the MRI volume. This results in
a trade-off between features and overfitting. When receiving more features, it is more likely
to overfit the unrelated noise, especially with such a small dataset. Patch sizes in previous
works range from 16 × 16 × 16 to 64 × 64 × 64 mm3 [18,43–55], of which Kamnitsas et al.
outperformed the others. Thus, in the current proposed work, we restrained the receptive
field and predicted on inputs patches with the size of 64 × 64 × 64 mm3. We examined
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this trade-off in our benchmark experiment on the BraTS dataset. Surprisingly, when
experimenting with V-Net on our dataset, small patch-wise prediction became detrimental,
but receiving the full brain volume guaranteed the best performance.

Overall, the 3D models seem to be more appealing. The 3D models present the full
potential of convolution networks, reducing the number of parameters and becoming far
more efficient due to their convolution nature. Specifically, V-Net has approximately 1/30 of
the parameters compared to U-Net, shortest inference time, and the best performance on
dice metric. The only shortcoming of 3D models is the requirement of GPU RAM due to the
large input. In our experiments, we solve this by using a smaller batch-size. Furthermore,
replacing batch normalization with dropout is quite effective in preventing overfitting
because of the small batch size.

We compared the performances of the models trained with one-channel inputs of
the NTUH and BraTS datasets. When the models were trained with one-channel inputs,
the segmentation performances were slightly better than when they were trained with
four-channel inputs. It could be inferred that the models perform better on a dataset with
less heterogeneity in lesion types as well as lesion sizes.

4.4. Comparison to Previous Studies Addressing Deep Learning-Based Segmentation in SRS
Treatment Planning

Efforts to identify the targets and the OARs prior to SRS treatment are crucial for
dosimetry planning to protect the organs other than the lesions themselves. Several
studies have benefited from deep learning methods on the classification and nomencla-
ture standardization of the OARs [56,57]. The above-mentioned studies could advance
computer-assisted radiation therapy.

To evaluate the benchmark performed in this study on the segmentation of brain
lesions, previous studies addressing the segmentation of brain tumors in the treatment
planning process during SRS will be reviewed. Of all types of brain lesions, asymptomatic
or unresectable metastases warrant SRS without maximal surgical resection. As SRS serves
as the first-line treatment for oligometastatic lesions, which denotes metastases of lesser
than five lesions, contouring the lesions is of important clinical significance. The models
previously used included modified DeepMedic [11,27], an ensemble of DeepMedic and 3D
U-Net [28], and CNN [29].

Tumor volume tremendously affects the performance of segmentation; higher variety
in tumor sizes and smaller lesions usually imply adversity in segmentation. Smaller
lesions, while not affecting dice scores much, are not easily detected in methods with lower
sensitivity. Liu et al. (2017) [27] proposed a modification of DeepMedic and managed to
reach a dice score of 0.67. In their study, the number of brain metastases per case varied
from 1 to 93 (5.679 ± 8.917), and the mean tumor size was 672 ± 1994 mm3. Lu et al.
(2019) [28] ensembled two neural networks, namely 3D U-Net and DeepMedic, yielding a
good performance in segmentation with a median dice score of 0.74. The median size of
the tumors in their dataset was 980 mm3, while the smallest tumor was 3 mm3. Fong et al.
(2019) [29] trained the convoluted neural network with multiplanar slices, yielding a dice
score of 0.77. Lu et al. (2021) [11] implemented an ensemble of 3D U-Net and DeepMedic
and enhanced the prediction significantly, especially for non-experts. In their dataset, the
median volume of the lesion was 890 mm3. In our dataset, the lesions possessed a median
size of 656 mm3 and a mean of 2833 ± 6389 mm3, while the smallest lesion was 13.05 mm3.
Generally speaking, with the highest dice score of 0.51, sensitivity of 0.66, and precision
of 0.48, the lesions in our dataset had a higher size variety and smaller median size. The
inconsistency in the lesion characteristics could cause difficulties for the deep learning
models to extract features and hinder the prediction.
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Ensemble models introduced higher segmentation performance than a single model
in the previous studies [11,27–29]. Although in our study, V-Net with a dropout rate of
0.1 outperformed other methods in segmentation of brain lesions in the NTUH dataset,
we did not perform a benchmark on the ensemble methods. It remains undetermined
whether ensemble models yield better performance as well as which models ensembled
could enhance segmentation the most.

As the difference in the imaging sequences used in the training process is a determinant
of segmentation performance, the sequences used in previous works are discussed. Liu et al.
(2017) used contrast-enhanced T1-weighted images [27] while Lu et al. (2019) used CT and
T1-weighted MRI scans with contrast as the input [28]. Multiplanar slices of MPRAGE
(magnetization-prepared rapid acquisition with gradient echo) images were taken as input
in Fong et al. (2019) [29]. Lu et al. (2021) used contrast-enhanced CT and T1-weighted
MR scans [11]. Out of the three studies, methods with MPRAGE as the input sequence
yielded the highest dice score compared to the ground truth. Brain tumors on FLAIR,
which is often used to contour the clinical target volume (CTV), mostly appeared as
confluent hyperintense signals, introducing higher sensitivity and lower precision. On
the other hand, brain tumors were mostly discrete on MPRAGE, an MRI modality taking
advantage of gradient echo [58]. Despite the fact that higher precision could be achieved
with MPRAGE, it is currently of lower significance in contouring before SRS. Of note,
studies have shown that simultaneous use of different imaging modalities promised a
better performance in segmentation compared to single modality use [38]. In our study, only
contrast-enhanced T1-weighted MR images were used, and this could be a determinant of
lower segmentation performance.

The required dataset size to yield high performances could not be confirmed, as we
collected the data available to train the models and only draw conclusions from the current
dataset. It is probably true that a larger dataset may generate better or different results, but
such a dataset was not available to us.

4.5. Limitation of This Study

Compared to previous works investigating samples that underwent SRS, a relatively
large dataset was implemented in the current study. However, the results suggest that
the numbers of pituitary tumors, AVMs, and other tumors are probably insufficient for
good results. Since the numbers of above lesions in a single institute may be insufficient,
federated learning can be a potentially practical approach for better results.

Contrast-enhanced T1-weighted MR imaging was the only modality used as input in
our study. Some tumors such as low-grade glioma or pituitary tumors are non-enhancing,
introducing great difficulty in the detection and segmentation of these types of lesions.
Simultaneous use of multiple imaging modalities could be the solution to this. Reviewing
previous works, the sensitivity for detection of smaller brain lesions (<3 mm) with 3D U-
Net, whether trained with black-blood or gradient echo modalities, decreased significantly
compared to larger brain lesions (≥10 mm, 0.981, 3–10 mm 0.829, <3 mm 0.235) [59]. The
same trend could be observed in studies performed with 2-stage MetNet (≥6 mm 0.99,
3–6 mm 0.87, ≤3 mm 0.25) [60] or GoogLeNet [61]. The 2-stage MetNet [60] and BMDS
net [62] could achieve satisfactory segmentation prediction on tumors larger than 6 mm,
with dice scores of 0.87 and 0.83, respectively. In our dataset counterpart, the diameters of
10.5% lesions were smaller than 6 mm, 45% lesions smaller than 10 mm, and 95.7% smaller
than 3 cm. The small lesion sizes in our NTUH dataset contributed to the dice score lower
than 0.6 predicted with V-Net.

The way dice score is derived could mask the effect of contouring small lesions. In
our work, dice score was calculated per voxel, which favored larger lesions compared to
dice score derived per lesion. Clinically, SRS is indicated and is of significant importance
for patients with smaller brain lesions, whereas for patients who are surgical candidates
with larger lesions, standard care remains surgery with adjuvant stereotactic radiation
therapy or whole-brain radiation therapy. As for patients with diffuse lesions, whole-
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brain radiation therapy is the standard treatment due to the lack of level 1 evidence to
support the use of SRS in the patient population [63] (p. 865). Contouring deflection on the
gross tumor volume (GTV) of such small lesions could introduce a huge impact on later
target contouring, compromising organs at risk (OAR). Take brain metastases, for example,
current guidelines for contouring for SRS generally indicate a 1.5 cm expansion from GTV
to generate CTV. In our dataset, the smallest volume of brain lesion being 20 mm3 implies
a 3.4 mm diameter, and the volume difference of CTV with GTV is about 3000 mm3. This
expansion in target volume significantly differs if a small lesion was not correctly contoured.
As a consequence, a dice score per lesion provides benefit in some circumstances.

Evidence derived from trials concerning treatment response to SRS based on either
deep-learning segmentation or manual segmentation is still an unmet need. Several studies
implemented multiple modalities (PET/MRI) in order to train machine learning models
for tumor segmentation, which suggested that biological target volume (BTV) could be
promising in helping CTV definition during SRS treatment and their ability to indicate
dose escalation on biologically active targets [64,65]. Despite the effort in assisting CTV
definition by taking advantage of the training set of multi-modalities, whether the addition
in modalities to either of the learning methods improves clinical treatment response is
yet undetermined.

5. Conclusions

We benchmarked five commonly used deep learning segmentation models on our
SRS dataset. We confirmed that these approaches also work on a heterogeneous dataset,
but with decreased performance. We discovered that the V-Net architecture worked best
for this specific task. With the top dice scores, the smallest size of the model, and the
shortest inference time, V-Net may be a good choice to improve upon. We also found that
when training on the dataset with such heterogeneity and class imbalance, using weighted
cross-entropy loss with log-soft-dice term significantly improved the performance.

Supplementary Materials: GitHub repository, https://github.com/raywu0123/Brain-Tumor-Seg
mentation, (accessed on 25 September 2021).
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Appendix A

DICE v_net_dropout0.1 Deconvnet u_net Pspnet Deepmedic

Metastasis 0.69 0.55 0.45 0.52 0.5
Meningioma 0.57 0.56 0.48 0.46 0.47
Schwannoma 0.73 0.66 0.72 0.55 0.63

Pituitary 0.27 0.38 0.07 0.24 0.29
AVM 0.27 0.31 0.22 0.24 0.2

Other tumors 0.34 0.25 0.26 0.28 0.29
Total 0.59 0.52 0.44 0.46 0.46

Appendix B

SENSITIVITY v_net_dropout0.1 Deconvnet u_net Pspnet Deepmedic

Metastasis 0.82 0.55 0.37 0.56 0.5
Meningioma 0.71 0.58 0.41 0.54 0.57
Schwannoma 0.91 0.86 0.75 0.87 0.92

Pituitary 0.48 0.37 0.04 0.31 0.29
AVM 0.36 0.33 0.2 0.24 0.22

Other tumors 0.58 0.3 0.22 0.33 0.42
Total 0.74 0.56 0.39 0.55 0.54

Appendix C

PRECISION v_net_dropout0.1 Deconvnet u_net Pspnet Deepmedic

Metastasis 0.63 0.62 0.78 0.6 0.64
Meningioma 0.51 0.6 0.67 0.54 0.53
Schwannoma 0.62 0.59 0.76 0.45 0.5

Pituitary 0.21 0.5 0.46 0.27 0.42
AVM 0.34 0.49 0.57 0.51 0.34

Other tumors 0.34 0.3 0.41 0.38 0.42
Total 0.53 0.56 0.68 0.52 0.54
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