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Featured Application: Providing protection and authentication for digital models, G-code pro-
grams, and printed objects produced in additive manufacturing.

Abstract: Digital and analog contents, generated in additive manufacturing (AM) processes, may be
illegally modified, distributed, and reproduced. In this article, we propose a watermarking scheme
to enhance the security of AM. Compared with conventional watermarking methods, our algorithm
possesses the following advantages. First, it protects geometric models and printed parts as well
as G-code programs. Secondly, it embeds watermarks into both polygonal and volumetric models.
Thirdly, our method is capable of creating watermarks inside the interiors and on the surfaces of
complex models. Fourth, the watermarks may appear in various forms, including character strings,
cavities, embossed bumps, and engraved textures. The proposed watermarking method is composed
of the following steps. At first, the input geometric model is converted into a distance field. Then,
the watermark is inserted into a region of interest by using self-organizing mapping. Finally, the
watermarked model is converted into a G-code program by using a specialized slicer. Several
robust methods are also developed to authenticate digital models, G-code programs, and physical
parts. These methods perform virtual manufacturing, volume rendering, and image processing to
extract watermarks from these contents at first. Then, they employ similarity evaluation and visual
comparison to verify the extracted signatures. Some experiments had been conducted to validify
the proposed watermarking method. The test results, analysis, discussion, and comparisons are also
presented in this article.

Keywords: watermarking; additive manufacturing; geometric modelling; self-organizing mapping

1. Introduction

Additive manufacturing (AM) techniques have been widely used in scientific, engi-
neering, medical, and other applications [1–3]. An AM process is composed of three stages:
geometrical modelling, G-code generation, and 3D printing [2,3]. The resultant geometric
models, G-code programs, and physical objects consume valuable resources, including
human efforts, computing costs, energies, and raw materials. If these contents are illegally
distributed, reproduced, and modified, the owners may encounter significant economic
losses [4,5], and they will hesitate to invest additional resources in AM. Consequently, the
innovation and progression of AM industries will be in danger. In some volunteer AM com-
munities, their members are willing to share their work and knowledge with others. Thus,
ownership protection is not a concern [6–8]. However, in this situation, authentication and
annotation of contents are still required to avoid misusage of the products.

Watermarking procedures had long been used to enhance the securities of digital data,
including texts, music, images, and videos [9–11]. By analogy, in AM industries, people
inserted identification signals into digital and physical models to secure their intellectual
properties [12–14]. Nonetheless, mechanisms for protecting G-code programs were seldom
discussed in these publications. In an AM process, the quality of the resultant object
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is mainly decided by the G-code program. Thus, we spend a lot of efforts to decide
the printing direction, construct the supporting structures, slice the geometric model,
select the hatching patterns, and schedule the toolpaths before generating the G-code
program. Besides, to ensure a high-quality 3D printing, we must also conduct experiments,
calculations, and simulations to obtain feasible printing parameters, including the nozzle
temperature, raw material type, printing speed, etc. Therefore, for the sake of economy,
G-code programs are valuable properties. Furthermore, well-tuned G-code programs can
be used to repeatedly produce physical models to reduce production costs. Thus, G-code
programs are one of the key gradients for mass-production in AM applications. Based on
these reasons, G-code programs should be carefully protected too.

In most of the published watermarking algorithms, the digital models are presumed
to be expressed in polygonal representations, for example, stereolithography (STL) and
OBJ formats [2–5]. However, tissues and organs, segmented from 3D medical image data,
are composed of voxels [15]. They are not polygonal models and cannot be watermarked
by using these conventional methods. To protect or authenticate them, we must invent new
watermarking techniques. In some conventional watermarking procedures, watermarks
are created on the surfaces of digital models. These watermarks could be damaged in the
G-code generation, printing, and post-processing stages and become hard to verify [4,5].
Some other researchers proposed to insert watermarks inside digital models [16,17]; thus,
the printing and post-processing processes would not remove these signals. However, these
algorithms possess weakness too. For example, the geometrical complexities of the regions
for inserting watermarks are usually simple. Secondly, these methods lack the techniques
to uncover watermarks in digital models, thought they are capable to reveal watermarks in
printed results. Thirdly, special facilities are required to uncover and verify watermarks.
Hence, it will be beneficial to design an adaptive watermarking scheme which can insert
fingerprints anywhere in digital and physical models and can adjust the encoding process
to accommodate the shapes of the target models, the underlying 3D printing platforms,
and the intended applications of the products.

Methodology Overview

In this article, we propose a watermarking method for AM. The proposed approach is
composed of the following steps. At first, the input geometric model is converted into a
distance field. At the second step, the watermark is inserted into a region of interest (ROI)
by using self-organizing mapping (SOM). Finally, the watermarked model is converted
into a G-code program by using a specialized slicer, and thus the watermark is implicitly
encoded into the G-code program. If the G-code program is executed by a 3D printer to
manufacture an object, the printed part will contain the watermark too.

Compared with conventional watermarking methods, our algorithm possesses the
following advantages. First, it protects not only digital and physical models but also
G-code programs. Second, it can embed watermarks into both polygonal and volumetric
models. Third, our method is capable of inserting watermarks inside the interiors or on
the surfaces of complex objects. Fourth, the watermark can appear in various forms, for
example, signature strings, randomly distributed cavities, embossed bumps, and engraved
textures.

Various verification methods are also developed in this work to authenticate digital
and analog contents. If the target is a G-code program, we emulate it by using a simulator
to generate a volume model at first. Then, the result is rendered to search for a trace
of watermark. If a watermark is found, we extract it and compare it with the recorded
watermark to verify the G-code program. When dealing with a geometric model, we
first render the content to confirm the existence of a watermark. Then, this watermark is
retrieved from the model and compared with the recorded one to evaluate the genuineness
of the geometric model. If the target is a physical part, we illuminate the object by using
light rays to uncover the watermark. Then, the revealed watermark is compared with the
recorded watermark to authenticate the physical part.
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The rest of this article is organized as follows. Section 2 describes the embedding and
detecting procedures. The test results are given in Section 3. Discussion and analysis of this
research are presented in Section 4. Comparisons with others’ methods and future work
are also included in Section 4. This article ends with a conclusion in Section 5.

2. Materials and Methods

The flowchart of the proposed watermarking procedure is illustrated in Figure 1. It
includes the steps of voxelization, distance field transformation, region-of-interest creation,
watermark embedding, and G-code generation. Details of these computations are presented
in this section. Besides the encoding procedure, we also design various verification methods
for digital and physical contents. These algorithms are also formulated in this section.
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2.1. Voxelization and Distance Field Computation

In the proposed watermarking method, the input model is presumed to be contained in
a volumetric space, composed of voxels. In case that the model is expressed in a traditional
polygonal representation, a voxelization computation [18] is triggered to decompose it into
voxels. To achieve this goal, we enclose the model by using an axis-aligned bounding box
(AABB). Then, the AABB is divided into voxels by using a regular grid. At the following
step, the voxels are classified into two types: model voxels and void voxels. A voxel is
regarded as a model voxel if it is in the interior of the model or intersected with the model’s
boundaries. Otherwise, it is regarded as a void voxel. After the classification process, the
intensities of the void and model voxels are set to zero and one, respectively.

At the following stage, we construct a distance field D(x,y,z) in the AABB to record
the shortest distances from the model surface to all the voxels. D(x,y,z) expands like a
wave, originating at the model surface Γ(x,y,z) and propagating inwards and outwards.
Its travelling speed is proportional to the inverse of its gradient magnitude. Hence, the
distance function is governed by the eikonal equation [19],(

∂D
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f 2 , D(x, y, z) = 0 in Γ, f = 1. (1)

where f is the propagation speed of the distance field. We compute the distance field by
using the revised fast marching method (RFMM), developed in the research of [20]. In the
computation, all the voxels in the AABB are grouped into three sets: DONE, CLOSE, and
FAR. DONE contains those voxels, whose final distances are computed. CLOSE keeps the
voxels, which are adjacent to the voxels of DONE. Other voxels are stored in FAR.

Initially, the voxels belonging to the model’s boundary, Γ(x,y,z), are inserted into
DONE and their distances are set to a purposefully selected value, for example zero. Then,
the voxels adjacent to DONE are searched and stored in CLOSE. When inserting a voxel into
CLOSE, we apply forward and backward differences to approximate the partial derivatives
of Equation (1) and use the distances of its neighbors in DONE to convert Equation (1) into
a quadratic polynomial. Then, the voxel’s distance is set to the larger root of this quadratic
polynomial. To speed up the computation, CLOSE is implemented by using a priority
queue [21], such that the voxel belonging to CLOSE and having the smallest distance is
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always at the top-most position of CLOSE. Since the voxels in FAR do not contact any
voxels of DONE, their distances are set to infinite at the initial stage.

Then, the computation is iteratively carried out. At each iteration, the top-most voxel
of CLOSE is removed and inserted into DONE. Subsequently, those of its neighbors, which
are in CLOSE or FAR, are searched and new distances of these neighboring voxels are
calculated by using the method mentioned in the previous paragraph. If the new distance
of a neighbor is shorter than its current one, the distance of this neighbor is replaced by
the new distance. After this updating procedure, the neighbors, which were in FAR before
the updating, are removed from FAR and inserted into CLOSE. Along with each distance
modification and voxel insertion, positions of voxels in CLOSE are adjusted according to
their distance values to ensure the top-most voxel always has the shortest distance in this
set. These calculations are repeated until CLOSE becomes empty. The details of the RFMM
can be found in the paper of [20]. The paper of [19] provides an alternative method for
computing distance fields.

Figure 2 shows some results, generated by the voxelization and distance field com-
putation. The input model, displayed in part (a), is a bowl, formed by triangles. After the
voxelization process, it becomes a volume model, as revealed in part (b). In the following
step, the model is transformed into a distance field. A section, cut from this model, is
portraited in part (c) to uncover the characteristics of the distance field. As the image
shows, the distance field contains multiple layers of iso-surfaces [18,19]. Since voxels in
these individual iso-surfaces belong to different distance levels, we can peel this model
level-by-level and insert signatures in selected levels.
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2.2. ROI Segmentation

After converting the input geometric model into a distance field, the proposed water-
marking procedure extracts some adjacent levels from the distance field. These distance
levels are confined by the following constraint:

t1 ≤ D(x, y, z) ≤ t2. (2)

When t1 and t2 are the lower and upper bounds of the adjacent levels. Then, an
oriented bounding box (OBB) is manually constructed by the users via a graphical user
interface. Those voxels, belonging to these distance levels and the OBB, are automatically
collected by the encoder to form a region of interest (ROI). They will be utilized to carry
the watermark in a latter computation.

An example is shown in part (a) of Figure 3 to demonstrate the ROI construction
process. The input model is a bowl, rendered in white color. The green edges reveal the
OBB of the ROI; the light blue region is the resultant ROI.
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Figure 3. (a) the front and top views of the ROI, shaded in light-blue, (b) the watermark in the ROI, (c) the extracted
watermark image.

2.3. Digital Model Watermarking

Traditional watermarking methods are designed to insert fingerprints into geometries
of polygons or parametric meshes [22,23]. Nonetheless, in this work, the target contents are
volume models comprised with voxels. They lack connectivity and topological information,
and thus conventional watermark embedding methods are not applicable for them. To
overcome this problem, we develop a self-organizing mapping (SOM) procedure to encode
watermarks for these models. The fundamental concept of this procedure is depicted
in Figure 4. At first, the watermark is rasterized in a 2D lattice of nodes. Hence, this
lattice forms a binary image of the watermark; some of its nodes are watermarked while
others remain intact. Then, an iterative correspondence training process is triggered to
create links between the lattice nodes and the ROI voxels. Finally, the watermark is placed
inside the ROI via these correspondent relations. The iterative correspondence training
and embedding computations are described in the following contexts.
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Figure 4. The SOM scheme uses a 2D lattice (middle) to bridge the watermark (left) and the
ROI (right). The lattice nodes are trained to form a network of correspondences. Then, the watermark
is inserted into the ROI via these correspondences.

2.3.1. Iterative Correspondence Training

The correspondence training process is conducted as follows. Initially, each lattice
node is given a random weight vector w = (wx, wy, wz). Then, at each iteration, a voxel is
randomly selected from the ROI. Assume this voxel is indexed by I = (i, j, k) in the AABB. At
the following step, the lattice node, whose weight vector w is most similar to I, is searched.
This node is the winner node and its weight vector is revised by

w(t + 1) = w(t) + δ(t)(I − w(t)), 0 ≤ δ(t) ≤ 1. (3)
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where δ(t) is a learning factor, shrinking with time t. After the weight vector of the winner is
revised, the weight vectors of its neighbors within the vicinity are also modified as follows,

wj(t + 1) = wj(t) + γ · δ(t)(I − wj(t)), 0 ≤ γ ≤ 1, γ ∝
1

dj + 0.5
. (4)

where wj is the weight vector of the j-th neighbor, dj is the distance between the winner
and this neighbor, and γ is a scaling factor proportional to the inverse of dj. The vicinity is
defined by a circle, centered at the winner node. Its radius is shrunk with time to ensure
the convergence of the SOM. The above training procedure repeats until the weight vectors
of all the lattice nodes converge or the number of iterations exceeds a predefined limit. The
fundamental principles of SOM can be found in the researches of [24,25].

2.3.2. Watermark Embedding

Then, for each model voxel in the ROI and with index I, we find the lattice node
possessing the most similar weight vector w, i.e., w ≈ I. If the lattice node was watermarked
in the rasterization step, the distance of this voxel was disturbed or replaced by a special
value. Otherwise, its distance is unchanged. After completing the watermarking process,
the model is volume-rendered in several view angles to reveal the embedded watermark.
One of the resultant images is recorded and will be used in the future to authenticate
G-code programs, geometric models, and printed parts.

An example of the SOM watermarking scheme is demonstrated in Figure 3. The
watermarked ROI and the extracted image are shown in parts (b) and (c), respectively. The
watermark image is taken in the top view angle.

2.4. G-Code and Physical Part Watermarking

After being watermarked, the digital model is converted into a G-code program by
using a specially designed slicer. This slicer is capable of translating voxel models into
G-code programs. Its algorithms, data structures, and operational procedures can be found
in [26]. During the G-code generation procedure, the space occupied by watermarked vox-
els is treated as void spaces or filled with different hatch patterns or materials, depending
on the characteristics of the underlying 3D-printing platforms and the applications of the
model. Hence, the watermark is implicitly embedded in the G-code program. By using this
G-code program to layered-manufacture a physical part, the resultant object will contain
the watermark and is under protection too.

2.5. Recorded Information

Some essential data of the watermarking process are secretly recorded and will be
used in the authentication processes. These data are listed in Table 1. The first item is the
watermark image taken in the encoding stage. It is called the recorded watermark hereafter.
This signal will be used to verify digital models, G-code programs, and printed parts. The
second and third items are the disturbance value and the ROI. This information helps us to
locate and capture watermarks in digital and physical models. The last recorded parameter
is the view angle in which we generate the recorded watermark.

Table 1. Recorded watermarking data.

Data Items Type Usage

Watermark 2D image 1 Verification
Disturbance Real number Watermark capturing

Region of interest (ROI) Oriented bounding box (OBB) Watermark searching
View angle Directional vector Watermark retrieval

1 a 32 × 32 binary image.
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Besides keeping these data, a physical model might be manufactured too. This printed
object contains the watermark and will serve as the standard model for verifying printed
parts in the future.

2.6. Watermark Detection Procedures

Since watermarks may be embedded into digital models, G-code programs, and
physical parts, different decoding methods are derived to handle these contents accordingly.
Their flowcharts are illustrated in Figure 5. The procedures for verifying G-code programs
and digital models are similar. They rely on virtual manufacturing, volume rendering,
and similarity evaluation to achieve their goals. On the other hand, the authentication
procedure for physical parts invokes physical manufacturing, image capturing, and visual
comparison. These three watermark detection algorithms are described in this subsection.
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The method dedicated to authenticating a G-code program is shown in part (a) of
Figure 5. At first, the G-code program is emulated by using a simulator to generate
a voxel model. The design, implementation, and functionalities of this simulator are
presented in [27]. Then, the model is volume-rendered to search for a trace of watermark.
If a watermark appears in the resultant images, we extract the watermark by using the
recorded view angle and ROI. At the following step, the similarity between this watermark
and the recorded one is computed by using the dHash method of [28]. If the resultant
dHash value is higher than a predefined threshold, we assume that this G-code is genuine.

To examine a digital model, we volume-render this model to confirm the existence
of a watermark. Then, this watermark is retrieved by using the recorded ROI and view
parameter. At the following step, the extracted watermark is compared with the recorded
one by using the dHash method. If the similarity index is higher than the predefined
threshold, this digital model passes the authentication test.

The verification procedure for a physical part in depicted in part (b) of Figure 5. At
first, we retrieve the standard model, fabricated in the encoding process. At the second
step, we illuminate the physical part and the standard model by using a bright light source
to uncover their watermarks. Then, the revealed watermarks are visually compared. If an
image capture device is available, we can generate watermark images from both objects
and make comparisons by using the dHash method.
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3. Experimental Results

Based on the proposed embedding and detecting schemes, we built a watermarking
system aiming to enhance the security of AM. The major components of this system include
an encoder and a decoder. The former is responsible for embedding watermarks, while the
latter is utilized to verify contents. Besides these two programs, the slicer and simulator,
developed in the researches of [26,27], are also employed to translate voxel models into
G-code programs and to convert G-code programs into voxel models, respectively. Many
experiments had been designed and conducted to test the system. Some of the test results
are presented and analyzed in this section.

3.1. Watermarking Experiments

The first experiment was designed to test the encoder. The input models are originally
expressed in STL format. The encoder converted the input models into voxel models at first.
Then, it transformed these voxel models into distance fields and embedded watermarks
there. The watermarked models are shown in Figure 6, including a tetrapod, a bowl, and
a mug. The string, “NTOU”, was served as the watermarks. The results were produced
by a volume-rendering subroutine. To high-light the watermarks, the model boundaries
were shaded in transparent white color while the watermarks were rendered in opaque
red color. We cut off a portion of the bowl by using a clipping plane to better illustrate
its internal structures. Among these three models, the tetrapod possesses a complicated
structure, and hence its watermark is twisted. On the other hand, the watermark in the
mug suffers less distortion because of the mug’s simple shape.
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Figure 6. Volume rendering images of the watermarked models, (left) a tetrapod, (middle) a bowl, (right) a mug. The
watermarks are shaded in red color.

Conventionally, watermarks are inserted in imperceptible positions to enhance se-
curity. In this experiment, we purposely embed the watermarks into large curvy spaces
in the test models to evaluate the capability of our encoding procedure. As the resultant
images show, the watermarks blend well with their host models. The watermarks originate
from a flat 2D pattern and the ROIs are comprised with voxels, scattering in curvy distance
levels. There are enormous geometric and topological imparities between these two types
of media. The experimental results show that the SOM subroutine bridges the gaps and
successfully inserts the watermark into these voxel models.

Besides watermarking the test models, blank-and-white images of the watermarks are
produced and recorded for authentication purpose. These watermark images are displayed
in the upper row of Figure 7. The watermarks of the tetrapod and mug are rendered in the
front view while the watermark of the bowl is imaged through the left upper corner of the
AABB. After being watermarked, the digital models were converted into G-code programs
by using the slicer. The resultant G-code programs would generate fingerprinted contents
if they were interpreted by simulators or executed by 3D printers.
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3.2. Watermark Detection for G-Code Programs and Voxel Models

After testing the encoder, we conducted another experiment to evaluate the decoder:
At first, we fed the G-code programs to the simulator and virtually manufacture three
voxel models. These contents were then processed by the decoder to extract the hidden
watermarks. The extracted watermarks are displayed in the lower row of Figure 7. At
the following step, the decoder calculated the dHash values between the extracted and
recorded watermarks. The dHash values were represented by 128-bit binary strings. Finally,
the similarities between the extracted and recorded watermarks were computed by using
the dHash values, based on Hamming distances [28]. The results are presented in Table 2.

Table 2. Similarity test results.

Models Similarities

Tetrapod 0.91504
Bowl 0.93750
Mug 0.94434

The test models are not the original ones but reproduced by using the G-code pro-
grams. However, the G-code programs are genuine, and thus the test models should be
regarded as legitimate copies of the raw models. As the test results shown in Table 2,
the similarities between the detected and recorded watermarks are high. Therefore, our
decoder successfully verifies these contents. Furthermore, the genuineness of the G-code
programs is also implicitly asserted in this experiment. The efficacy of our decoder on
authenticating G-code programs and geometric models were proven in this experiment.

Among the test models, the mug generates the highest similarity while the tetrapod
produces the lowest score. The tetrapod is relatively complex. The G-code generation and
virtual manufacturing process induces more geometric noises into its virtual model. Thus,
the similarity between the extracted and recorded watermarks is decreased. On the other
hand, the mug has a simple shape, such that the watermark preserves its pattern after the
digital-to-analog and analog-to-digital conversions. Hence, the captured and recorded
watermarks of this model are more similar.
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3.3. Watermark Verification for Printed Parts

In the third experiment, we assessed the capacities of our verification method for
printed parts. At first, we watermarked a plate and utilized the slicer to translate it into a
G-code program. Then, we fabricated physical copies of the plate and the mug by using a
Fusion Decomposition Modelling (FDM) printer. The plate was printed using acrylonitrile
butadiene styrene (ABS) filament while the mug was manufactured with polylactic acid
(PLA) thermal plastic. Since we did not have any thermal imaging facilities to retrieve
watermarks, we illuminated the physical parts by using bright light sources and captured
photos of these printed models by using a cellular phone camera.

The results are presented in Figure 8. The photos show that the watermarks are
invisible under ordinary lighting conditions (the left images of parts (a) and (b)). As the
light sources are intensified, the watermarks show up and can be visually evaluated (the
right images pf parts (a) and (b)). Based on several test results, we find that the visual
detection procedure is greatly influenced by the raw materials. Since the ABS filament
possesses higher transparency than the PLA thermal plastic, it is easier to detect the
watermark in the plate than the mug.
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3.4. Placing Watermarks on Model Surfaces

In the fourth experiment, we used the encoder to create embossed and engraved
watermarks on the surfaces of the plate, the bowl, and a round cube. At first, a ROI was
created in each of these test object. This ROI contains the surface layer and five consecutive
distance levels adjacent to the surface of its host model. To create an embossed watermark,
these adjacent levels were selected from the void space outside the model. On the other
hand, the adjacent levels were extracted inside the model for generating an engraved
watermark. Then, we invoked the SOM procedure to embed the watermark “NTOU” into
the ROI. During the encoding process, the SOM procedure converted watermarked void
voxels into model voxels (for embossed signatures) or replaced watermarked model voxels
with void voxels (for engraved marks). Then, the watermarked models were manufactured
by using the FDM printer. The printed parts of the plate were fabricated by using ABS while
the bowl and the cube were printed with PLA. The heights and depths of the embossed
and engraved patterns are about 1 mm.

The images of the physical objects are displayed in Figure 9. As the images show,
the encoder successfully generates these fingerprints on the models’ surfaces. They can
be visually evaluated without using any photographic equipment. In some hobbyist
and volunteer communities, people are willing to share their work. Therefore, copyright
infringement is not a concern. Instead, they need an efficient way to quickly identify
products [6–8]. This experiment ensures that our watermarking system can be employed
to accomplish this goal.
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4. Discussion and Analysis

Imperceptibility and resilience against attacks are essential in designing watermarking
methods. In this section, the protective mechanisms offered by the proposed watermarking
method are presented and analyzed. In the past decades, many watermarking algorithms
had been developed to protect intellectual properties in AM. To our knowledge, these
methods are dedicated for protecting either polygonal models or physical products. On the
other hand, our watermarking system is designed to enhance the securities of geometric
models, G-code programs, and printed parts. Thus, the application scope of our approach
is wider. In addition, the computational spaces and fundamental methodology of our
method are different from those of the conventional approaches. These issues should be
outlined and compared. In this research, we developed new techniques to watermark voxel
models. The potential usage of these algorithms also deserves discussion.

4.1. Encryption Using Distance Fields

During the watermarking process, our encoder encrypts the digital model by trans-
forming it into a distance field. To attack the watermark, the attackers must obtain full
knowledge about this encryption procedure. Otherwise, they are not able to comprehend
the volume data and be aware of the digital model. Thus, our method offers an extra layer
of security against malicious accesses.

Conventional G-code generators cannot translate encrypted models into G-code pro-
grams. Thus, encrypted models must be decoded before being processed. After the
decryption, the input models are not protected and may be illegally copied and distributed.
Hence, encryption was not favored in protecting digital models in AM [4,5]. On the other
hand, our slicer is capable of directly converting encrypted and watermarked voxel models
into G-code programs, as shown in the experiments. Therefore, encryption using distance
field is pragmatic and increases the strength of watermarking.

4.2. Resilience and Imperceptibilty

In the encoding process, the ROI, disturbance value, and view angle are essential
for embedding the watermark and generating the watermark image. They are vital for
protecting the contents; thus, we keep them in secret. Without knowing these parameters,
it is hard for an outsider to locate and reveal the watermark. In our decoding process,
the watermark is captured by means of volume-rendering. It seems that the attackers can
utilize volume-rendering tools to uncover the watermark too. However, the attackers must
obtain these secret keys and be aware of the distance encryption so that they can filter
out irrelevant voxels and high-light the watermark in the volume visualization process.
Otherwise, they have to extract the watermark by trial-and-error.

Besides the ROI, disturbance, and view angle, the watermark image is also secretly
recorded. For the sake of clarity, we used a simple and large string as watermarks in
the presented experiments so that we could easily recognize the fingerprints. If these
identification signals were composed of randomly scattered and irregular patterns, it
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would be difficult to comprehend them, even they had been revealed by volume rendering
tools.

4.3. G-Code Program Protection

After a watermarked model was translated into a G-code program, our decoder did
not explicitly embed any signatures into the result. It seems that this content is not protected.
However, the G-code program contains instructions, which generate the watermark. To
remove the watermark from printed parts, the attackers have to figure out these instructions
first and remove or modify them later. It is impossible to identify these instructions by
browsing the G-code program. Using a simulator to emulate the printing process might
offer some clues. Nonetheless, beside the simulator invoked by our decoder, most G-code
interpreters can display only the toolpaths and resultant model by drawing thick lines or
solid tubes [29,30]. If the watermark is irregular or small, it is very unlikely to comprehend
the watermark during the simulation process, not to mention locating the G-codes.

Even when these G-codes were discovered, removing or editing them may produce
profound damages in the G-code program. As a result, the G-code program becomes
useless and no physical part can be manufactured.

4.4. Flexibility and Other Issues

Some researchers proposed to attach fingerprints on the surface of a model or to
slightly alter the vertex coordinates or mesh connectivity of the model surface to pre-
vent copyright violation [31–34]. Nonetheless, these protection mechanisms may be un-
intentionally damaged in the G-code generation, 3D printing, and post-processing stages.
As a result, the decoder may fail to accept the watermark in the verification process [4,5].
Hiding the watermark inside the model and printing it by using different materials, layer
thickness, or filling patterns alleviate this problem [34,35]. Using the intrinsic characteristics
of the 3D printer can offer some help too [36]. However, detecting and evaluating hidden
and subtly arranged watermarks require special facilities, for example high-resolution
scanners and powerful reconstruction software [4,5]. In this research, we employ the SOM
procedure to embed watermarks. This procedure allows us to plant watermarks inside the
input model or to create embossed and engraved patterns on the model surface. Thus, our
approach is flexible and can accommodate different 3D printing platforms and applications.

In the presented test results, we utilized strong light sources to reveal watermarks
hidden in printed parts, since the raw materials are semi-transparent. This strategy fails if
the raw materials are opaque. Using thermal photography and radiation imaging methods
may enhance the detection process [16,17]. In the work of [31], watermarks are created
by using magnetic materials or RFID chips and can be captured by sensors regardless of
their positions. These methods were pragmatic if the slicers had been extended to generate
G-codes for multi-material printing and chip insertion.

Besides the watermark embedding methodology, watermark-design deserves some
attentions too. This issue is seldom discussed in literatures, except the survey papers
of [4,5]. A regular and large watermark is easier to verify, but it is prone to be uncovered.
On the other hand, a small and irregular watermark is more imperceptible. Nonetheless,
it may suffer from damages caused by the slicer and the 3D printer, especially when the
underlying 3D printer is a low-end machine. As a result, the watermark could fail to be
accepted by the decoder. By performing watermarking in a voxel-space, it is relatively
easier to adjust the sizes, patterns, and locations of watermarks. Thus, we can gain extra
flexibility in designing watermarks to fit the 3D printers and applications.

4.5. Future Work

In this research, we transform the input model into distance field by using the eikonal
equation. It is possible to deduce advanced encryption methods for volume models, based
on the distance field computation. For example, varying the propagation speed, f, in some
voxels in the AABB will distort the distance field, making it harder to segment the model
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from the volume data. Besides, the initial distance field value on the model surface can be
kept in secret such that comprehending the data set would become more difficult.

In this research, the SOM procedure helps us to embed watermarks. It is capable of
creating cavities inside models and generating engraved and embossed patterns on model
surfaces. We plan to further exploit this technology and build editing tools for volume
models such that we can carve and reshape simple models to create complex objects that
are difficult to create by means of polygonal-based or parametric-mesh modelling methods.
Therefore, we can create a geometric modeler for voxel models.

Recently, some researchers proposed to build compliant mechanisms and 4D-printing
models using AM [37,38]. The resultant objects can change shapes, produce motions,
transport energies, and bear workloads when encountering external influences, such as
water, forces, electricity, magnet, heat, chemical solutions, etc. They possess great appli-
cations in industries. Material and mechanic properties differentiate from one position to
another inside these types of structures. These parameters are hard to specify in polygonal
representations. However, by converting geometric models into volume data sets and
encoding these characteristics into the voxels, we can create objects with non-uniform
internal properties. We plan to extend the proposed watermark scheme, especially the
SOM routine, to adjust structural, material, and mechanic properties inside geometric
models to accomplish this functionality.

Some researchers proposed to design models of anisotropic materials [39–41]. The
SOM embedding module of our watermarking program can be used to define material
properties and printing directions for individual voxels. Hence, this functionality can
be achieved in the modelling stage. However, we need to revise the G-code generating
method to realize anisotropic printing. New experiments also have to be carried out so
that a robust manufacturing procedure can be built.

5. Conclusions

In this article, we propose a watermarking scheme which prevents infringements of
intellectual properties in AM industries. Our algorithm embedded watermarks into digital
and physical contents, including geometric models, G-code programs, and printed parts.
Hence, it widens the scope of copyright protection in AM. In the proposed watermarking
method, the input geometric models can be expressed in polygonal formats as well as volu-
metric representations. Therefore, voxel models can be protected too. Besides embedding
fingerprints, our encoder transforms digital models into distance fields. As a result, the
contents obtain extra security. Because of using the SOM technique, our encoder is able
to insert watermarks inside complex models and attach embossed as well as engraved
signatures on the model surfaces. Thus, the proposed watermarking method is more
flexible and adaptive than conventional ones.

Experimental results validate the efficacy of the proposed watermarking scheme. The
proposed procedure can embed and detect watermarks in models with complex shapes, for
example, a tetrapod. In some experiments, we employed the encoder to create embossed
and engraved marks on model surfaces such that quick verification of printed parts is
possible. This functionality helps volunteers and hobbyists to share their creations and
innovations. Other tests revealed that our method is able to insert watermarks in large
curvy layers inside complicated objects. Hence, the watermarks are more resilient to attacks.
In the proposed procedure, watermarks are implicitly encoded into G-code programs to
protect these valuable properties. Hence, people can distribute their G-code programs to
massively produce physical models. We presented three test cases to evaluate the efficiency
of the watermark-detection methods. In all the test results, we found that the similarities
between extracted and embedded watermarks are high even though the models had gone
through digital-to-analog and analog-to-digital conversions. With these experiments, we
showed that both the encoder and the decoder achieve the target goals of this research.

The proposed watermarking process is performed in a voxel space. It invokes several
specialized algorithms, including the SOM method, distance field computation, volume



Appl. Sci. 2021, 11, 9177 14 of 15

rendering, and virtual manufacturing procedures. These techniques possess potential
applications in 3D modelling, 4D printing, and compliance mechanism creation. We plan
to apply these algorithms in our future work to develop advanced modeling tools and
mechanical facilities.
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