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Abstract: This work proposes a facial expression recognition system for a diversified field of appli-
cations. The purpose of the proposed system is to predict the type of expressions in a human face
region. The implementation of the proposed method is fragmented into three components. In the first
component, from the given input image, a tree-structured part model has been applied that predicts
some landmark points on the input image to detect facial regions. The detected face region was
normalized to its fixed size and then down-sampled to its varying sizes such that the advantages, due
to the effect of multi-resolution images, can be introduced. Then, some convolutional neural network
(CNN) architectures were proposed in the second component to analyze the texture patterns in the
facial regions. To enhance the proposed CNN model’s performance, some advanced techniques, such
data augmentation, progressive image resizing, transfer-learning, and fine-tuning of the parameters,
were employed in the third component to extract more distinctive and discriminant features for the
proposed facial expression recognition system. The performance of the proposed system, due to dif-
ferent CNN models, is fused to achieve better performance than the existing state-of-the-art methods
and for this reason, extensive experimentation has been carried out using the Karolinska-directed
emotional faces (KDEF), GENKI-4k, Cohn-Kanade (CK+), and Static Facial Expressions in the Wild
(SFEW) benchmark databases. The performance has been compared with some existing methods
concerning these databases, which shows that the proposed facial expression recognition system
outperforms other competing methods.

Keywords: convolutional neural networks; deep learning; diversified field; facial expression; recog-
nition

1. Introduction

Facial expressions [1] are a crucial non-verbal method of indicating meaning and repre-
sent a unique, universal way for people to communicate. The facial expression recognition
system (FERS) is a contactless recognition system in which the image of a human face of a
person can be captured from a distance without any intervention or interruption, even when
he/she is moving around, walking, sitting, or performing activities [2]. Facial expressions
play an essential role in our daily communication with people and in social interactions [3].
The FERS is mainly used to identify types of human facial expression [4]. According to
Ekman et al. [5], there are six basic expressions, including a neutral face as a baseline reference.
Figure 1 shows some examples of human facial expressions, e.g., fear (FA), anger (AN), disgust
(DI), happy (HA), neutral (NE), sad (SA), and surprise (SU).
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Figure 1. Example of seven types of facial expressions for the FER system.

The FERS [6] is an emergent research topic in computer vision research areas. It has
comprehensive potential in a diversified field of applications [7] with various challenges in
healthcare, education, marketing research, business organization, customer and retail fields,
government, entertainment, and within the Internet of Things (IoT). There exists several
vendors such as Microsoft, IBM, Amazon, and Google that provide some application
programming interfaces using facial expressions but with limited solutions. Here, these
diversified fields of application for FERS are discussed in terms of the four major concerns,
which are as follows:

� e-Healthcare:- The real-time FERS incorporates the healthcare system via the system
that is used to analyze and detect the image’s visualization of the patient’s feelings
remotely by identifying facial expressions [8] for patients with different ages, puberty
levels, and genders collected from a giant cloud and from social networks. The m-
Health provides mobile device-based practices to patients to support their medicine
administration and daily healthcare facilities. e-Health is an electronic health service
that uses information and communication technology for delivering facilities digitally
and for processing patients and doctors through computers for drug administration.
Both e-Health and m-Health provide immense support to healthcare industries in
building e-Healthcare systems to ensure that patients, doctors, medical professionals,
and businesses benefit, as well as to ensure the establishment of a healthy civiliza-
tion with technological advancements in smart cities. Electronic healthcare systems
provide services to patients to physically localize and monitor through recogniz-
ing their voice, speech, gesture movement, and facial expressions. Our proposed
facial expression recognition system (FERS) will improve the services of healthcare
systems. It is a significant challenge to obtain good results in the context of more
efficient and less costly health services. Hence, while integrating the FERS into the
healthcare framework, all healthcare requirements, such as automated intelligent
sensors, sophisticated tools, security, authenticity, access, and privacy, should also
be considered.

� Social IoT:- Social IoT systems represent an evolution of IoT-based systems. It estab-
lishes a platform for interconnecting subjects or objects worldwide through social
relationships. It provides better services to users by relaxing the common interests be-
tween the users. Now, the services of social IoT are exploited in emotion-recognition
as these emotions relate to the social activities of humans in their daily life. Hence, the
integration of social IoT services will make life easier with several social care facilities
for people [9]. The proposed FERS is useful for developing IoT-based smart devices
and appliances. It can be used for several entities such as education, marketing
research, retail, government, media and content, gaming, and finance. During online
teaching, the facial expressions of students can be compared to their interest and
understanding of topics that have been taught to them. The sentiments from online
trading and investment strategies will be beneficial for the financial development of
the organization. The emotion analysis using customer reviews and shopkeepers’
experience will bring good marketing research for the organization.

� Emotion AI:- Emotion AI [10] has wide applications in human resource management,
such as in any business organization. It helps the human resource management
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system (HRMS) during the recruitment of a candidate for selection. This emotion AI
considers several traits such as voice and text to analyze the sentiments in candidates.

� Cognitive AI:- Cognitive AI [11] provides methods and technologies to build a decision-
making system based on the behavior and reasoning ability of a person. It helps
a person to make decisions through a system. Job searching, salary prediction,
carrier path selection for job-seeker problems, cyber-security with enabled AI, and
natural language processing for sentiment analysis problems are under cognitive
AI categories. Thus, social interaction, planning, interpretation, decision-making,
competence of emotion, and self-learning capabilities are the processes of cognitive AI.

These applications use facial images for recognizing expressions in humans. The
psychology of facial expression [12] states that the face is the key to understanding emotions.
Linking the face to emotions may be an important idea in the psychology of emotions.
The facial expression recognition system works on the facial movements [13], which
are described by the facial action coding system (FACS). The FACS breaks down facial
expressions into action units that introduce a distinct change in the facial appearance.
There are various uses of FACS for discovering disorders in neuropsychiatric and social–
emotional development that are performed through psychological research. The FACS is
an immediate, powerful, and effective non-verbal communication tool to transit messages
and convey emotional information. In most of the implementation cases of FERS, the
facial region is analyzed as a texture where numerous techniques such as statistical and
structural-based methods have been employed to extract discriminant features [14]. Apart
from these techniques, recently, deep learning-based approaches with convolution neural
networks [15] have been employed to extract more discriminant and distinctive features
to ensure that a better performance can be obtained. However, most of these methods
are database-dependent and these databases have been captured spontaneously under
controlled environments [16] with tightly controlled illumination, age, and pose variation
conditions.

Despite the current state-of-the-art methods for the FERS and their significant progress
in effective computing, they still suffer from some limitations: (i) The employed datasets
are either laboratory-controlled or wild. These images are captured under unconstrained
environments and the images suffer from several challenging issues such as illumination,
poor resolution, occlusion, pose, age, and expression variations. Thus, the extraction of the
face region from the input images in optimal time is also a challenging issue. (ii) Due to
limited domain knowledge, the local to global feature representation schemes generate less
discriminative and distinctive patterns. (iii) The assumption of the feature selection might
not be valid, i.e., the extraction of local geometric information or action units’ geometric
features is not valid. Hence, we have proposed a novel deep learning-based framework
for the FERS to address these problems and improve its usefulness in diversified fields of
applications such as in e-Healthcare, social IoT, and emotion AI. The contributions of the
proposed work are as follows:

• We have designed a fast and efficient end-to-end deep learning-based framework
using the convolutional neural network approach for learning face representation by
adding some extra levels of feature representation schemes to improve the robustness
and generalization of the model.

• The obtained predictive model detects and learns powerful high-level features from
the input image and extracts more distinctive and discriminant features that provide
effective results for the proposed FERS under various illumination changes as well as
pose and age variation artifacts.

• To enhance the performance of the FERS, several experiments have been carried
out with a trade-off between the batch vs. epoch, data augmentation, progressive
image resizing, hyper-parameter tuning, and transfer learning techniques for the
better prediction of expression types on the human face and for improvement of the
performance as well as robustness of the proposed system.
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• The proposed method finds the solution for the challenging issues of FERS. At the
same time, a series of experiments have been conducted to reduce the training loss
and over-fitting problems that arise due to inadequate training data and bias in the
expressions’ variation.

The organization of this paper is as follows: Section 2 describes the related work for the
proposed system. The proposed facial expression recognition system (FERS) is discussed
in Section 3, which describes the face pre-processing techniques and the proposed CNN
architectures for the feature computation of both frontal and profile facial images. The
database description, experimental results, and discussions are described in Section 4.
Finally, Section 5 concludes this paper.

2. Related Work

An automatic facial expression recognition and classification for multi-pose and multi-
level face images have revealed to be an attractive and challenging problem since the last
thirty years [17]. A literature review stated that early stages of research has focused on
several statistical and structural-based methods [14]. In contrast, some [17] template-based
and feature-based approaches have also been investigated. The classical methods, such as
the Histogram-of-Orientation Gradient (HOG) [18], the Scale Invariant Feature Transform
(SIFT) [19], LBP (Local Binary Pattern) [20] features, and some spatio-temporal features
(STM-ExpLet [21]), have been adopted by many researchers to obtain texture features in
statistical ways; however, these methods require great effort to achieve high performance.
Recently, researchers have used convolutional neural networks (CNN, ConvNets) [22]
and have achieved great success for large-scale static images and sequences of video
recognition [23]. The CNN has been widely applied for the FER system and has significantly
improved state-of-the-art practices as well as analyzed the performance of ImageNet
classification challenges [22]. Earlier CNN models were used to solve character recognition
tasks [24], but nowadays, CNN is widely used in various object recognition problems. Here,
the most important ingredient for the success of CNN is the availability of large quantities
of training data, i.e., the use of image augmentation techniques [15]. Additionally, the CNN
achieves high performance by learning powerful high-level features by combining global
appearances to local geometric features rather than conventional handcrafted features.
However, the training image samples suffer from the lack of intensity noises, illumination,
pose and expression variation, motion blur, low resolution, and occlusion by hair artifacts.
The CNN aims towards the application of people-sentiment analysis; application to multi-
modal human–machine or computer interactions; and application to intelligent systems
with their challenges that arise when capturing images under an unconstrained imaging
environment.

Depending on the existing state-of-art methods for face representation and facial
expression, recognition could be broadly classified and analyzed into two categories:
appearance-based methods and facial action units-based methods. In the appearance-based
methods, the entire face region is divided into several blocks or patches and the features
are extracted from these patches using the Local Binary Pattern (LBP) [25], Histogram
of Oriented Gradients (HOG) [26], and Scale Invariant Feature Transform (SIFT) [19],
as explored by Zhao et al. [27] and others. Facial action unit-based methods usually
exploit the face geometrical information or face action units-driven representation for facial
expression classification. Tian et al. [28] used the positions of facial landmarks for facial
action unit recognition and then performed expression classification. The appearance-
based method [29] is the most successful and well studied for face recognition. There are
several works in which the whole face image captured in controlled-lab conditions was
taken as the input image Im×n to create a subspace based on the reduction of inconsistent
and redundant face space dimensionality reduction techniques [30]; for instance, Fisher
LDA, PCA, and LPP [31] had been adopted. A comparative literature review of these
methods for facial expression recognition have been done in [32]. The LDA and PCA
practically are based on the kernel methods. The Euclidean structure and miscellaneous
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learning methods [33] have been employed for face recognition [34]. The computational
cost of these techniques is expensive and some of these systems may fail due to the system
explicitly exhibiting the exact structure of the manifold. However, these are powerful tools
based on statistical signal-modeling, which is known as sparse coding. The sparse coding
provides beautiful results for the facial expression recognition [35] system. Instead of these
handcrafted features, deep learning methods have been assumed to be a breakthrough in
computer vision and have broken the world record in the field of recognition task problems.

Many state-of-the-art methods and deep learning frameworks use hand-labeled points
and CNN architecture for both feature extraction and built facial expression recognition
systems. Gutta et al. [36] proposed a model with an ensemble radial basis function, a
grayscale image, and inductive decision trees for the four classes (i.e., Asian, Caucasian,
African, and Oriental) ethnicity recognition problem. Zhang and Wang [37] proposed
a method for two-class racial classification using multi-scale LBP (Local Binary Pattern)
texture features while combining 2D and 3D texture features. Zhang et al. [38] described
two types of features, namely the geometry-based features and Gabor-wavelets-based
features for the FER System. Bartlett et al. [39] applied the Gabor filters coupled with
feature selection and machine learning techniques for recognizing facial expressions on a
human face. In [40], Rose applied Gabor and log-Gabor filters on low-resolution images for
facial expression recognition. Wu et al. [41] explored the Gabor motion energy filters [42]
to recognize the dynamic facial expressions of individuals. Gabor filters together with
genetic algorithms (GA) and SVM for the analysis of six basic facial expressions from video
sequences were employed in [25]. In [43], Gu et al. proposed a method for facial expression
recognition based on the radial encoding of local Gabor features with classifier synthesis.
Almaev et al. [44] proposed a new dynamic feature descriptor called the Local Gabor
Binary Patterns from Three Orthogonal Planes (LGBP-TOP) by combining LBP-TOP [45]
and Gabor filters.

The major problems that occur during the development of the FER System concern
shallow features and bias caused by various cultures and collection conditions. Current
datasets have a strong build-in bias and the corresponding proposed methods show that
the conditional probability distribution between training and testing datasets are different.
We will assess this bias and present novel deep CNN models to address these issues. In our
proposed methodology, we considered face recognition as an image classification problem.
This face recognition definition has been extended to our work for the classification of
facial expressions on human faces. The proposed FER system is based on two backbones:
(1) face preprocessing and (2) the design and analysis of features from the proposed CNN
architectures. The proposed CNN architecture is built using several convolutional lay-
ers, max-pooling, batch normalization, and dropout layers with an optimizer followed
by the soft-max classifier for the final classification tasks. Our extensive random experi-
mental results show that our proposed deep-CNN method achieves superior results for
facial expression recognition problems for both lab-controlled and real-world databases.
The principal issues involved in the facial expression recognition system design are face
representation and classifier selection [31]. The face representation concerns extracting
feature descriptors from the input face image that minimize the intra-class similarities
and maximize the inter-class dissimilarities. In the case of classifier selection, it does not
make sense that the high-performance classifiers always find a better separation between
different classes even if there are significant similarities. Sometimes, the most sophisticated
classifier may fail to execute the facial expression recognition and classification tasks due to
inadequate face representations. We cannot achieve high-performance recognition accuracy
if we employ good face representation but do not select a good classifier. Hence, the below
sections describe the proposed FER system.

3. Proposed Methodology

In this work, we have proposed a facial expression recognition system (FERS) in the
diversified fields of applications, such as e-Healthcare, social IoT, emotion AI, and cognitive
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AI. The block diagram of the proposed method is demonstrated in Figure 2. Since these
fields belong to interdisciplinary research areas, the algorithms and techniques employed
during the implementation of these frameworks are interconnected. Thus, the proposed
FERS will be used as the common platform for analyzing expressions in the applications of
these frameworks. Furthermore, the implementation of a basic FERS is discussed in the
following paragraphs.
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Figure 2. Block diagram of the proposed FERS.

A facial expression recognition system generally consists of face representation, fea-
ture extraction, and classifier components. Regarding the importance of face recognition
in computer vision research areas, we have proposed robust, efficient, and accurate deep
convolution neural network (CNN) models for facial expression recognition systems. Here,
an image Im×n with a valid face region is used as an input to the system. Our objective is
to predict the types of expressions, such fear, anger, disgust, surprise, sadness, happiness,
and neutral, from the input face region Im×n. The proposed facial expression recogni-
tion system (FERS) has been implemented in four steps: (i) pre-processing, wherein the
bounded box face region is detected from the input image using the tree structure part
model [38]; (ii) feature extraction, wherein the global generic CNN features are extracted
from the detected bounding box face region and are prepared for the next level through
the deep learning model; (iii) the representations are further modified by using multi-stage
progressive image resizing followed by transfer learning methods, wherein image aug-
mentation and fine-tuning of parameters have also been adopted; and (iv) classification,
which concerns predicting the type of expression classes of the facial region. Each of these
steps is described in the block diagram of the proposed system, which is presented in
Figure 2. Recently, deep convolution neural network (CNN) techniques have been success-
fully developed to learn discriminative features in various fields. It is widely being used in
deep FER representation. Deep FER suffers from the over-fitting problem due to the lack
of sufficient training samples, age variations, head poses, identity bias, and illumination
variations. The proposed method focuses on these issues and overcomes the computational
complexity of the proposed system.

3.1. Face Preprocessing

We have implemented a deep learning framework to recognize discrete human facial
expression categories in this proposed work. The input face image has been resized to the
same size and was normalized to a fixed size face image Im×n×3. Here, these input images
are mapped to the same locations, i.e., eye locations, the tip of the nose, etc., are known
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as a feature map. At the lowest level of abstraction, it is assumed that preprocessing is a
standard term that concerns computing over intensity images. These input and output
intensity images are the same as the original data captured by the sensor. A matrix of image
function values usually represents an intensity image. The goal of preprocessing is to
enhance the expression of the region of interest and to suppress the unwanted, redundant,
and inconsistent noises in the image. Image preprocessing methods are classified into four
categories according to the size of the pixel neighborhood that is used for the calculation of
new pixel brightness: pixel brightness transformations; geometric transformations; certain
preprocessing methods that use a local neighborhood of the processed pixel; and image
restoration that requires knowledge about the entire image. Here, the required face region
is detected from the input image using a tree-structured part model [46]. The detected face
has been resized to a fixed imageFn×n. These face images are used as input to the proposed
CNN models. During preprocessing, we extracted the face region from each input image
Im×n. Since the facial expressions contained very minute details, it is important to be
conscious about analyzing both expressive or non-expressive characteristics of the facial
region. During face preprocessing, we applied the tree-structured part model, which works
better for both frontal and profile face regions compared to Haar-like features [47]. This
model has outstanding performance results compared to the other face detection algorithm
in computer vision. The tree-structured part model works on the principle of a mixture
of trees with a global mixture of topological viewpoints changing. For an unconstrained
image with an unknown face region, this model locates all the facial landmarks in Im×n.
For facial landmark localization, we consider Lp

q = (xp
q , yp

q ) as the coordinate for the pixel
location of part q. Hence, the tree-structured part model computes thirty-nine landmark
points for profile faces, while computing sixty-eight landmark points for the frontal faces.
These landmark points undergo the computation of four corner points of the face region
Fn×n. The face preprocessing steps are shown in Figure 3.

Extracted region Extracted region

Extracted region

Normalized face Normalized face

Normalized face

Frontal

Left profile Right profile

Figure 3. Face pre-processing steps in the proposed FERS.

3.2. Feature Representation for Expression Classification

Feature extraction is a crucial task to extract discriminating features from the input
image Fn×n to ensure that the extracted feature contains more distinctive patterns [48].
Here, the input image may be a grayscaled or RGB color image. In the field of computer
vision and in image processing research areas, feature extraction starts from an initial
set of measured data and builds the features which are supposed to be informative and
non-redundant, facilitating the subsequent learning and generalization steps. In many
cases, the texture feature extraction techniques [49] lead to better human interpretations.
Moreover, it is related to dimensionality reductions, i.e., when the input image size is
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too large to be processed as the representation for that image, it is transformed into a
reduced set of features, also called a feature vector. The modern state-of-the-art technique
for generic CNN feature representations for facial expression recognition problems could
compete with the statistical and structural-based methods of computer vision. These
generic CNN features can cope with the articulation and occlusion face images captured in
an unconstrained environment and can achieve better performance.

The proposed method describes a complex CNN baseline model with two components,
i.e., feature extraction and classification parts. The proposed CNN model uses a convo-
lutional neural network architecture with five to seven deep image perturbation layers.
The model performs convolution operations using the ReLU activation function followed
by max-pooling and batch normalization operations for feature extraction. Finally, two
flatten layers, which are fully connected, are used for classification tasks on the extracted
feature maps from the top of the layers. The performance for the proposed CNN has been
increased through adding new levels by applying image augmentation and progressive
image resizing methods. These also help the model to prevent the over-fitting and imbal-
anced data problem. Progressive image resizing methods support the model to avoid the
use of excessive computational power. Considering only the pre-trained weights of the last
few layers are being used, these weights have to be learned properly. We take advantage
of image augmentation, batch normalization, the activation function, and regularization
methods including the mix-up optimizer and label smoothing techniques. The convolution
operation is the primary operator and main building block of a CNN architecture. The
term convolution is a mathematical operation that combines two functions and generates a
third function. Here, it is used to extract features from the images. In the case of a CNN
model, the convolution operation is executed over the input image with the help of a
t× t sized kernel or filter and then generates feature maps. The convolution operation is
performed by sliding the filter followed by non-linearity over the input. At every location,
matrix multiplication is performed and sums the result onto the feature map. Finally, we
used a fine-tuning of the parameters and fusion methods to enhance the performance of
the proposed recognition system. Thus, the descriptions of the employed layers for the
proposed CNN architecture are as follows:

• Convolution:- The Convolution layer is the core building block of a CNN model that
performs most of the computation operations. Convolution is a linear matrix operation
consisting of some set of kernels or filters Wt×t. The kernel is a small-sized matrix of
weights that slide over the input [50] and performs element-wise matrix multiplication.
The convolution operation essentially performs dot products between some sets of
learnable filters Wt×t and local regions of the input image Fn×n, and produces an
output matrix of dimension n′ × n′. Here, n′ is calculated by n′ = n−t+2×P

S + 1, where
S is the stride that governs how many numbers of cells will be moved by the filter
to the right and down, from the top-left corner to the bottom-right corner, in the
input image to calculate the next cell in the result. Additionally, P is the padding
that shrinks the height and width of the volumes. Mathematically, the formulation
of the convolution operation is denoted as follows [51]: for input feature vector
F = f(v) and a filter vector W = w(v), the convolution operation is obtained as
F ? W = ∑u∈U f(u)w(v− u) = 〈f(u), w(v− u)〉, where the operator ? denotes the
convolution operation and 〈., .〉 represents the sliding vector inner product between
the input feature f(u) and the flipped kernel w(v − u). It measures the similarity
between the two vectors. The primary benefits of the convolution operation are: (i)
parameter or weight sharing, as a feature detector is used in one part and transfers into
other parts of the image; (ii) the fact that it reduces the number of effective parameters
and image translation; and (iii) the sparsity of connections, i.e., the hidden layers’
input and output dependencies.

• Max-pooling:- A pooling operation is a mathematical operation that performs pixel-
wise average or median operations to reduce the input image size by half its size.
The effective advantages of using pooling operations concern a means of removing
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noise, correcting images, and overcoming incidental occlusions [52]. The pooling
layer is used to reduce the size of the representation to speed up the process as well
as to make some of the features it detects more robust. There are different types of
pooling operations, such as average pooling, fractional max-pooling, and max-pooling.
Max-pooling is a commonly used pooling operation that is used in most CNN models.
Max-pooling calculates the maximum value for patches of a feature map and uses it to
create a down-sampled feature map. It is usually used after a convolutional layer. The
primary benefits of max-pooling are as follows: (i) it is a translation invariance, i.e., it
translates the image by a small amount that does not significantly affect the values of
most pooled outputs; (ii) has reduced computational costs; (iii) has faster matching;
and (iv) has improved accuracy.

• Fully Connected Layers:- It has been stated that fully connected layers and convolutional
layers are distinct, but it has been observed that fully connected layers are a special case
of convolutional layers [53]. In our proposed CNN model, we used two fully connected
layers denoted as FC1 and FC2. Here, n2 neurons in FC2 have full connections to
all activation n1 in FC1. The activation function can be computed with a matrix
multiplication followed by a bias offset. Let x ∈ Rn1×1 represent the single output
vector of layer FC1 and let W ∈ Rn1×n2 denote the weight matrix of the FC2. Suppose
wi is the weight vector of the corresponding ith neuron of the column vector of W in
layer FC2 [54]. Then, the output of FC2 is obtained by WT × x. The output of fully
connected layers is independent of the input image size. Fully connected layers of a
CNN architecture will reduce the full image size, compute the single vector of class
scores, and produce a resulting vector of size [1× 1× Ci].

• Dense Layers:- The dense layer is a type of fully connected connection layer in deep
neural networks [55]. In a dense layer, all input layers are connected to the output
layers by a weight. It performs linear operations withXinputs parameters and generates
Xoutput parameters [56] that are also connected to the next layer as inputs. It utilizes

dense connections between layers with matching feature map size X ′l = g′
(

WTX ′l−1

)
,

where g′ is the activation function, e.g., ReLU defined as p(x) = max(0, x).
• Batch Normalization:- Batch is used to normalize the inputs of the previous layers at

each batch, maintaining the values in a comparable range with the mean equal to 0
and the standard deviation equal to 1. This helps the CNN model to prevent skews
at any one particular point and increases the computation speed. We applied the
batch normalization after every convolution layer and then passed these values to
the ReLU activation function. Batch normalization acts as a regularizer and allows
the model to use higher learning rates [57]. It is used in various image classification
problems and achieves higher accuracy with fewer training steps. Batch normalization
also has a beneficial effect on the gradient flow through the network by reducing
the dependence of gradients on the scale of their parameters or initial values. It also
regularizes the model and reduces the need for dropout layers. We calculated the
batch normalization mathematically as follows: For a a mini-batch χ of size m and
with values of x(l), i.e., activation and omit l for clarity, the mini-batch is expressed as
χ = (x1...m). θ and ψ are the learning parameters, (x̂1....m) are normalized values, and
y1....m are their corresponding linear transformations denoted by batch normalizing
transform, i.e., BN θ,ψ : x1...m → y1...m. Thus, consider the following: mini-batch
mean, �� = 1

m ∑m
i=1 xi; mini-batch variance, ⊃∈� = 1

m ∑m
i=1(xi − µχ)2; normalization,

x̂i =
xi−µχ√
⊃∈�+ζ

; and scale and shift, yi ← θx̂i + ψ = BN θ,ψ(xi).

• Regularization:- Regularization strategies are designed to reduce the test error of a
machine learning algorithm, possibly at the expense of the training error [58]. The
popular regularization methods that exist in the field of deep learning [59] are dropout,
R1-regularization, and discriminative regularization, among others. We employed
the dropout regularization technique on the penultimate layer α = [~a1,~a2, ...,~aF] (F
are the numbers of filters) for our proposed deep CNN model with constrain: `2
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norms of the weight vector [60]. The dropout regularization technique drops a unit
during the training time with a specified probability. Dropout prevents co-adaptation
of the network’s hidden units by randomly dropping out a portion or setting the
hidden units to zero during forward and backward propagation. The neural network
becomes too reliant on particular connections. Instead of using γ = ω × α + δ for
output hidden unit γ in forward propagation, here, dropout uses γ = ω× (α⊗ β) + δ,
where the operator ’⊗’ performs element-wise matrix multiplication and β ∈ RF

is the masking vector of the Bernoulli random variable. At test time, all units are
present and the learned weight vectors are scaled by P such that ~ω = P ×ω, where ~ω
represents the class score computed without dropout. The advantage of using dropout
is that it prevents artificial neural networks from over-fitting. Intuitively, dropout
can be thought of as creating an implicit ensemble of neural networks. This means
that a selected subset of units for each training sample, including their incoming and
outgoing connections, are temporarily removed from the network. Suppose a dropout
probability of 0.5 is used; in this case, roughly half of the activation in each layer is
deleted for every training sample, thus preventing hidden units from relying on other
hidden units present.

• Optimisation:- The proposed FERS problem has been solved by stochastic optimization
methods to optimize our CNN models. In this study, we used the popular first-order
gradient-based Adam optimizer of the stochastic objective function. The popular
optimization methods used for solving FERS problems are Adagard, SGD, RMSProp,
SGD with momentum, AggMo, Demon, Demon CM, DFA, and Adadelta optimization
methods. They use their stochastic mini-bath method. This method estimates the
learning rate based on lower-order momentum. Adam [61] uses only the first two
moments of gradient ṽt and the learning rate or steps size η. The weight updates for
the Adam optimizer are mathematically calculated as wt = wt−1 − η ĥ√

ṽt−ε
, where ε is

a smaller number. The primary advantages of using the Adam optimizer are that it
works well and is suitable for problem-solving for large training data sets. Adam can
handle non-stationary objective functions as in RMSProp while overcoming the sparse
gradient issue drawbacks that appear in RMSProp. Adam is favorable compared to
other stochastic optimizers. The implementation of Adam is straightforward and
computationally efficient with less memory required.

The proposed CNN architectures are based on several blocks as discussed in the
previous section. Here, an input image FnH×nW is convolved with a set of kernels of size
t × t. These convolution layers are called feature maps. The feature maps are stacked
to provide multiple filters on the input. We used 3× 3 sized filters with a stride of 1 for
each convolution layer. The activation function for each convolution layer was ReLU. The
computational complexity of the CNN models was reduced by using d× d pooling layers,
which reduces the output size from one layer to the next in the hidden network layers. To
select maximum elements, we used 2× 2 max-pooling operations to preserve the important
features [62]. Hence, these layers reduce the size of the input image by half. To feed the
pooled output from the stacked featured map to the final layer, the maps were flattened into
one column. The final layers of the CNN had two fully connected layers with M number
of nodes each. Fully connected layers also used the ReLU activation function. These two
layers were regularized by using the dropout layers with the regularization technique.
Finally, the Softmax layer was employed, followed by two fully connected layers, and the
number of nodes of this layer was equal to the number of expression classes.

During the feature representation of images using deep learning approaches, it was
observed that the CNN models obtained better representation when patterns were analyzed
from the multi-resolution of images. Additionally, increasing some layers in the architecture
while increasing the resolution of the images results in more deeply analyzing some
hidden patterns in the feature maps. Inspired by these observations, we applied multi-
resolution of the facial images with varying layers in different CNN architectures. During
feature representations, we considered facial images with three different resolutions such
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that the original facial image Fn×n was down-sampled to Fn1×n1 , Fn2×n2 , and Fn3×n3 ,
n3 = 2 × n2 = 4 × n1. Here, for facial images, namely Fn1×n1 , Fn2×n2 , and Fn3×n3 ,
three different CNN architectures, namely CNN1, CNN2, and CNN3, were proposed.
These architectures are shown in Figures 4–6, whereas the detailed descriptions of these
architectures, including the employed input–output hidden layers, the output shapes of
the convoluted images, and the input image sizes and parameters generated at each layer,
are shown in Tables 1–3, respectively, to allow for greater understanding and clarity about
the models.
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Figure 4. CNN1 architecture for the proposed FER system, that takes the input image F of size (n1 × n1 × 3).
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Figure 5. CNN2 architecture for the proposed FER system, that takes the input image F of size (n2 × n2 × 3).
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Figure 6. CNN3 architecture for the proposed FER system, that takes the input image F of size (n3 × n3 × 3).
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Table 1. The proposed CNN architecture for the input size 48 × 48 with layers, output shape, image size, and parameters.

Layer Output
Shape

Image
Size Parameters Layers Output

Shape
Image
Size Parameters

Block-1 Block-3
Conv2D

(3 × 3)@32 (n, n,32) (48, 48, 32) ((3 × 3 × 3) + 1) × 32
= 896

Conv2D
(3 × 3)@96 (n2, n2,96) (12,12,96) ((3 × 3 × 64) + 1)

× 96 = 55,392

Batch
Norm (n, n, 32) (48, 48, 32) 4 × 32 = 128 Batch

Norm (n2, n2,96) (12,12,96) 4 × 96 = 384

Activation
ReLU (n, n, 32) (48, 48, 32) 0 Activation

ReLU (n2, n2,96) (12,12,96) 0

Maxpool2D
(2 × 2)

(n1, n1,32)
n1 = n/2 (24, 24, 32) 0 Maxpool2D

(2 × 2)
(n3, n3,96)
n3 = n2/2 (6,6,96) 0

Dropout (n1, n1,32) (24, 24, 32) 0 Dropout (n3, n3,96) (6,6,96) 0
Block-2 Block-4

Conv2D
(3 × 3)@64 (n1, n1,64) (24, 24, 64) ((3 × 3 × 32) + 1)

× 64 = 18,496
Conv2D

(3 × 3)@96 (n3, n3,96) (6,6,96) ((3 × 3 × 96) + 1)
× 96 = 83,040

Batch
Norm (n1, n1,64) (24, 24, 64) 4 × 64 = 256 Batch

Norm (n3, n3,96) (6,6,96) 4 × 96 = 384

Activation
ReLU (n1, n1,32) (24, 24, 64) 0 Activation

ReLU (n3, n3,96) (6,6,96) 0

Maxpool2D
(2 × 2)

(n2, n2,64)
n2 = n1/2 (12, 12, 64) 0 Maxpool2D

(2 × 2)
(n4, n4,96)
n4 = n3/2 (3,3,96) 0

Dropout (n2, n2,64) (12, 12, 64) 0 Dropout (n4, n4,64) (3,3,96) 0
Block-5

Conv2D(3 × 3)@64 (n4, n4,64) (3,3,64) 55,360

BatchNorm (n4, n4,64) (3,3,64) 256

ActivationReLU (n4, n4,64) (3,3,64) 0

Maxpool2D(2 × 2) (n5, n5,64), n5 = n4/2 (1,1,64) 0

Dropout (n5, n5,64) (1,1,64) 0
Layer Output Shape Image Size Parameter

Flatten (1, n5 × n5 × 64) (1, 64) 0

Dense (1, 256) (1, 256) (1 + 64) × 256
= 16,640

Batch Normalization (1, 256) (1, 256) 1024

Activation Relu (1, 256) (1, 256) 0

Dropout (1, 256) (1, 256) 0

Dense (1, 256) (1, 256) (256 + 1) × 256
= 65,792

Batch Normalization (1, 256) (1, 256) 1024

Activation Relu (1, 256) (1, 256) 0

Dropout (1, 256) (1, 256) 0

Dense (1, 7) (1, 7) (256 + 1) × 7
= 1799

Total parameters for the input image size: 300,871

Total number of trainable parameters: 299,143

Non-trainable parameters: 1728
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Table 2. The proposed CNN architecture for the input size 96 × 96 with layers, output shape, image size, and parameters.

Layer OutputShape ImageSize Parameters
Block-1

Conv2D(3 × 3)@32 (n, n, 32) (96, 96, 32) 896
BatchNorm (n, n, 32) (96, 96, 32) 128

ActivationReLU (n, n, 32) (96, 96, 32) 0
Maxpool2D(2 × 2) (n1, n1, 32), n1 = n/2 (48, 48, 32) 0

Dropout (n1, n1,32), n1 = n/2 (48, 48, 32) 0
Block-2 Block-4

Conv2D
(3 × 3)@32 (n1, n1,32) (48,48,32) ((3 × 3 × 3) + 1) × 32

= 9248
Conv2D

(3 × 3)@96 (n3, n3,96) (12,12,96) ((3 × 3 × 64) + 1)
× 96 = 55,392

Batch
Norm (n1, n1,32) (48,48,32) 4 × 32 = 128 Batch

Norm (n3, n3,96) (12,12,96) 4 × 96 = 384

Activation
ReLU (n1, n1,32) (48, 48, 32) 0 Activation

ReLU (n3, n3,96) (12,12,96) 0

Maxpool2D
(2 × 2)

(n2, n2,32)
n2 = n1/2 (24, 24, 32) 0 Maxpool2D

(2 × 2)
(n4, n4,96)
n4 = n3/2 (6,6,96) 0

Dropout (n2, n2,32) (24, 24, 32) 0 Dropout (n4, n4,96) (6,6,96) 0
Block-3 Block-5

Conv2D
(3 × 3)@64 (n2, n2,64) (24, 24, 64) ((3 × 3 × 32) + 1)

× 64 = 18,496
Conv2D

(3 × 3)@96 (n4, n4,96) (6,6,96) ((3 × 3 × 96) + 1)
× 96 = 83,040

Batch
Norm (n2, n2,64) (24, 24, 64) 4 × 64 = 256 Batch

Norm (n4, n4,96) (6,6,96) 4 × 96 = 384

Activation
ReLU (n2, n2,32) (24, 24, 64) 0 Activation

ReLU (n4, n4,96) (6,6,96) 0

Maxpool2D
(2 × 2)

(n3, n3,64)
n3 = n2/2 (12, 12, 64) 0 Maxpool2D

(2 × 2)
(n5, n5,96)
n5 = n4/2 (3,3,96) 0

Dropout (n3, n3,64) (12, 12, 64) 0 Dropout (n5, n5,64) (3,3,96) 0
Block-6

Conv2D(3 × 3)@64 (n5, n5,64) (3,3,64) 55,360
BatchNorm (n5, n5,64) (3,3,64) 256

ActivationReLU~ (n5, n5,64) (3,3,64) 0
Maxpool2D(2x2) (n6, n6,64), n6 = n5/2 (1,1,64) 0

Dropout (n6, n6 ,64) (1,1,64) 0
Layer Output Shape Image Size Parameter

Flatten (1, n6 × n6 × 64) (1, 64) 0

Dense (1, 256) (1, 256) (1 + 64) × 256
= 16,640

Batch Normalization (1, 256) (1, 256) 1024
Activation Relu (1, 256) (1, 256) 0

Dropout (1, 256) (1, 256) 0

Dense (1, 256) (1, 256) (256 + 1) × 256
= 65,792

Batch Normalization (1, 256) (1, 256) 1024
Activation Relu (1, 256) (1, 256) 0

Dropout (1, 256) (1, 256) 0

Dense (1, 7) (1, 7) (256 + 1) × 7
= 1799

Total parameters for the input image size: 310,247
Total number of trainable parameters: 308,455

Non-trainable parameters: 1792
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Table 3. The proposed CNN architecture for the input size 192 × 192 with layers, output shape, image size, and parameters.

Layers Output Shape Image Size Parameters
Block-1

Conv2D(3 × 3)@16 (n, n, 16) (192, 192, 16) 448
BatchNorm (n, n, 16) (192, 192, 16) 64

ActivationReLU (n, n, 16) (192, 192, 16) 0
Maxpool2D(2 × 2) (n1, n1,16), n1 = n/2 (96, 96, 16) 0

Dropout (n1, n1,16) (96, 96, 16) 0
Block-2

Conv2D(3 × 3)@32 (n1, n1,32) (96, 96, 32) 4640
BatchNorm (n1, n1,32) (96, 96, 32) 128

ActivationReLU (n1, n1,32) (96, 96, 32) 0
Maxpool2D(2 × 2) (n2, n2, 32), n2 = n1/2 (48, 48, 32) 0

Dropout (n2, n2,32) (48, 48, 32) 0
Layers Output Shape Image Size Parameters Layers Output Shape Image Size Parameters

Block-3 Block-5
Conv2D

(3 × 3)@32 (n2, n2,32) (48,48,32) ((3 × 3 × 3) + 1) × 32
= 9248

Conv2D
(3 × 3)@96 (n4, n4,96) (12,12,96) ((3 × 3 × 64) + 1)

× 96 = 55,392
Batch
Norm (n2, n2,32) (48,48,32) 4 × 32 = 128 Batch

Norm (n4, n4,96) (12,12,96) 4 × 96=384

Activation
ReLU (n2, n2,32) (48,48,32) 0 Activation

ReLU (n4, n4,96) (12,12,96) 0

Maxpool2D
(2 × 2)

(n3, n3,32)
n3 = n2/2 (24, 24, 32) 0 Maxpool2D

(2 × 2)
(n5, n5,96)
n5 = n4/2 (6,6,96) 0

Dropout (n3, n3,32) (24, 24, 32) 0 Dropout (n5, n5,96) (6,6,96) 0
Block-4 Block-6

Conv2D
(3 × 3)@64 (n3, n3,64) (24, 24, 64) ((3 × 3 × 32) + 1)

× 64 = 18,496
Conv2D

(3 × 3)@96 (n5, n5,96) (6,6,96) ((3 × 3 × 96) + 1)
× 96 = 83,040

Batch
Norm (n3, n3,64) (24, 24, 64) 4 × 64 = 256 Batch

Norm (n5, n5,96) (6,6,96) 4 × 96 = 384

Activation
ReLU (n3, n3,32) (24, 24, 64) 0 Activation

ReLU (n5, n5,96) (6,6,96) 0

Maxpool2D
(2 × 2)

(n4, n4,64)
n4 = n3/2 (12, 12, 64) 0 Maxpool2D

(2 × 2)
(n6, n6,96)
n6 = n5/2 (3,3,96) 0

Dropout (n4, n4,64) (12, 12, 64) 0 Dropout (n6, n6,64) (3,3,96) 0
Block-7

Conv2D(3 × 3)@64 (n6, n6,64) (3,3,64) 55,360
BatchNorm (n6, n6,64) (3,3,64) 256

ActivationReLU~ (n6, n6,64) (3,3,64) 0
Maxpool2D(2 × 2) (n7, n7,64), n7 = n6/2 (1,1,64) 0

Dropout (n7, n7 ,64) (1,1,64) 0
Layer Output Shape Image Size Parameter

Flatten (1, n7 × n7 × 64) (1, 64) 0

Dense (1, 256) (1, 256) (1 + 64) × 256
= 16,640

Batch Normalization (1, 256) (1, 256) 1024
Activation Relu (1, 256) (1, 256) 0

Dropout (1, 256) (1, 256) 0

Dense (1, 256) (1, 256) (256 + 1) × 256
= 65,792

Batch Normalization (1, 256) (1, 256) 1024
Activation Relu (1, 256) (1, 256) 0

Dropout (1, 256) (1, 256) 0

Dense (1, 7) (1, 7) (256 + 1) × 7
= 1799

Total parameters for the input image size: 314,503
Total number of trainable parameters: 312,679

Non-trainable parameters: 1824

3.3. Factors Affecting the Performance of the Proposed FERS

• Data Augmentation:- The data augmentation technique is used to expand the train-
ing samples in order to improve the performance of recognition and the ability to
generalize the models. In machine learning, image augmentation techniques artifi-
cially increase the amount of training data by applying transformation methods to
the existing data [63]. The classical augmentation techniques that were employed
are bilateral filtering, unsharp filtering, horizontal flip, vertical flip, Gaussian blur,
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additive Gaussian noise, image scale, image cropping, translation, image rotation,
shear mapping, image zooming, image filling, and contrast normalization methods
from [15] for the purpose of image augmentation. The whole training images were
flipped horizontally by applying simple image data augmentation techniques. In this
work, we applied these techniques for each resolution of the images.

• Fine Tuning:- Fine-tuning allows for higher-order feature representations in the base
model to make them more relevant for the face recognition tasks. For example, VGG
used many layers and generated a higher dimensional feature vector, and thus thw
inference was quite costly at run-time due to huge parameters. In this case, fine-tuning
techniques were applied when freezing some layers and the number of parameters,
and the model was retrained to reduce computational overheads.

• Progressive Resizing:- Progressive image resizing is an eminent technique that sequen-
tially resizes all images while training the CNN models on smaller, i.e., tinier images
to larger image sizes. The progressive resizing technique is used to train a CNN
with n× n image size, saving the weights, and then the CNN is retrained again for
other iterations with the images of increased sizes greater than n. This technique
was used for super-resolution [64], where low-resolution images gradually increased
to the image with a higher resolution during training processes. The advantages of
using progressive resizing are that it improves generalization and reduces overfitting
problems.

• Transfer Learning:- The principle concept behind transfer learning for facial expression
recognition and classification problems is that a model trained on large data sets for
one problem is effectively used as a generic model in some way on other related
problems. The model that has been trained earlier is known as the pre-trained model.
Our proposed deep learning convolution neural network model uses a transfer learn-
ing technique in which the weights of the pre-trained model and/or a set of layers
from the pre-trained model CNN1 are used for the new model CNN2 to solve similar
problems. Similarly, the weights of CNN2 have been adopted to solve the CNN3
model. The benefits of using transfer learning are that it reduces the training time and
can result in lower generalization errors.

• Scores Fusion:- In the proposed system, three CNN architectures have been pro-
posed. These architectures take images of different sizes as inputs. Thus, during
the recognition of facial expressions on the test sample F, there are three different
classification score vectors, namely s1 = (a1

1, a1
2, · · · , a1

7), s2 = (a2
1, a2

2, · · · , a2
7), and

s3 = (a3
1, a3

2, · · · , a3
7), where each ai

j is the classification score by the CNNi architec-

ture and for jth expression class. These classification scores are fused together using
score-level post-classification fusion approaches [14] to increase the performance of
the recognition system. In this work, two score-level fusion techniques, namely Sum-
rule and Product-rule, were employed. The Sum-rule and Product-rule techniques are
defined as follows:

max
i 6=j, k={1,··· ,7}

{ai
k + aj

k} (1)

max
i 6=j, k={1,··· ,7}

{ai
k ∗ aj

k} (2)

4. Experimentation

In this section, the experimentation of the proposed FER system is discussed and for
this purpose, four challenging benchmark facial expression databases were experimented
on. Each database was randomly divided into 50% of the dataset for training, while the
remaining 50% was used for testing purposes. Finally, this partitioning of the datasets were
done ten times and the average performance was reported, corresponding to each database.
As there were no particular benchmark datasets specifically built for the healthcare scenario,
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social IoT, emotion AI, and cognitive AI, the employed datasets were assumed as backbones
for e-Healthcare, social IoT, emotion AI, and cognitive-AI diversified applications as
discussed in this paper. The proposed system has not been tested in a real-time scenario.
Still, the employed datasets were very challenging. The proposed method can accept and
handle all the unconstrained situations of facial expression recognition in the real-time
strategy for e-Healthcare, social IoT, emotion AI, and cognitive AI applications.

4.1. Database Used

The first employed database was Karolinska-directed emotional faces (KDEF) [42]
which contains seventy different subjects (thirty-five male and thirty-five female) with five
different pose variations labeled with seven basic expression categories. Here, we used
only 1210 samples as training sets, whereas 1213 samples were used as testing sets, as only
these samples were available from the license agreement downloaded site. Figure 7 shows
some examples from this database.

Figure 7. Some image samples from the KDEF database.

The second employed database is the GENKI database [65], which is composed of
4000 facial images that have been labeled as two classes: (i) happy and (ii) non-happy.
Additionally, for this database, two thousand images were randomly selected as training
sets, while the remaining two thousand images were considered for the testing set. Some
examples of this database are shown in Figure 8.

The Extended Cohn-Kanade (CK+) [66] is our third database, which is composed of 593
video sequences from 123 subjects captured between the ages of 18 to 50 years. Here, only 309
image sequences were labeled with six basic expressions. During the experimentation, we
randomly split this database into the training and testing sets. Figure 9 presents some image
samples from the CK+ database.
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Happy

Non-Happy

Figure 8. Some image samples from the GENKI database.

Figure 9. Some image samples from the CK+ database.

Our fourth database was Static Facial Expressions in the Wild (SFEW) [26], which was
created from the AFEW video database by selecting the keyframes based on facial point
clustering. The challenging SFEW dataset contains 700 images which were divided into
the training set (346 images) and testing set (354 images). This database has seven facial
expression classes, namely afraid, anger, disgust, happiness, neutral, sadness, and surprise.
Figure 10 presents image samples from the SFEW database.

Figure 10. Some image samples from the SFEW database.
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Table 4 presents the detailed descriptions of the KDEF, GENKI, CK+, and SFEW
facial expression databases. The objectives of the selection of these databases were (i) to
obtain expressions that were common and generic in people; (ii) to ensure that the other
expressions used in the affecting computing research areas were composed of a mixture
of these basic facial expressions; and (iii) to ensure that the good recognition system for
these expressions would be very beneficial for several real-world applications, such as
in e-Healthcare frameworks,in the social Internet of Things (IoT), and in emotion AI in
business organizations.

Table 4. Presentation of the employed facial expression databases.

Database Class Training Testing

KDEF 7 1210 1213

GENKI 2 2000 2000

CK+ 6 663 146

SFEW 7 346 354

4.2. Results and Discussion

This section describes and explains the experimentation of the proposed facial expres-
sion recognition system (FERS). The proposed FERS was implemented using Python 3.7.9
version, Tensorflow 2.3.1 version, Keras 2.4.3 version, CUDA version 11.2, and NVIDIA-
SMI 460.79 Driver Version in Windows 10 Pro 64-bit, Intel(R) Core(TM)-i7-9700 CPU,
3.30 GHz(8 CPU) Processor, and in a 8 GB NVIDIA GeForce RTX 2070 SUPER XLA GPU
device with 16 GB RAM. During experimentation, we employed both gray-scaled and RGB-
colored images as some databases have RGB images while others only have gray-scaled
images. During image preprocessing, from each input image I , we detected the face region
by applying the methods discussed in Section 3.1. Furthermore, the detected face region F
was normalized to a fixed size image F ∈ R200×200. For recognizing the expression classes
on the human face, in this work, we employed deep learning-based approaches where three
convolutional neural network (CNN) architectures (Figures 4–6) were designed. These
CNN architectures were trained in such a way that they would perform both feature
computation and expression classification tasks. For better understanding the function-
ality of these architectures, at first, we started the experiment using CNN1 architecture
(Figure 4), where the input to this system is an image F ∈ Rn1×n1 , n1 = 48, i.e., the training
F48×48 samples were used to train CNN1 architecture while the performance of the trained
CNN1 model was evaluated using the remaining testing samples. Learning the parameters
in any CNN architecture is a very important task and depends on two factors, i.e., epochs
and batches. Both these factors affect the learning capabilities of the architecture during
the training of samples in the network. Thus, a trade-off between epochs and batches
was established, which improved the performance of FERS using CNN1 architecture
(Figure 4). The demonstration of the performance with the trade-off between epochs and
batches is shown in Figure 11 and from this figure, it is observed that the performance
gradually improved with increasing epochs (best performance at nearly 700 epochs) while
keeping 16 batches fixed.

Inspired by the experiment shown in Figure 11, another experiment was conducted
using CNN1 architecture while keeping the fixed batch = 16 with varying epochs with
respect to the KDEF, CK+, and SFEW database; the performance is shown in Figure 12.
From this figure, we can observe that during epochs between 700 and 800, the performance
for each database was good.
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Figure 11. Effect on the performance of the proposed FERS due to the trade-off between epochs and
batches using CNN1 architecture for the CK+ database.
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Figure 12. Effect on the performance of the proposed FERS while keeping the batch fixed with
varying epochs using CNN1 architecture for the KDEF, CK+, and SFEW database.

4.2.1. Effect of Data Augmentation Techniques

The data augmentation techniques were applied to training samples to increase the
number of samples. The increased training samples learned the parameters of CNN1
architecture well and obtained a better performance. Moreover, in order to adapt the
diversity of the training data and to avoid overfitting problems, data augmentation plays
an important role. In this work, each sample of the training images was horizontally and
then vertically flipped. Then, Affine transformations such as rotation, scaling, zooming, and
shearing operations were performed. For the data augmentation technique, we employed
the methods mentioned in [15], which derives seventeen images for each sample. Figure 13
shows the effect of data augmentation techniques on the performance of FERS using CNN1
architecture and from this figure, we can observe that the performance of the proposed
FERS increases due to the employed data augmentation techniques.

A
c
c
u

r
a

c
y

 (
%

)

Figure 13. Effect on the performance of the proposed FERS using proposed data augmenta-
tion techniques.
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4.2.2. Effect of Progressive Image Resizing

The progressive image resizing technique has been discussed in Section 3.3. During
experimentation, the preprocessed face region F ∈ R200×200 was further down-sampled
into n1× n1× 3, 2n1× 2n1× 3, and 4n1× 4n1× 3 size images. Here, we already considered
n1 = 48 in the above experiments. Hence, in progressive image resizing, we down-sampled
F ∈ R200×200 to F ∈ R48×48, F ∈ R96×96, and F ∈ R192×192. In other words, the CNN1
architecture (Figure 4) was trained with F48×48×3 images. Then, F96×96×3 images were
used to train CNN2 architecture (Figure 5). Lastly, the CNN3 architecture was trained with
F192×192×3 images. The purpose behind learning these architectures with the increasing
image sizes concern the fact that (i) the high-resolution images are trained in the network;
(ii) the effect of multi-resolution approaches can be introduced in the network such that the
texture patterns at the higher level of abstraction will be reflected during the learning of
parameters; and (iii) the system will provide deeper information that would be beneficial
for the hierarchical representations of features. Hence, the use of progressive image resizing
not only increases the performance of the recognition system but also reduces the overfitting
problems. The effect of progressive image resizing on the performance of the proposed
system is reported in Table 5 and from this table, we can observe that for the KDEF, GENKI,
CK+, and SFEW databases, the proposed FERS exhibits a better performance for F192×192×3
images than for both F96×96×3 and F48×48×3 images. Moreover, it is evident that both
progressive image resizing and data augmentation techniques together are very effective
for the proposed CNN models for recognizing facial expression on facial regions.

Table 5. Effect of the progressive image resizing on the performance of the proposed FERS where
the first, second, and third row for each database shows the accuracy in percentage using CNN1

(F ∈ R48×48), CNN2 (F ∈ R96×96), and CNN3 (F ∈ R192×192) models, respectively.

Database Data
Augmentation

No Data
Augmentation

75.95 71.67
KDEF 78.18 74.92

80.92 78.21

92.45 87.91
GENKI 94.13 89.77

95.59 91.16

95.89 88.15
CK+ 96.22 92.67

96.71 95.20

34.05 32.56
SFEW 34.91 33.11

35.72 33.34

4.2.3. Effect of Transfer Learning

For this technique, we used two different approaches: (i) in the first approach, we
freshly trained CNN1, CNN2, and CNN3 architectures with the corresponding image sizes,
i.e., refreshed models were used; (ii) in the second approach, we used the trained CNN1
model as a retrained model for CNN2 such that only upper layers of the CNN2 model were
trained with F96×96×3 images. Similarly, the upper layers of the CNN3 architecture were
trained by F192×192×3 images, while for the remaining layers, the weights of the trained
CNN2 model were used. Figure 14 presents the effect of transfer learning approaches on
the performance of the proposed FERS. Here, only the performance of the CNN3 model
trained with F192×192×3 images is shown using both progressive image resizing and data
augmentation techniques.
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Figure 14. Effect of transfer learning on the performance of the proposed FERS.

4.2.4. Effect of Score Fusion

Score fusion techniques defined in Equations (1) and (2) were applied on the classifi-
cation scores obtained by the CNN1, CNN2, and CNN3 architectures, and the results are
reported in Table 6.

Table 6. Effect of score-level fusion approaches on the performance of the proposed FERS.

Method KDEF GENKI

CNN1 75.95 92.45

CNN2 78.18 94.13

CNN3 80.92 95.59

Sum-Rule 81.53 96.03

Product-Rule 82.63 96.75

Method CK+ SFEW

CNN1 95.89 34.05

CNN2 96.22 34.91

CNN3 96.71 35.72

Sum-Rule 97.07 36.15

Product-Rule 97.32 36.79

To better understand the performance of the proposed FERS, the confusion matrices
are shown in Figure 15, corresponding to the KDEF, GENKI, CK+, and SFEW facial ex-
pression database. Here, each confusion matrix represents the product-rule-based fusion
performance of the proposed FERS.

4.2.5. Comparison

To compare the performance of the proposed methodology, we computed features
from the competing methods and obtained the performance under the same training–
testing protocol. Here, the performance of methods of Vgg16 [67], ResNet50 [68], that
of Zavare et al. [42], Inception-v3 [69], and that of Rao et al. [70] were compared
with the performance of the proposed system for the KDEF database, as presented in
Table 7. For the GENKI database the performance of the proposed system was compared
with Vgg16, ResNet50, Inveption-v3, that of An et al. [29], that of Zhang et al. [71], and
that of Gao et al. [72], and the competing methods are presented in Table 8. Similarly, we
compared the performance of the proposed system with that of Sun et al. [73], ResNet50,
and Inveption-v3 for the CK+ database in Table 9. For the SFEW database, the performance
of Liu et al. [74], Vgg16, ResNet50, and the Inveption-v3 methods were compared in
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Table 10. The comparison of performance, as presented in Tables 7–10, shows the superior-
ity of the proposed system.
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Figure 15. Confusion matrix for the (a) KDEF, (b) GENKI, (c) CK+, and (d) SFEW dataset after the
product-rule-based fusion performance of the proposed FERS.

Table 7. Performance comparison of the proposed FERS for the KDEF database.

Method Accuracy (%) Remarks

Vgg16 [67] 65.08 Images used (980), expression class (7), train/test split

ResNet50 [68] 72.32 Images used (980), expression class (7), train/test split

Zavare et al. [42] 72.55 Images used (980), expression class (7)
Images type (frontal), 10-fold cross validation

Inception-v3 [69] 75.04 Images used (980), expression class (7), train/test split

Rao et al. [70] 74.05 Images used (720), expression class (6)
Images type (frontal), 10-fold cross validation

Proposed 82.63 Images used (980), proposed CNN for seven expression classes

Table 8. Performance comparison of the proposed FERS for the GENKI database.

Method Accuracy (%) Remarks

Vgg16 [67] 72.08 VGG16 CNN for seven expression classes

ResNet50 [68] 82.30 ResNet 50 CNN for seven expression classes

Inception-v3 [69] 85.38 Inception-v3 CNN for seven expression classes

An et al. [29] 88.50 Feature (HOG), classifier (ELM)

Zhang et al. [71] 94.21 Feature (CNN), classifier (Softmax)

Gao et al. [72] 94.33 Feature (ensemble), classifier (ensemble)

Proposed 96.75 Proposed CNN for seven expression classes
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Table 9. Performance comparison of the proposed FERS for the CK+ database.

Method Accuracy (%) Remarks

ResNet50 [68] 91.87 Images used (981), expression class (7), train/test split

Inception-v3 [69] 94.07 Images used (981), expression class (7), train/test split

Sun et al. [73] 94.67 Images used (510), expression class (7), k-fold cross-validation

Proposed 96.81 Images used (981), proposed CNN for seven expression classes

Table 10. Performance comparison of the proposed FERS for the SFEW database.

Method Accuracy (%) Remarks

Vgg16 [67] 24.78 Images used (700), expression class (7), train (346)/test (354)

ResNet50 [68] 24.98 Images used (700), expression class (7), train (346)/test (354)

Inception-v3 [69] 29.52 Images used (700), expression class (7), train (346)/test (354)

Liu et al. [74] 26.14 Images used (700), expression class (7), train (346)/test (354)

Proposed 36.79 Images used (700), expression class (7), Train (346)/Test (354)

5. Conclusions

A novel method for facial expression recognition systems has been proposed in this
work. The objective of the proposed system is to predict the seven basic types of expressions
on the human face. The applications of this proposed system have been well described
and demonstrated in the diversified fields of e-Healthcare, social IoT, emotion AI, and
cognitive AI. The implementation of the proposed system has three components. In the
first component, an image preprocessing task has been performed where a face region
was extracted from a body silhouette image using the facial landmark points. Then, in
the second component, from the extracted face region, the multi-resolution images were
considered. The convolutional neural network architectures have been proposed for each
resolution of the images. Here, the images undergo the CNN architectures and are classified
into seven basic facial expression classes based on learning the parameters of CNN models.
To enhance the performance of the recognition system and better handle the challenging
issues of the facial expression recognition system, some advanced techniques such as
image augmentation, progressive image resizing, transfer-learning, and fine-tuning of
parameters were employed in the third component. Finally, fusion methods were applied
to the best performance of the different CNN models to achieve a better performance
than the existing state-of-the-art methods. Extensive experimentation has been performed
using four benchmark databases, namely KDEF, GENKI-4k, CK+, and SFEW, and the
performance of the proposed system has been compared with some existing methods
concerning each database. The comparison of the performance of the proposed method
with the competing methods shows the superiority of the proposed system.
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